李海明,張源波,楊萌,和渝斌
下丘腦垂體腎上腺軸功能異常與高血壓
李海明1,張源波2,楊萌2,和渝斌1
下丘腦垂體腎上腺(HPA)軸功能異常與高血壓的發(fā)病相關(guān)[1]。近年來高血壓患病率與日俱增,嚴重者會引發(fā)心、腦、腎、眼底及動脈血管等組織器官損傷,為腦卒中、冠狀動脈粥樣硬化性心臟?。ü谛牟。┑闹匾kU因素[2]。高血壓的發(fā)病機制復雜多樣,除遺傳及環(huán)境因素外,神經(jīng)因素也是其重要機制之一,可有的放矢地給高血壓患者進行精準醫(yī)療,將對其預(yù)后有著重要影響。本文將對與高血壓發(fā)病有關(guān)的中樞神經(jīng)系統(tǒng)即HPA軸功能異常因素進行闡述,以期為高血壓防治提供基礎(chǔ)。
研究表明,HPA軸異常不僅是高血壓發(fā)生的重要因素,也是胰島素抵抗和腹型肥胖的發(fā)病機制中的重要環(huán)節(jié),后兩者是引起高血壓的重要因素。如機體長期處于應(yīng)激狀態(tài),會導致HPA軸的調(diào)節(jié)功能趨于消耗殆盡,個體新陳代謝進入病理狀況,分泌皮質(zhì)醇類物質(zhì)的能力下降,伴隨其它內(nèi)分泌軸系統(tǒng)受到抑制,機體此時會出現(xiàn)生長激素及性腺激素水平的下降,同時會導致中樞交感神經(jīng)系統(tǒng)激活,繼而對機體血壓出現(xiàn)提升效應(yīng)[3]。從神經(jīng)內(nèi)分泌角度分析,高血壓的發(fā)病機制可能是在遺傳易感性的基礎(chǔ)上,由于環(huán)境因素(如社會活動受挫及其隨后的情緒改變),以及濫用中樞興奮劑頻繁刺激下丘腦使其功能增強,通過HPA軸使皮質(zhì)醇分泌增多,同時因HPA軸的反饋抑制能力減弱,導致皮質(zhì)醇進一步增多,交感中樞和HPA軸中樞的信號紊亂,功能失調(diào)導致血壓升高。
交感神經(jīng)中樞和HPA軸的中樞共同位于下丘腦,位置相鄰。當下丘腦激活時,兩個中樞可同時出現(xiàn)活性改變[4]。研究發(fā)現(xiàn)肥胖患者的HPA軸活性增加的同時交感神經(jīng)活性也明顯增強,而在HPA軸功能激活情況下,也會出現(xiàn)交感神經(jīng)系統(tǒng)激活的表現(xiàn),提示可能兩個中樞共同參與了肥胖相關(guān)的代謝改變和血流動力學異常,也可能交感的激活是機體為了維持自身穩(wěn)態(tài)而產(chǎn)生的一種保護效應(yīng)或補償機制[5]。
交感神經(jīng)活性的增強使體液中腎上腺素、去甲腎上腺素及多巴胺等兒茶酚胺類物質(zhì)含量及活性增加,它們的化學結(jié)構(gòu)相似,主要在交感神經(jīng)節(jié)細胞及或腎上腺髓質(zhì)及或嗜鉻細胞合成,釋放進入循環(huán)后與不同組織器官的受體結(jié)合而發(fā)揮生理功能[6]。上述兒茶酚胺類物質(zhì)雖有相似的化學結(jié)構(gòu),但功能卻不相同,如支配心臟的神經(jīng)遞質(zhì)可直接作用于心肌細胞及竇房結(jié)起搏細胞及心傳導細胞。兒茶酚胺在與位于心血管及或其它器官組織細胞上的腎上腺素能受體結(jié)合分別發(fā)揮其相應(yīng)功能。其功能發(fā)揮取決于各組織細胞受體分布的類型[7]。
研究表明高血壓患者血中兒茶酚胺類物質(zhì)及其代謝產(chǎn)物濃度高于正常人,因此認為交感神經(jīng)的活性提升與高血壓的發(fā)生密切相關(guān)??赡艿慕忉尀椋孩賰翰璺影奉愇镔|(zhì)與外周動脈血管平滑肌細胞上受體結(jié)合后,動脈血管平滑肌細胞始終位于高張力的應(yīng)急狀態(tài),誘發(fā)VSMC的肥大與增生,導致動脈管壁變厚,血管腔狹小,外周阻力血管中小動脈的阻力提高[8];②與外周動脈血管的受體結(jié)合,會刺激中小動脈阻力血管平滑肌收縮,增加機體外周血管的總阻力;③循環(huán)中兒茶酚胺類物質(zhì)的濃度升高,增加了與心臟相應(yīng)受體結(jié)合的概率,導致心肌收縮力加強,心率變快,心輸出量提高,加重高血壓患者的血壓負荷[9];④增高的交感神經(jīng)活性降低了抑制腎素釋放功能,RAAS系統(tǒng)激活,腎素分泌釋放入循環(huán)的量增加,過多的AngⅡ刺激外周阻力血管過度收縮,同時醛固酮分泌增加導致水鈉潴留,使循環(huán)血容量進一步加大,最終腎素、血管緊張素、醛固酮聯(lián)合作用進一步推升了高血壓患者的血壓水平;⑤高活性的交感神經(jīng)使循環(huán)中兒茶酚胺濃度持續(xù)高漲,長期作用會導致腎動脈痙攣及肥厚,造成腎動脈管腔狹窄,腎血流下降,機體如維持對腎臟的正常血流量,就必須提高血壓,腎臟的RAAS被進一步激活,再次使血壓增加[10];⑥兒茶酚胺類物質(zhì)還有促進血小板黏附聚集的作用,當血黏滯度提高后,又加大了血流在循環(huán)中的阻力[11]。
交感神經(jīng)活性的增強,觸發(fā)了一系列病理過程:①高血壓:腎交感神經(jīng)活性增強通過刺激腎素釋放和促進腎小管對鈉的重吸收而導致血壓升高[12];②糖脂代謝紊亂:脂質(zhì)動員高度依賴交感神經(jīng)末梢釋放的兒茶酚胺,其產(chǎn)物游離脂肪酸干擾外周脂質(zhì)和碳水化合物的代謝,誘發(fā)肌肉的胰島素抵抗,并為肝產(chǎn)生脂蛋白提供了底物,從而引起或加重了HPA軸異常人群的代謝紊亂;③胰島素抵抗:交感神經(jīng)活性增強使骨骼肌血管收縮,血流量下降,骨骼肌的葡萄糖利用障礙,發(fā)生胰島素抵抗。另外,交感神經(jīng)遞質(zhì)兒茶酚胺是胰島素的拮抗劑,可刺激胰高血糖素分泌,抑制機體攝取葡萄糖,促進脂肪分解代謝,血中游離脂肪酸(FFA)濃度增加,促進糖異生過程。兒茶酚胺還可促進胰島素抵抗形成,導致胰島素受體或受體后缺陷。胰島素抵抗發(fā)生后,不僅引起糖脂代謝異常,還可導致高血壓的發(fā)生[13]。
胰島素抵抗引起或加重高血壓的可能途徑:①它可作用于RAAS系統(tǒng)及激肽緩激肽系統(tǒng)對血壓的調(diào)節(jié);②腎小管對鈉的重吸收作用增強;③干預(yù)離子的跨膜轉(zhuǎn)運,增加了細胞內(nèi)Na+、Ca2+含量,使外周小動脈血管平滑肌對血管加壓物質(zhì)的反應(yīng)性提升;④動脈平滑肌細胞增生或肥大與類胰島素樣生長因子刺激有關(guān),使阻力動脈血管管腔發(fā)生狹窄[14];⑤通過直接或間接促進交感神經(jīng)活性,刺激阻力動脈血管收縮,提升了心臟輸出量;⑥抑制內(nèi)皮細胞依賴的擴張血管功能發(fā)揮;⑦減弱了胰島素促進內(nèi)皮細胞合成與分泌內(nèi)皮素功能,抑制了機體舒張血管功能[15]。
在高血壓發(fā)生機制中,一旦明確中樞神經(jīng)系統(tǒng)在其發(fā)揮主要作用時,應(yīng)針對性采取措施,尤其是難治性高血壓多涉及中樞神經(jīng)系統(tǒng)的異常,治療時應(yīng)考慮與中樞神經(jīng)抑制劑聯(lián)合應(yīng)用[16]。神經(jīng)抑制劑包括:①交感神經(jīng)抑制劑:胍乙啶、倍他尼定、異喹胍等[17];②中樞性交感神經(jīng)抑制劑:甲基多巴類、咪唑啉受體激動劑(雷美尼定、莫索尼定是此類中的代表藥物,較傳統(tǒng)的α2受體激動劑可樂定對腦咪唑啉受體有的親和力高[18])。
下丘腦垂體腎上腺軸的任何環(huán)節(jié)功能異常,都會影響相應(yīng)調(diào)節(jié),尤其是患者神經(jīng)因素異常對高血壓發(fā)病密切相關(guān)[19]通過不同環(huán)節(jié)及途徑影響心血管的結(jié)構(gòu)與功能,并可通過代謝因素作用于心血管系統(tǒng),共同促進高血壓的發(fā)生發(fā)展[20]。了解高血壓發(fā)病的中樞調(diào)控機制,并對其進行針對性治療,有著重要臨床價值,在臨床實踐中需要考慮神經(jīng)因素異常的作用,對患者制定更精準的治療方案。
[1] Arlene Bradley Levine,Lionel M. Levine,T. Barry Levine,et al.Posttraumatic Stress Disorder and Cardiometabolic Disease[J]. Cardi ology,2014,127(1):1-19.
[2] Hunter RW,Ivy JR,Bailey MA,et al. Glucocorticoids and renal Na+transport:Implications for hypertension and salt sensitivity[J]. The Journal of Physiology,2014,592(8):1731-44.
[3] Krishnaveni GV,Veena SR,Dhube A,et al. Size at birth, morning cortisol and cardiometabolic risk markers in healthy Indian children[J]. Clinical Endocrinology,2014,80(1):73-9.
[4] Wainford RD,Carmichael CY,Pascale CL,et al. G alpha i(2)-Protein-Mediated Signal Transduction Central Nervous System Molecular Mechanism Countering the Development of Sodium-Dependent Hypertension[J]. Hypertension: An Official Journal of the American Heart Association,2015,65(1):178-86.
[5] Baojian Xue,Alan Kim Johnson,Meredith Hay,et al. Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen[J]. American Journal of Physiology,2013,305(3 Pt.2):R459-R63.
[6] Ma SK,Lee KH,Kim SW,et al. Hyponatremia associated with primary central nervous system lymphoma[J]. Clinical and experimental nephrology,2014,18(1):170-1.
[7] Barnes JN,Hart EC,Curry TB,et al. Aging enhances autonomic support of blood pressure in women[J]. Hypertension:An Official Journal of the American Heart Association,2014,63(2):303-8.
[8] Peitzsch M.,Pelzel D Gl,ckner S,et al. Simultaneous liquid chromatography tandem mass spectrometric determination of urinary free metanephrines and catecholamines,with comparisons of free and deconjugated metabolites[J]. Clinica chimica acta:International journal of clinical chemistry and applied molecular biology,2013,418:50-8.
[9] McMaster WG,Kirabo AM,Meena S,et al. Inflammation, Immunity,and Hypertensive End-Organ Damage[J]. Circulation research:a journal of the American Heart Association,2015,116(6):1022-33.
[10] Chapter 13. Secondary hypertension[J]. Hypertension research: Official journal of the Japanese Society of Hypertension,2014,37(4):349-61.
[11] Zhou XG,Zhu AW,Shi GY,et al. Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquiddiphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector[J]. Journal of chromatography, A: Including electrophoresis and other separation methods,2015,1409:125-31.
[12] Wang Y,Seto SW,Golledge J,et al. Angiotensin Ⅱ,Sympathetic nerve activity and chronic heart failure[J]. Heart failure reviews,2014,19(2):187-98.
[13] Zhou YB,Sun HJ,Chen D,et al. Intermedin in paraventricular nucleus attenuates sympathetic activity and blood pressure via nitric oxide in hypertensive rats[J]. Hypertension:An Official Journal of the American Heart Association,2014,63(2):330-7.
[13] Jiang ZL,Zhao Y,Doytchinova A,et al. Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs[J]. Heart rhythm:the official journal of the Heart Rhythm Society,2015,12(6):1324-32.
[14] Li B,Shi Z.,Cassaglia PA,et al. Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal, and splanchnic sympathetic nerve activity and heart rate[J]. Hypertension:An Official Journal of the American Heart Association,2013,61(4):812-9.
[15] Usselman CW,Wakefield PK,Skow RJ,et al. Regulation of Sympathetic Nerve Activity During the Cold Pressor Test in Normotensive Pregnant and Nonpregnant Women[J]. Hypertension:An Official Journal of the American Heart Association,2015,66(4):858-64.
[16] Rosendorff CL,Daniel TA,Matthew,et al. Treatment of Hypertension in Patients With Coronary Artery Disease A Scientific Statement From the American Heart Association,American College of Cardiology,and American Society of Hypertension[J]. Hypertension:An Official Journal of the American Heart Association,2015,65(6):1372-407.
[17] Macefield VG,James C,Henderson LA,et al. Identification of sites of sympathetic outflow at rest and during emotional arousal: Concurrent recordings of sympathetic nerve activity and fMRI of the brain[J].International journal of psychophysiology:official journal of the International Organization of Psychophysiology,2013,89(3):451-9.
[18] Rosendorff CL,Daniel T,Allison M,et al. Treatment of Hypertension in Patients With Coronary Artery Disease A Scientific Statement From the American Heart Association,American College of Cardiology,and American Society of Hypertension[J]. Circulation:An Official Journal of the American Heart Association,2015,131(19):E435-E70.
[19] Michael K,Julian G,Simmons SW,et al. Sex-specific prediction of hypothalamic-pituitary-adrenal axis activity by pituitary volume during adolescence:A longitudinal study from 12 to 17 years of age[J].Psychoneuroendocrinology:An International Journal,2014,38(11):2694-704.
[20] Xia LP,Shen L,Kou H,et al. Prenatal ethanol exposure enhances the susceptibility to metabolic syndrome in offspring rats by HPA axisassociated neuroendocrine metabolic programming[J]. Toxicology Letters:An International Journal Providing a Forum for Original and Pertinent Contributions in Toxicology Research,2014,226(1):98-105.
R544.1
A
1674-4055(2017)10-1276-02
1100700 北京,陸軍總醫(yī)院心血管病研究所;2100700北京,陸軍總醫(yī)院急診科病房
和渝斌,E-mail:yuhe603@yahoo.com
10.3969/j.issn.1674-4055.2017.10.40
本文編輯:孫竹