石榮珍 李世發(fā) 高建莉
浙江中醫(yī)藥大學(xué) 杭州 310053
熊果酸和粉防己堿對(duì)腫瘤相關(guān)信號(hào)通路的互補(bǔ)抑制及其協(xié)同抗腫瘤增殖作用研究
石榮珍 李世發(fā) 高建莉
浙江中醫(yī)藥大學(xué) 杭州 310053
[目的]通過分析中藥活性成分對(duì)腫瘤相關(guān)的多條信號(hào)通路抑制作用的差異,研究對(duì)信號(hào)通路抑制作用存在互補(bǔ)現(xiàn)象的兩個(gè)化合物熊果酸(ursolic acid,UA)和粉防己堿(tetrandrine,Tet)協(xié)同抗腫瘤增殖的作用及其最優(yōu)配比。[方法]運(yùn)用多信號(hào)通路報(bào)告基因技術(shù),研究5個(gè)具有抗腫瘤活性的化合物千金藤堿(cepharanthine,Cep)、Tet、18α-甘草酸(18α-glycyrrhetinic acid,18α-Gly)、UA、木犀草素(luteolin,Lut)對(duì)腫瘤相關(guān)的MAPK/ ERK、MAPK/JNK、NF-κB、Wnt、Notch、Cell Cycle、Myc/Max以及Hypoxia信號(hào)通路活化程度的影響;采用MTT法和結(jié)晶紫法研究由Cep、Tet、18α-Gly、UA、Lut組成的15個(gè)不同化合物組合對(duì)人腫瘤細(xì)胞MDA-MB-231、SW480、MG63、PC3、DU145、HCT116、143B、MDA-MB-468的抗增殖作用;運(yùn)用兩藥相互作用指數(shù)(coefficient of drug interaction,CDI)法篩選存在協(xié)同增效作用的化合物組合;采用等效線法和合用指數(shù)(combination index,CI)法篩選該組合協(xié)同抗腫瘤細(xì)胞增殖的最優(yōu)配比。[結(jié)果]信號(hào)通路報(bào)告基因?qū)嶒?yàn)發(fā)現(xiàn)化合物組合UA+Tet對(duì)與腫瘤相關(guān)的8條信號(hào)通路活化的抑制作用存在互補(bǔ),提示UA和Tet之間可能具有協(xié)同抗腫瘤細(xì)胞增殖作用。CDI法驗(yàn)證后發(fā)現(xiàn)UA和Tet具有協(xié)同抗腫瘤細(xì)胞增殖作用。等效線法、CI法分析得出UA與Tet最佳濃度比為9:1。[結(jié)論]UA、Tet對(duì)8條腫瘤相關(guān)信號(hào)通路具有抑制互補(bǔ)作用,用MTT、結(jié)晶紫等不同方法證實(shí)二者協(xié)同抗增殖作用,并篩選出UA和Tet的最優(yōu)配比,這為研發(fā)抗癌復(fù)方提供了新的思路。
協(xié)同作用;信號(hào)通路互補(bǔ);UA;Tet;抗腫瘤;藥物組合;報(bào)告基因;最佳配比
多種藥物聯(lián)合作用是腫瘤治療的常見方法,可以增加藥物療效,降低藥物劑量,減少藥物毒性,并且可以盡可能防止耐藥性的產(chǎn)生[1-3]。研究表明,腫瘤的發(fā)生發(fā)展與相關(guān)信號(hào)通路的激活密切相關(guān),MAPK/ ERK、MAPK/JNK、NF-κB、Wnt、Notch、Cell Cycle、Myc/ Max以及Hypoxia等信號(hào)通路均與腫瘤的發(fā)生發(fā)展密切相關(guān)[4-10]。有研究表明千金藤堿(cepharanthine,Cep)、粉防己堿(tetrandrine,Tet)、18α-甘草酸(18αglycyrrhetinic acid,18α-Gly)、熊果酸(ursolic acid,UA)、木犀草素(luteolin,Lut)均具有較強(qiáng)的抗腫瘤作用[10-17]。本研究擬采用報(bào)告基因檢測(cè)上述化合物對(duì)與腫瘤相關(guān)的8條信號(hào)通路活化的影響,并采用MTT法、結(jié)晶紫法結(jié)合等效線法、合用指數(shù)(combination index,CI)法、兩藥相互作用指數(shù)(coefficient of drug interaction,CDI)法分析和驗(yàn)證對(duì)信號(hào)通路作用互補(bǔ)的化合物是否在抗腫瘤增殖中存在協(xié)同增效作用。
1.1 主要藥物、試劑及儀器 UA、Tet、Cep、18α-Gly、Lut均購自Sigma公司。DMEM培養(yǎng)基、胰蛋白酶(批號(hào):2016030801,杭州吉諾生物醫(yī)藥技術(shù)有限公司);胎牛血清(FBS,批號(hào):A66E00F,Gemini,美國(guó));0.4%臺(tái)盼藍(lán)溶液(批號(hào):20120906,Solarhio);噻唑藍(lán)(MTT,批號(hào):MKBJ2415V,Sigma,美國(guó));二甲基亞砜(DMSO,批號(hào):SHBC2572V,Sigma,美國(guó));結(jié)晶紫(批號(hào):20090117,中國(guó)上海標(biāo)本模型廠);乙酸(批號(hào):20120920,杭州化學(xué)試劑有限公司);BioLuxRGaussia Luciferase Assay Kit(批號(hào):0441111,New England Biolabs,美國(guó))。培養(yǎng)板、培養(yǎng)皿(BD Falcon);超凈工作臺(tái)(型號(hào):BJ-2CD,上海博迅實(shí)業(yè)有限公司,中國(guó));熒光倒置顯微鏡(Olympus,型號(hào):IX71型,日本);二氧化碳培養(yǎng)箱(Thermo Scientific,型號(hào):Series 8000,美國(guó));酶標(biāo)儀(BioTek公司,型號(hào):PowerWave HT340,美國(guó));單管型多功能檢測(cè)儀(Promegal公司,型號(hào):E6080,美國(guó))。實(shí)驗(yàn)采用的質(zhì)粒pAmpho等由美國(guó)芝加哥大學(xué)何通川教授惠贈(zèng)。
1.2 細(xì)胞株與細(xì)胞培養(yǎng) 人骨肉瘤細(xì)胞143B和MG63,人前列腺癌細(xì)胞DU145和PC3,人乳腺癌細(xì)胞MDA-MB-231和MDA-MB-468,人結(jié)腸癌細(xì)胞HCT116和SW480,人腎上皮細(xì)胞HEK293,小鼠乳腺癌細(xì)胞4T1細(xì)胞株均由ATCC(Manassas,VA)提供。上述細(xì)胞用DMEM完全培養(yǎng)基(含10%胎牛血清、青霉素1× 105U·L-1、鏈霉素100mg·L-1),在37°C、飽和濕度及5%CO2的細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng),待細(xì)胞融合至85%時(shí),用0.25%胰蛋白酶(含EDTA)消化,按1:4傳代,取對(duì)數(shù)生長(zhǎng)期細(xì)胞用于實(shí)驗(yàn)。整個(gè)實(shí)驗(yàn)過程中用臺(tái)盼藍(lán)染色檢測(cè)細(xì)胞活性。
1.3 MTT法檢測(cè)不同化合物的細(xì)胞毒性作用 取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231、SW480、MG63、PC3、DU145、HCT116、143B、MDA-MB-468細(xì)胞,按細(xì)胞數(shù)1×104/ 100μL接種于96孔板內(nèi),培養(yǎng)24h之后,加入濃度分別為100μmol·L-1、50μmol·L-1、25μmol·L-1、12.5μmol· L-1、6.25μmol·L-1、3.125μmol·L-1、1.5625μmol·L-1的化合物進(jìn)行處理,終體積為200μL/孔,同時(shí)設(shè)置對(duì)照組和空白組,每組3個(gè)復(fù)孔。培養(yǎng)48h后,每孔加入(5g· L-1)20μL MTT工作液,繼續(xù)培養(yǎng)4h,棄去孔內(nèi)培養(yǎng)液,加入DMSO150μL,搖床震蕩10min,待沉淀物完全溶解后,用酶聯(lián)免疫檢測(cè)儀在波長(zhǎng)570nm處讀取吸光度值,按公式計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=(給藥組OD值-空白組OD值)/(對(duì)照組OD值-空白組OD值)×100%。采用 SPSS19.0 probite法計(jì)算藥物半數(shù)致死率(IC50)。
1.4 多信號(hào)通路報(bào)告基因穩(wěn)定細(xì)胞株的構(gòu)建 為研究與腫瘤發(fā)生發(fā)展密切相關(guān)的8條不同的信號(hào)通路,分別構(gòu)建了針對(duì)不同信號(hào)通路響應(yīng)的報(bào)告基因質(zhì)粒。具體步驟詳見課題組前期研究[13]。將攜帶不同信號(hào)通路的報(bào)告基因質(zhì)粒的載體,與pAmpho質(zhì)粒一起轉(zhuǎn)染至HEK293細(xì)胞內(nèi),36h后收集細(xì)胞培養(yǎng)液中相應(yīng)的逆轉(zhuǎn)錄病毒,用其感染靶細(xì)胞HCT116。經(jīng)過抗藥性篩選和克隆化培養(yǎng),可以檢測(cè)出癌細(xì)胞熒光素酶的表達(dá)情況。若干代培養(yǎng)后,即成功構(gòu)建了穩(wěn)定的細(xì)胞株模型。
1.5 不同化合物對(duì)信號(hào)通路活化程度的研究 采用已構(gòu)建的插入報(bào)告基因質(zhì)粒的穩(wěn)定細(xì)胞株,按細(xì)胞數(shù)2×104/孔接種于96孔板。根據(jù)前期研究及文獻(xiàn)資料[13]設(shè)濃度分別為1μmol·L-1、5μmol·L-1、10μmol·L-1的UA、Cep、18α-Gly組,濃度分別為 5μmol·L-1、25 μmol·L-1、50μmol·L-1的Tet、Lut組,以及溶劑對(duì)照,每孔終體積為200μL,每組設(shè)3復(fù)孔。培養(yǎng)2h后,每孔取50μL上清液用于熒光素酶活性的檢測(cè)。信號(hào)通路相對(duì)活化程度=給藥組熒光信號(hào)強(qiáng)度/對(duì)照組熒光信號(hào)強(qiáng)度×100%。熒光素濃度采用BioLuxRGaussia Luciferase Assay Kit檢測(cè),具體步驟可見課題組前期研究[13]。
1.6 結(jié)晶紫法評(píng)價(jià)不同化合物配伍對(duì)細(xì)胞的抗增殖作用 根據(jù)1.3項(xiàng)實(shí)驗(yàn)所得不同化合物的IC50,設(shè)計(jì)不同化合物配比試驗(yàn)。課題組設(shè)計(jì)15個(gè)不同的藥物組合,分別為:(1)Cep單獨(dú)用藥組,(2)Cep:Tet=1:1組,(3)Cep:18α-Gly=1:1組,(4)Cep:UA=1:3組,(5)Cep: Lut=1:5組,(6)Tet單獨(dú)用藥組,(7)Tet:18α-Gly=1:1組,(8)Tet:UA=1:3組,(9)Tet:Lut=1:5組,(10)18α-Gly單獨(dú)用藥組,(11)18α-Gly:UA=1:2組,(12)18α-Gly:Lut=1:5組,(13)UA單獨(dú)用藥組,(14)UA:Lut=1: 2.5組,(15)Lut單獨(dú)用藥組。取對(duì)數(shù)生長(zhǎng)期的143B細(xì)胞,5×104/孔接種于24孔培養(yǎng)板,培養(yǎng)24h。設(shè)溶劑對(duì)照組、空白組、不同濃度組,每組設(shè)3個(gè)復(fù)孔。給藥后培養(yǎng)48h,棄去培養(yǎng)液,每孔加入300μL 0.2%結(jié)晶紫染液,室溫染色30min后洗去染料,用20%的醋酸溶液溶解結(jié)晶,搖床振搖10min后,酶聯(lián)免疫檢測(cè)儀540nm波長(zhǎng)下測(cè)各孔吸光度。按1.3所述公式計(jì)算細(xì)胞抑制率。
1.7 CI法、等效線法、CDI法篩選最佳組合和最優(yōu)配比 設(shè)置空白對(duì)照組 (僅含等體積0.1%DMSO的培養(yǎng)液)、溶劑對(duì)照組(細(xì)胞+含等體積0.1%DMSO的培養(yǎng)液)、UA+Tet不同配比給藥組。根據(jù)本課題組預(yù)試驗(yàn)結(jié)果,UA、Tet對(duì)小鼠4T1細(xì)胞的IC50值分別為42.93 μmol·L-1、22.93μmol·L-1。據(jù)此設(shè)計(jì)5個(gè)UA與Tet的不同配比組別,兩者比例分別為UA:Tet=9:1、3:1、1:1、1:3和1:9。每個(gè)組合中,UA和Tet在細(xì)胞培養(yǎng)液中對(duì)應(yīng)的濃度分別為:UA90μmol·L-1、75μmol·L-1、50μmol·L-1、25μmol·L-1、10μmol·L-1;Tet 10μmol·L-1、25 μmol·L-1、50μmol·L-1、75μmol·L-1、90μmol·L-1。
1.7.1 CI法 根據(jù)公式計(jì)算CI,CI=D1/DX1+D2/DX2+ α(D1D2/DX1DX2)[18]。D1、D2為聯(lián)合用藥達(dá)到X效應(yīng)時(shí)藥物1、藥物2的濃度,DX1、DX2為單獨(dú)用藥達(dá)到X效應(yīng)時(shí)藥物1和藥物2的濃度,藥物作用機(jī)制不同時(shí)α=0。CI<1表示協(xié)同,CI=1表示相加,CI>1表示拮抗。信號(hào)通路研究表明UA、Tet為作用機(jī)制不同的藥物,故此處α=0。
1.7.2 等效線法 等效線法是用來確定藥物之間相互作用的另一種數(shù)學(xué)方法[19]。細(xì)胞協(xié)同作用的結(jié)果顯示為相加等效線。采用藥物單用和聯(lián)用時(shí)的IC50分別構(gòu)建三條曲線:ModeⅠ,ModeⅡa,ModeⅡb,并在圖中標(biāo)明不同組合作用時(shí)的數(shù)據(jù)點(diǎn)。ModeⅡa及ModeⅡb曲線之間為加和囊,數(shù)據(jù)點(diǎn)在加和囊中,表明藥物作用為相加,數(shù)據(jù)點(diǎn)在加和囊上側(cè),表明藥物作用為拮抗,數(shù)據(jù)點(diǎn)在加和囊下側(cè),表明藥物作用為增效[3]。
1.7.3 CDI法 根據(jù)公式計(jì)算CDI:CDI=AB/(A×B)[20]。AB為兩藥聯(lián)用時(shí)的細(xì)胞增殖率,A或B是各個(gè)藥物單用時(shí)的細(xì)胞增殖率。CDI<1時(shí)增效,CDI>1為拮抗,CDI<0.7時(shí),藥物之間的作用為顯著增效。
1.8 統(tǒng)計(jì)學(xué)方法 采用統(tǒng)計(jì)分析軟件SPSS19.0進(jìn)行統(tǒng)計(jì)學(xué)處理。連續(xù)型變量用均數(shù)±標(biāo)準(zhǔn)差 (means± SD)表示,分別采用單因素方差分析(one-way ANOVA)、兩兩比較的Student's t-test分析實(shí)驗(yàn)結(jié)果,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 候選化合物對(duì)8種人源腫瘤細(xì)胞增殖的影響MTT結(jié)果分析顯示,5個(gè)候選化合物能體外抑制多種人源腫瘤的生長(zhǎng),IC50結(jié)果見表1。
2.2 候選化合物對(duì)8條腫瘤相關(guān)信號(hào)通路活化的影響 對(duì)于Cep、UA、Tet、Lut、18α-Gly等5個(gè)化合物進(jìn)行報(bào)告基因?qū)嶒?yàn),根據(jù)IC50確定給藥濃度。Cep、UA、18α-Gly最高濃度為10μmol·L-1,Lut、Tet最高濃度為50μmol·L-1。各個(gè)化合物最高濃度時(shí)信號(hào)通路激活程度的結(jié)果(表2),發(fā)現(xiàn)Cep對(duì)Notch、NF-κB、MAPK/ JNK、MAPK/ERK通路抑制率達(dá)50%以上;18α-Gly對(duì)Notch、Cell cycle通路有促進(jìn)作用;UA對(duì)Cell cycle、Wnt、NF-κB、Hypoxia、MAPK/ERK通路抑制率達(dá)50%以上;Lut對(duì)Wnt、Hypoxia、MAPK/JNK、MAPK/ERK通路抑制率達(dá)50%以上;Tet對(duì)Notch、MAPK/JNK、Myc/ Max通路抑制率達(dá)50%以上。其中UA對(duì)Cell cycle、Wnt、NF-κB、Hypoxia、MAPK/ERK通路,Tet對(duì)Notch、 MAPK/JNK、Myc/Max通路抑制作用顯著,體現(xiàn)出對(duì)所有8條腫瘤相關(guān)的信號(hào)通路抑制作用的互補(bǔ)。
表1 5種候選化合物對(duì)8種人源腫瘤細(xì)胞的細(xì)胞毒性作用(IC50,μmol·L-1)Tab.1 Cytotoxic effects of 5 compounds in 8 human tumor cell lines(IC50,μmol·L-1)
2.3 CDI法驗(yàn)證UA和Tet的協(xié)同作用 采用CDI法檢測(cè)1.6項(xiàng)下的15個(gè)化合物組合(UA、Tet、Cep、Lut、18α-Gly單獨(dú)或聯(lián)用)對(duì)143B的增殖抑制作用。發(fā)現(xiàn)15個(gè)組合CDI值在0.9±0.12到3.7±1.50之間。其中,Tet:UA為1:3時(shí),CDI值<1,說明UA+Tet有協(xié)同抗腫瘤作用。其余各組CDI值均>1,說明存在拮抗作用。
2.4 UA和Tet最佳協(xié)同比例的篩選
表2 5種化合物對(duì)信號(hào)通路的激活程度(±S,%)Tab.2 The activation of signaling pathways for 5 compounds(±S,%)
表2 5種化合物對(duì)信號(hào)通路的激活程度(±S,%)Tab.2 The activation of signaling pathways for 5 compounds(±S,%)
Wnt Notch Cell cycle NF-κB Myc/Max Hypoxia MAPK/ER MAPK/JNK Cep 18α-Gly UA Lut Tet 89.9±15.5 106.0±11.5 25.9±2.8 45.9±3.9 60.7±4.8 43.1±7.4 104.6±6.5 54.1±0.4 65.5±2.9 37.1±1.2 58.7±4.4 160.0±29.6 41.4±3.7 54.5±2.2 55.6±4.9 30.1±7.0 63.9±15.1 32.4±3.7 68.7±4.9 54.4±21.1 78.6±2.4 80.5±3.8 73.2±10.1 68.4±4.5 51.0±2.4 98.7±1.3 93.9±7.4 41.8±3.0 34.2±0.8 92.3±3.1 35.6±1.0 86.0±6.2 30.9±1.3 46.7±5.4 56.2±4.5 41.1±3.4 76.3±3.8 69.3±2.7 43.3±6.4 23.9±0.2
2.4.1 CI法 檢測(cè)UA:Tet=9:1、3:1、1:1、1:3、1:9時(shí)的CI值,結(jié)果表明,當(dāng)UA:Tet=9:1時(shí)CI=0.36,增效作用最強(qiáng)。UA和Tet各比例聯(lián)合應(yīng)用時(shí)的CI值見表3。
2.4.2 等效線法 采用經(jīng)典isbologram法評(píng)價(jià)UA和Tet間的相互作用,結(jié)果顯示UA及Tet不同比例聯(lián)用數(shù)據(jù)點(diǎn)位于ModeⅠ下區(qū)域內(nèi),提示都具有較強(qiáng)的協(xié)同增效性。如圖1所示,UA:Tet=9:1時(shí)的數(shù)據(jù)點(diǎn)距離加和囊最遠(yuǎn),結(jié)合CI值分析表明UA:Tet=9:1聯(lián)用時(shí)具有最強(qiáng)的協(xié)同效應(yīng)。
表3 UA和Tet不同比例聯(lián)用時(shí)的CI值Tab.3 CI values of different proportions for UA and Tet
在腫瘤的發(fā)生發(fā)展中,Wnt、MAPK/JNK、MAPK/ ERK等不同的信號(hào)通路發(fā)揮了關(guān)鍵的作用。其中MAPK/ ERK、MAPK/JNK、Wnt、Notch、Cell Cycle、Myc/Max、NF-κB以及Hypoxia等8條信號(hào)通路與腫瘤關(guān)系密切,在不同腫瘤(如乳腺癌、結(jié)腸癌、卵巢癌和前列腺癌等)中發(fā)揮重要作用[4-10]。新藥的研究多針對(duì)單靶點(diǎn)和單通路,然而機(jī)體往往能調(diào)控信號(hào)通路之間的“此消彼長(zhǎng)”,導(dǎo)致單靶點(diǎn)和單通路的作用在體內(nèi)常常達(dá)不到預(yù)期,較易發(fā)生耐藥反應(yīng)?;谏鲜稣J(rèn)識(shí),根據(jù)信號(hào)通路之間的互補(bǔ)作用設(shè)計(jì)抗腫瘤藥物的聯(lián)合應(yīng)用方案,可能更有助于快速準(zhǔn)確的篩選化療方案。
圖1 等效線法評(píng)價(jià)UA和Tet間的相互作用Fig.1 Evaluating the drug interaction between UA and Tet by isobologram method
本研究發(fā)現(xiàn)UA和Tet對(duì)8條腫瘤相關(guān)的信號(hào)通路的抑制有互補(bǔ)作用。課題組用多種方法進(jìn)一步分析了這兩個(gè)藥物單獨(dú)和聯(lián)合應(yīng)用時(shí)的抗腫瘤細(xì)胞增殖作用,研究發(fā)現(xiàn)與其它藥物組合相比,UA和Tet兩者協(xié)同作用時(shí)細(xì)胞的增殖率最低。UA屬三萜類化合物,近年來研究表明UA不僅對(duì)多種致癌、促癌物有抵抗作用,如鼻咽癌,胃癌,食管癌,肝癌,宮頸癌,肺癌,乳腺癌等[10,21-23]。課題組前期研究表明,UA能通過抑制乳腺癌缺氧及缺氧誘導(dǎo)的髓外造血延緩乳腺癌的肺轉(zhuǎn)移[10]。亦有研究表明UA可通過Wnt通路調(diào)控前列腺癌細(xì)胞的凋亡[24],與NF-κB信號(hào)通路密切相關(guān)[25];UA可抑制神經(jīng)膠質(zhì)瘤血管內(nèi)皮細(xì)胞的產(chǎn)生,與MAPK/ERK、Myc/Max等信號(hào)通路表達(dá)相關(guān)[26]。Tet是從防己科植物的干燥塊根中提取的一種雙芐基異喹啉類生物堿。有研究結(jié)果表明Tet對(duì)乳腺癌,肝癌,胃癌,膀胱癌,結(jié)腸癌等具有明顯抑制作用[7,12,27-32]。本課題組之前的研究表明Tet可以通過Wnt信號(hào)傳導(dǎo)并抑制人結(jié)腸、直腸癌的腫瘤生長(zhǎng)。也有研究表明Tet可以通過Notch信號(hào)通路抑制白血病細(xì)胞的凋亡[33],可以通過NF-κB、MAPK/JNK、MAPK/ERK等信號(hào)通路激活肝臟星狀細(xì)胞[34]。以上眾多相關(guān)報(bào)道結(jié)合本研究的結(jié)果表明UA對(duì)MAPK/ERK、Wnt、Cell Cycle、NF-κB以及Hypoxia通路有較強(qiáng)抑制作用,而Tet對(duì)MAPK/JNK、Notch以及Cell Cycle通路有較強(qiáng)抑制作用,兩者對(duì)與腫瘤相關(guān)的信號(hào)通路群具有互補(bǔ)抑制作用。
根據(jù)以上結(jié)果,課題組推測(cè)UA及Tet聯(lián)合應(yīng)用時(shí),對(duì)于腫瘤相關(guān)的信號(hào)通路可以發(fā)揮更全面的抑制作用,由此推測(cè)它們可能存在協(xié)同抗腫瘤作用。本研究進(jìn)一步采用了CI法、等效線法、CDI法來分析化合物之間是否可能存在協(xié)同抗腫瘤作用并篩選其最優(yōu)配比。結(jié)果顯示:UA和Tet協(xié)同作用可以在多個(gè)腫瘤細(xì)胞上發(fā)揮協(xié)同抗腫瘤細(xì)胞增殖的作用,且在UA: Tet=9:1時(shí),具有最強(qiáng)的協(xié)同增效作用。本文通過對(duì)比較全面的信號(hào)通路活化作用進(jìn)行分析,可以預(yù)測(cè)不同化合物之間的協(xié)同抗腫瘤作用。這種方法可以為抗腫瘤藥物組合的篩選和臨床化療方案的研究帶來很好的啟示,更好地指導(dǎo)臨床抗腫瘤用藥。
References:
[1]Xu H,Yu J,Sun Y,et al.Scutellaria barbata,D.Don extract synergizes the antitumor effects of low dose 5-fluorouracil through induction of apoptosis and metabolism [J].Phytomedicine International Journal of Phytotherapy &Phytopharmacology,2013,20(10):897-903.
[2]Baxevanis C N,Perez S A,Papamichail M.Combinatorial treatments including vaccines,chemotherapy and monoclonal antibodies for cancer therapy[J].Cancer Immunology,Immunotherapy,2009,58(3):317-324.
[3]Gao J L,He T C,Li Y B,et al.A traditional Chinese medicine formulation consisting of Rhizoma Corydalis and Rhizoma Curcumae exerts synergistic anti-tumor activity [J].Oncology Reports,2009,22(5):1077-1083.
[4]劉兆國(guó),朱智杰,周梁,等.Notch信號(hào)通路與腫瘤研究[J].中國(guó)藥理學(xué)通報(bào),2012,28(8):1045-1048. LIU Zhaoguo,ZHU Zhijie,ZHOU Liang,et al.On Notch signaling pathway and tumor[J].Chinese Pharmacological Bulletin,2012,28(8):1045-1048.
[5]郭建霞,張小云,趙春林,等.Wnt/β-catenin信號(hào)通路相關(guān)因子與結(jié)腸癌患者預(yù)后的相關(guān)性研究[J].河北醫(yī)藥,2016, 38(3):371-373. GUO Jianxia,ZHANG Xiaoyun,ZHAO Chunlin,et al. Correlation between Wnt/β-catenin signaling pathway and prognosis in patients with colon cancer[J].Hebei Medical Journal,2016,38(3):371-373.
[6]Bao R F,Shu Y J,Hu Y P,et al.miR-101 targeting ZFX suppressestumorproliferation and metastasisby regulating the MAPK/Erk and Smad pathways in gallbladder carcinoma[J].Oncotarget,2016,7(16):22339-22354. [7]He B C,Gao J L,Zhang B Q,et al.Tetrandrine inhibits Wnt/β-catenin signaling and suppresses tumor growth of human colorectal cancer[J].Molecular Pharmacology,2011,79(2):211-219.
[8]Olive P G.Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/JNK activation[J].Tumor Biology,2016,37(7):8721-8729.
[9]Faria M,Matos P,Pereira T,et al.RAC1b overexpression stimulates proliferation and NF-κBmediated antiapoptotic signaling in thyroid cancer cells[J].Plos One,2017, 12(2):e0172689.
[10]Gao J L,Shui Y M,Jiang W,et al.Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid's anti-metastatic effect in 4T1 tumor bearing mice[J].Oncotarget,2016,7(44): 71802-71816.
[11]Zhao Y,Gao J L,Ji J W,et al.Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W.T.Wang[J].Journal of Intercultural Ethnopharmacology,2014,3(2):68-72.
[12]Gao J L,Ji X,He T C,et al.Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice[J].Evid Based Complement Alternat Med,2013, 2013:265061.
[13]高建莉,何通川,呂圭源.千金藤素對(duì)人結(jié)腸癌細(xì)胞HCT116裸鼠異體移植腫瘤模型腫瘤增殖的影響及機(jī)制初探[J].浙江中醫(yī)藥大學(xué)學(xué)報(bào),2013,37(9):1055-1059. GAO Jianli,HE Tongchun,LV Guiyuan,et al.BioluminescentMonitoringthe Influence ofCepharanthine on Colon Cancer Growth in Mouse Xenograft Tumor Model [J].Journal of Zhejiang Chinese Medical University,2013, 37(9):1055-1059.
[14]De Angel R E,Smith S M,Glickman R D,et al.Antitumor effects of ursolic acid in a mouse model of postmenopausal breast cancer[J].Nutrition&Cancer,2010,62(8): 1074-1086.
[15]Lee E J,Oh S Y,Sung M K.Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells[J].Food&Chemical Toxicology An International Journal Published for the British IndustrialBiologicalResearch Association,2012,50(11): 4136-4143.
[16]Pratheeshkumar P,Son Y O,Budhraja A,et al.Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis[J].Plos One,2012,7(12):e52279.
[17]Lallemand B,Gelbcke M,Dubois J,et al.Structure-activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents[J].Mini Reviews in Medicinal Chemistry,2011,11(10):881-887.
[18]Wilmes A,Bargh K,Kelly C,et al.Peloruside A Synergizes with Other Microtubule Stabilizing Agents in Cultured Cancer Cell Lines[J].Molecular Pharmaceutics,2007, 4(2):269-280.
[19]Tallarida R J.An overview of drug combination analysis with isobolograms[J].Journal of Pharmacology&Experimental Therapeutics,2006,319(1):1-7.
[20]Tong W,Cui H,Nan M A,et al.Nicotinamide-mediated inhibition of SIRT1 deacetylase is associated with the viability of cancer cells exposed to antitumor agents and apoptosis[J].Oncology Letters,2013,6(2):600-604.
[21]徐新偉,郭玲玲,顧振綸,等.熊果酸對(duì)乳腺癌SK-BR-3細(xì)胞增殖和凋亡的影響[J].蘇州大學(xué)學(xué)報(bào),2009,29(1):68-70. XU Xinwei,GUO Lingling,GU Zhenlun,et al.Effects of Ursolic Acid on Proliferation and Apoptosis of SK-BR-3 Cells[J].Journal of Suzhou University,2009,29(1):68-70. [22]Shyu M H,Kao T C,Yen G C.Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP[J].Journal of Agricultural&Food Chemistry,2010,58(10):6110-6118.
[23]唐丹,李劍萍,鄭錫鳳,等.熊果酸通過STAT3通路調(diào)控胃癌細(xì)胞增殖和凋亡[J].中國(guó)藥理學(xué)通報(bào),2012,28(2):179-184. TANG Dan,LI Jianping,ZHENG Xifeng,et al.Regulatory effect of ursolic acid on proliferation and apoptosis of gastric cancer cells via STAT3 signaling pathway[J]. Chinese Pharmacological Bulletin,2012,28(2):179-184.
[24]Park J H,Kwon H Y,Sohn E J,et al.Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells[J].Pharmacological Reports Pr,2013,65(5):1366-1374.
[25]Checker R,Sandur S K,Sharma D,et al.Potent antiinflammatory activity of ursolic acid,a triterpenoid antioxidant,is mediated through suppression of NF-κB,AP-1 and NF-AT[J].Plos One,2012,7(2):e31318.
[26]Ye L Q,Ye X F,Xu H.Mechanism of Ursolic Acid-Mediated Inhibition of Proliferation in Vascular Endothelial Glioaytoma[J].Tropical Journal of Pharmaceutical Research,2013,12(4):511-515.
[27]Xu W,Debeb B G,Lacerda L,et al.Tetrandrine,a Compound Common in Chinese TraditionalMedicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs)In Vitro[J].Cancers,2011,3(2):2274-2285.
[28]Qin R,Shen H,Cao Y,et al.Tetrandrine induces mitochondria-mediated apoptosis in human gastric cancer BGC-823 cells[J].Plos One,2013,8(10):e76486.
[29]Liu W,Zhang J,Ying C,et al.Tetrandrine Combined with Gemcitabine and Cisplatin for Patients with Advanced Non-Small Cell Lung Cancer Improve Efficacy[J]. International Journal of Biomedical Science Ijbs,2012,8 (1):28-35.
[30]胡釗,李永生,趙誠(chéng).粉防己堿聯(lián)合阿霉素對(duì)人膀胱癌BIU-87/ADM細(xì)胞裸鼠移植瘤抑瘤率影響的研究[J].現(xiàn)代泌尿生殖腫瘤雜志,2013,5(1):41-44. HU Zhao,LI Yongsheng,ZHAO Cheng.The study on human bladder cancer cell BIU-87/ADM nude mice xenografts inhibition rate effect by tetrandrine and adriamycin[J]. Journal of Contemporary Urologic&Reproductive Oncology,2013,5(1):41-44.
[31]李桃花,裴曉華.粉防己堿對(duì)人乳腺癌細(xì)胞MDA-MB-435S的作用[J].世界中西醫(yī)結(jié)合雜志,2015,10(7):934-936. LI Taohua,PEI Xiaohua.Effects of tetrandrine on human breast cancer cell line MDA-MB-435S[J].World Journal of Integrated Traditional and Western Medicine,2015,10 (7):934-936.
[32]Yu V W,Ho W S.Tetrandrine inhibits hepatocellular carcinoma cell growth through the caspase pathway and G2/M phase[J].Oncology Reports,2013,29(6):2205-2210.
[33]Liu T,Men Q,Wu G,et al.Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells[J].Oncotarget,2015,6(10):7992-8006.
[34]Li X,Jin Q,Wu Y L,et al.Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling [J].International Immunopharmacology,2016,36:263-270.
The Complement Inhibition of Ursolic Acid and Tetrandrine on Tumor Related Signaling Pathways and Their Synergistic Antitumor Proliferation Effects
SHI Rongzhen,LI Shifa,GAO Jianli Basic Medical College,Zhejiang Chinese Medical University,Hangzhou(310053),China
[Objective]This study was aimed to research the synergistic antitumor proliferation effects and their best proportion of ursolic acid(UA)and tetrandrine(Tet),a pair of compounds isolated from Chinese herbs which showed complement inhibition on the multiple signal pathways.[Methods]The reporter assays on tumor-related signal pathways for MAPK/ERK,MAPK/JNK,NF-κB,Wnt,Notch,Cell Cycle,Myc/Max and Hypoxia were used to study the effect of five different Chinese herbal compounds on tumor proliferation,it was concluded cepharanthine(Cep),Tet,18α-glycyrrhetinic acid(18α-Gly),UA and luteolin(Lut).MTT assay and crystal violet staining were used to study the antiproliferative effect of 15 different compounds for the tumor cells of MDAMB-231,SW480,MG63,PC3,DU145,HCT116,143B and MDA-MB-468,which is consisted with Cep,Tet,18α-Gly,UA and Lut for the 15 different compounds.Coefficient of drug interaction(CDI)method was used to detect the synergistic effect of the two compounds.Combination of index(CI)and isobologram method was used to screen the best ratio of compounds in their antiproliferative effects.[Results]The signal pathway reporter assay showed that UA and Tet could complementarily inhibit tumor-related signaling pathways.And the results also showed that UA and Tet could induce synergetic antitumor cell proliferation in vitro.Furthermore,the optimal ratio of UA and Tet was 9:1 by using isobologram and CI method.[Conclusion]UA and Tet can be inhibited and complemented by 8 tumor-related signaling pathways,and we used MTT assay and crystal violet staining or other methods to confirm the synergistic antitumor proliferation effects,furthermore,the optimal proportion for UA and Tet were screened,and it provided a new insight to develop new anticancer formula in research.
drug synergism;complement of signaling pathways;UA;Tet;ant-tumor;drug combination;reporter genes;optimal proportion
R331
A
1005-5509(2017)08-0652-06
10.16466/j.issn1005-5509.2017.08.003
2017-03-31)
國(guó)家自然科學(xué)基金面上項(xiàng)目(81473575);浙江省科學(xué)技術(shù)協(xié)會(huì)“育才工程”項(xiàng)目(2016YCGC002);浙江省科技計(jì)劃項(xiàng)目(2016C33085) Fund projects:National Natural Science Foundation of China(81473575);Young Talent Cultivation Project of Zhejiang Association for Science and Technology(2016YCGC002);Science and Technology Project of Zhejiang Province(2016C33085)
高建莉,E-mail:jianli-gao@qq.com