傅秀蓮
(廣東工貿(mào)職業(yè)技術(shù)學(xué)院 計算機(jī)系, 廣州 510510)
某些近于凸函數(shù)的子族的一些性質(zhì)
傅秀蓮
(廣東工貿(mào)職業(yè)技術(shù)學(xué)院 計算機(jī)系, 廣州 510510)
本文介紹和研究了一個近于凸函數(shù)的子族Ks(λ,α,β)的問題. 得到了包含關(guān)系,系數(shù)不等式和卷積等性質(zhì),推廣了Ks(α,β)結(jié)果.
近于凸函數(shù); 卷積; 系數(shù)估計
用A表示在U={z:z∈C,|z|<1}上形如
的全體解析函數(shù)所成的函數(shù)類.用S表示在A中全體單葉函數(shù)族.
設(shè)f(z)和F(z)在U內(nèi)解析,如果存在U內(nèi)的解析函數(shù)w(z)使得|w(z)|≤|z|且滿足f(z)≡F(w(z)),則稱f(z)從屬于F(z),記為f(z)F(z)或者fF.若f(z)在U內(nèi)單葉,則f(z)F(z)當(dāng)且僅當(dāng)f(0)=F(0)和f(U)?F(U).
本文模仿C(k)(λ,α,β)的定義,給出了函數(shù)族Ks(λ,α,β)的定義,定義如下:
定義1 設(shè)0≤α≤1,0<β≤1,0≤λ≤1,如果函數(shù)f(z)∈A滿足
特別地,Ks(0,α,β)=Ks(α,β),所以Ks(λ,α,β)是Ks(α,β)的推廣.
為了得到定理,需要下面的幾個引理.
其中
B2n-1=2b2n-1-2b2b2n-2+…+
則G(z)∈S*.
主要結(jié)論:
定理1 設(shè)0≤α≤1,0<β≤1,0≤γ≤1,則f∈Ks(λ,α,β)當(dāng)且僅當(dāng)
則式(2)可以寫成
定理2 設(shè)0≤α≤1,0<β≤1,0≤λ≤1,則Ks(λ,α,β)?C?S.
下面分兩種情況討論:
1)當(dāng)λ=0,顯然f(z)=F(z)∈C.
定理3 設(shè)0≤α1≤α2≤1,0<β1≤β2≤1,0≤λ≤1.則Ks(λ,α1,β1)?Ks(λ,α2,β2).
證明:設(shè)f(z)∈Ks(λ,α1,β1),由定理1可得
其中B2n-1由式(4)給出.
證明:令F(z)=(1-λ)f(z)+λzf′(z),通過計算可得
所以F(z)和G(z)滿足引理5的條件,由式(5)可得式(7).
成立,其中B2n-1由式(4)給出,則f∈Ks(λ,α,β).
證明:令F(z)=(1-λ)f(z)+λzf′(z),通過計算可得
則對于z∈U,有
M=|zF′(z)-G(z)|-β|αzF′(z)+G(z)|=
取|z|=r<1,有
(9)
其中[]表示高斯符號.
由引理6有
另一方面,由引理7有
把f(z),G(z)和p(z)的表達(dá)式代入式(10),得到
(1+p1z+p2z2+p3z3+…+pnzn+…)
(z+B3z3+…+B2n-1z2n-1+…)=
z+2(1+λ)a2z2+…+2n(1+(2n-1)λ)a2nz2n+
從式(13)可得
2n(1+(2n-1)λ)a2n=p1B2n-1+p3B2n-3+
(2n+1)(1+2nλ)a2n+1=B2n+1+p2B2n-1+
結(jié)合式(11),(12),(14)和(15)可以得到
由式(16)和(17)可得式(9).證畢.
定理7 令|ξ|=1.則f(z)∈Ks(λ,α,β)當(dāng)且僅當(dāng)
其中G(z)由式(3)給出.
證明:設(shè)f(z)∈Ks(λ,α,β),由定理1可得
這等價于
式(19)可以寫成
注意到
把式(21)和(22)代入式(20),可以得到式(18).證畢.
[1] Gao C, Zhou S. On a Class of Analytic Functions Related to the Starlike Functions[J]. Kyungpook Math. J. 2005,45(1):123-130.
[2] Wang Z G, Gao C Y, Yuan S M. On Certain Subclass of Close-to-convex Functions[J]. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 2006, 22(3):171-177.
[3] Wang Z G, Gao C Y, Liu M S, et al. On Subclasses of Close-to-convex and Quasi-convex Functions with Respect to k-symmetric Points[J]. Advances in mathematics, 2009,38(1):44-56.
[4] Wang Z G, Jiang Y P. On Certain Subclasses of Convex-to-convex and Quasi-convex Functions with Respect to 2k-symmetric Conjugate Points[J]. J. Math. Appl.,2007,29:167-179.
[5] Wang Z G, Gao C Y, Yuan S M. On Certain Subclasses of Close-to-convex and Quasi-convex Functions with Respect to k-symmetric Points[J]. J. Math. Anal. Appl.,2006,322(1):97-106.
[6] Kamali M, Akbulut S. On a Subclass of Certain Convex Functions with Negative Coefficients[J]. Appl. Math. Comput., 2003,145(2):341-350.
[7] Sudharsan T V, Balasubrahmanyam P, Subramanian K G. On Functions Starlike with Respect to Symmetric and Conjugate Points[J]. Taiwanese J.Math.,1998, 2(1):57-68.
[8] W. Rogosinski. On the Coefcients of Subordinate Functions[J]. Proc. London Math. Soc., 1945,48(1):48-82.
[責(zé)任編輯 王迎春]
Some Properties of Certain Subclass of Close-to-Conves Functions
Fu Xiulian
(Department of Computer Science, Guangdong College of Industry and Commerce, Guangzhou 510510, China)
A certain new subclassKs(λ,α,β) of close-to-convex functions is introduced and discussed. The results such as inclusion relationships,coefficient inequalities and convolution property are derived, so as to generalize the results of the subclassKs(α,β).
close-to-convex functions; convolution; coefficient bounds
2016-12-05
廣東省自然科學(xué)基金自由申請項目“隨機(jī)Laplace-Stieltjes變換的值分布與復(fù)方程解的存在性”(2015A030313628)
傅秀蓮(1979-),女,碩士,副教授,主要研究方向為復(fù)分析及其應(yīng)用.E-mail: xxfxl@163.com
10.13393/j.cnki.issn.1672-948X.2017.04.022
O174.51
A
1672-948X(2017)04-0106-04