胡琦蔚,張俊偉,王遠(yuǎn)山
(1.浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014;2.杭州安諾過濾器材有限公司,浙江 杭州 311404)
生物催化法制備手性酮基布洛芬的研究進(jìn)展
胡琦蔚1,張俊偉2,王遠(yuǎn)山1
(1.浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014;2.杭州安諾過濾器材有限公司,浙江 杭州 311404)
酮基布洛芬是一種重要的消炎鎮(zhèn)痛藥,廣泛應(yīng)用于風(fēng)濕、類風(fēng)濕性關(guān)節(jié)炎、脊髓炎和痛風(fēng)等疾病的治療,成為處方量最大的藥物之一.市售的酮基布洛芬以外消旋體為主,(S)-酮基布洛芬為其活性對(duì)映體,(R)-酮基布洛芬的存在會(huì)加重肝臟的代謝負(fù)擔(dān).目前手性酮基布洛芬主要通過化學(xué)合成法生產(chǎn),與傳統(tǒng)的化學(xué)法相比,生物催化法具有反應(yīng)條件溫和、對(duì)環(huán)境友好等優(yōu)點(diǎn),成為近年來研究的熱點(diǎn).生物催化法主要利用脂肪酶、酯酶和腈水合酶/酰胺酶雙酶體系等催化制備手性酮基布洛芬.同時(shí)對(duì)生物催化法制備手性酮基布洛芬的研究進(jìn)展進(jìn)行了綜述.
生物催化;酮基布洛芬;脂肪酶;酯酶
酮基布洛芬(ketoprofen,3-苯甲酰基-α-甲基苯乙酸)是一種2-芳基丙酸類強(qiáng)效非甾體抗炎藥.最早由法國(guó)化學(xué)家Rhone Poulenc于1967年合成,并于1973年引入法國(guó)和美國(guó)作為抗炎藥使用[1],對(duì)風(fēng)濕、類風(fēng)濕性關(guān)節(jié)炎、脊髓炎和痛風(fēng)等疾病有良好的效果,且消炎作用強(qiáng)于布洛芬,不良反應(yīng)輕于布洛芬.在同等劑量下,其消炎鎮(zhèn)痛作用是阿司匹林的150倍,解熱作用是消炎痛的4倍、阿司匹林的100倍.由于酮基布洛芬具備藥效高、半衰期較短、代謝簡(jiǎn)單和不良反應(yīng)少而輕等優(yōu)點(diǎn),已廣泛應(yīng)用于治療各種類型的疼痛、炎癥癥狀、感冒及手術(shù)后的消炎止痛.由于風(fēng)濕、類風(fēng)濕和痛風(fēng)等是我國(guó)多發(fā)性疾病,近年來酮基布洛芬等非甾體抗炎藥發(fā)展迅速,市場(chǎng)需求量巨大.而酮基布洛芬具有“R”和“S”兩種對(duì)映體,并有著明顯不同的藥理活性,(S)-(+)-酮基布洛芬(S-ketoprofen)是(R,S)-酮基布洛芬的活性對(duì)映體,其消炎鎮(zhèn)痛等作用是外消旋體的兩倍[2],而(R)-酮基布洛芬抗炎鎮(zhèn)痛作用極弱,常作牙膏添加劑以預(yù)防和治療由牙周炎導(dǎo)致的骨質(zhì)疏松[3],也可用于緩解觸覺性異常疼痛.目前,市售的以外消旋體為主,療效較(S)-(+)-酮基布洛芬弱且肝臟代謝負(fù)擔(dān)大.因此,開發(fā)低成本的單一對(duì)映體的(S)-(+)-酮基洛芬制備工藝具有重要意義.
1.1 結(jié)晶法
1.1.1 非對(duì)映體結(jié)晶法
非對(duì)映體結(jié)晶法是利用拆分劑(如光學(xué)純的酸)拆分外消旋體得到非對(duì)映體鹽,再通過選擇性結(jié)晶從而得到光學(xué)純的對(duì)映體.Yoneyoshi等[4]將外消旋酮洛芬和酮洛芬胺加熱溶解在甲醇中,冷卻后靜置過夜得到結(jié)晶,過濾后用1%的鹽酸將結(jié)晶溶解,用甲苯萃取兩次后減壓蒸餾得到(S)-(+)-酮基布洛芬,產(chǎn)率為43%,e.e.值為79.1%.Lukas等[5]則用異丙醇溶解外消旋酮洛芬,加入苯乙胺作為手性試劑,攪拌后冷卻結(jié)晶,用0 ℃的異丙醇洗滌結(jié)晶兩次得到(S)-(+)-酮基布洛芬,產(chǎn)率為40%,文中未提及產(chǎn)物的e.e.值.
1.1.2 優(yōu)先結(jié)晶法
優(yōu)先結(jié)晶是在飽和或過飽和的外消旋體溶液中加入其中一種對(duì)映異構(gòu)體的晶體作為晶種,造成不對(duì)稱環(huán)境,誘導(dǎo)結(jié)晶按非平衡的過程進(jìn)行,從而達(dá)到拆分的效果.Van Eikeren等[6]通過加熱攪拌使外消旋的酮洛芬溶解在乙腈-水混合物中,以(1R,2S)-cis-1-aminoindan-2-ol作為拆分劑,加入(S)-ketoprofen-(1R,2S)-cis-1-aminoindan-2-ol作為晶種,得到的結(jié)晶用乙腈洗滌兩次后真空干燥,最終獲得66.4 g (S)-(+)-酮基布洛芬,e.e.值達(dá)到97.2%.Manimaran等[7]用甲醇稀釋外消旋酮洛芬的乙酸乙酯溶液,冷卻后加入(S)-ketoprofen-cinchonidine晶體,得到的結(jié)晶在真空條件下過濾,并用乙酸乙酯和乙醚洗滌三次,真空干燥后得到成品,(S)-(+)-酮基布洛芬的產(chǎn)率為31%,e.e.值為97%.
由于利用結(jié)晶法制備(S)-(+)-酮基布洛芬的過程中均涉及重結(jié)晶這一步驟,耗時(shí)且增加了成本、降低了產(chǎn)率.另外,結(jié)晶中所用到的基質(zhì)昂貴且不穩(wěn)定,難以循環(huán)利用[8],制備過程中對(duì)溫度和壓力的要求也較高,尤其是結(jié)晶時(shí),往往需要低溫保證結(jié)晶的順利進(jìn)行,由于這些缺陷的存在,結(jié)晶法并未被廣泛應(yīng)用于工業(yè)生產(chǎn)中.
1.2 不對(duì)稱合成法
1.2.1 Sharpless環(huán)氧化法
Hamon等[9]通過6步反應(yīng),由烯丙醇通過Sharpless環(huán)氧化制備得到(2S,3S)環(huán)氧化合物,再加入手性位移試劑,經(jīng)過對(duì)映體選擇性氫解后生成二醇,在RuO4/NaIO4的催化下,最終得到(S)-(+)-酮基布洛芬,e.e.值達(dá)到98%.Sharpless環(huán)氧化法制備(S)-(+)-酮基布洛芬的途徑為[9]
1.2.2 α-芳基丙烯酸氫化法
具有前手性的不飽和羧酸經(jīng)手性BLNAP-Ru的二羧酸酯絡(luò)合物氫化后可得到光學(xué)活性的飽和羧酸,該方法可用于(S)-(+)-酮基布洛芬的制備.Laue等[10]以(S)-(+)-RuBLNAP(OAc)2為催化劑在高壓下氫化,最終得到的產(chǎn)物e.e.值達(dá)到80%.利用手性絡(luò)合物制備(S)-(+)-酮基布洛芬的途徑[10]為
目前,市售(S)-(+)-酮基布洛芬主要通過傳統(tǒng)的化學(xué)法生產(chǎn),這種方法的產(chǎn)率和對(duì)映體選擇性較為理想,但是均需要用到傳統(tǒng)的化學(xué)催化劑以促使反應(yīng)快速進(jìn)行,而大部分催化劑毒性較高、易燃且會(huì)造成環(huán)境污染,還有可能引入有害的副產(chǎn)物.另外,手性催化劑的制備過程較為困難,有時(shí)其本身的制備反應(yīng)也需要昂貴催化劑的參與.
酶法制備(S)-(+)-酮基布洛芬屬于動(dòng)力學(xué)拆分的范疇,由于其具有反應(yīng)條件溫和、較好的底物特異性和對(duì)映體選擇性以及對(duì)環(huán)境友好等優(yōu)點(diǎn)[11-13],受到了廣泛的重視.生物催化法常以外消旋酮基布洛芬或其衍生物為底物,通過酶拆分得到(S)-(+)-酮基布洛芬.
2.1 酯酶和脂肪酶
酯酶和脂肪酶是(S)-(+)-酮基布洛芬制備中最為常用的酶.根據(jù)催化原理的不同,可以大致分為對(duì)映體選擇性酯化和對(duì)映體選擇性水解兩類[14].
2.1.1 對(duì)映體選擇性酯化
在對(duì)映體選擇性酯化制備(S)-(+)-酮基布洛芬的過程中,通常以外消旋的酮洛芬和醇類作為底物,在具有選擇性的酯酶或脂肪酶的催化下,優(yōu)先將(R)-(-)-酮基布洛芬酯化為(R)-酮基布洛芬酯,而保留(S)-(+)-酮基布洛芬,再通過中和或加入飽和NaHCO3將剩余的酮洛芬與酮洛芬酯分離,以獲得較純的(S)-(+)-酮基布洛芬.通過對(duì)映體選擇性酯化法制備(S)-(+)-酮基布洛芬的途徑為
Park等[15]利用Candidaantarctica脂肪酶Novozym 435酯化外消旋的酮洛芬,發(fā)現(xiàn)以甲醇作為烷基供體時(shí)轉(zhuǎn)化率和對(duì)映體選擇性均較佳,轉(zhuǎn)化9 h后,轉(zhuǎn)化率達(dá)到59%,e.e.值為75%,E為6.Ong等[16]利用南極假絲酵母脂肪酶(C.antarcticalipase B,CALB,Novozym 525)拆分外消旋酮洛芬,比較了游離酶和固定化酶的催化特性,發(fā)現(xiàn)固定化酶在催化效率、熱穩(wěn)定性和重復(fù)利用等方面均要高于游離酶.以丁醇為烷基供體,在最佳條件下利用固定化酶反應(yīng)24 h后,(R)-酮基布洛芬的轉(zhuǎn)化率達(dá)到73%,剩余底物中(S)-(+)-酮基布洛芬的對(duì)映體過量值為87.8%.Candidacylindrecca所產(chǎn)脂肪酶(CCL)是用于選擇性水解外消旋酮基布洛芬酯衍生物最有效的酶之一,以該酶為催化劑的報(bào)道較多,但其拆分反應(yīng)需要大量手性環(huán)糊精參與.也有學(xué)者利用其他來源的酶進(jìn)行對(duì)映體選擇性酯化反應(yīng),如Li等[17]利用來源于Burkholderiacepacia的固定化脂肪酶G63,在37 ℃下反應(yīng)22.5 h后得到(S)-(+)-酮基布洛芬,E為10.01.
2.1.2 對(duì)映體選擇性水解
對(duì)映體選擇性水解以外消旋的酮洛芬酯為底物,通過脂肪酶或酯酶優(yōu)先水解其中一種對(duì)映體生成(S)-(+)-酮洛芬和醇.Kim等[18]從ArchaeoglobusfulgidusDSM 4304基因組中克隆出一個(gè)耐高溫的酯酶,結(jié)合易錯(cuò)PCR和定點(diǎn)飽和突變對(duì)該酶進(jìn)行改造,得到一個(gè)雙突變體V13G/L200R,在70 ℃下反應(yīng)1 h,可以將5 mmol/L外消旋的酮基布洛芬乙酯轉(zhuǎn)化為(S)-(+)-酮基布洛芬,e.e.值為(89.2±0.2)%,E為19.5±0.5.Kim等[19]從Candidarugosa中得到的脂肪酶可以將100 mmol/L酮洛芬乙酯轉(zhuǎn)化為(S)-(+)-酮基布洛芬,e.e.值達(dá)99%,轉(zhuǎn)化率為49%,但所需時(shí)間為3 d.Zhang等[20]利用固定化Trichosporonlaibacchii酵母脂肪酶在含有Tween-80的水相中水解(R,S)-酮洛芬乙酯,45 ℃下反應(yīng)33 h,轉(zhuǎn)化率達(dá)到46.3%,產(chǎn)物的光學(xué)純度達(dá)到94.4%.其余利用脂肪酶或酯酶制備(S)-(+)-酮基布洛芬的例子如表1所示.利用T.laibacchii脂肪酶水解(R,S)-酮洛芬乙酯生成(S)-(+)-酮基布洛芬[20]的途徑為
表1 利用脂肪酶或酯酶制備(S)-(+)-酮基布洛芬
轉(zhuǎn)化率/%1)Ee.e.p/%酶參考文獻(xiàn)48.6—98.0CandidarugosaLipase[21]42.6108499.6SerratiamarcescensECUl010[22]84.6—16.3Pseudomonassp.EsterasePF1?K[23]30.0—99.0CandidarugosaLipase[24]41.03586.2RhizomucormieheiLipase[25]29.0>20099.2MucorjavanicusLipase[25]37.0±2.0>200100.0EsteraseEst25(Metagenomiclibrary)[26]
注:1) 轉(zhuǎn)化率為質(zhì)量分?jǐn)?shù).
(R)-(-)-酮基布洛芬制備的相關(guān)研究較少.Gérard等[27]得到一個(gè)來源于酵母Yarrowialipolytia的脂肪酶Lip2p,該酶可催化酮洛芬乙酯生成酮基布洛芬,但其對(duì)映體選擇性不佳,對(duì)其進(jìn)行定點(diǎn)飽和突變后獲得一突變體V232F,可選擇性催化底物生成(R)-(-)-酮基布洛芬,E≥300.Hu等[28]利用來源于Aspergillusterreus的脂肪酶催化酮洛芬乙烯酯,得到(R)-(-)-酮基布洛芬,轉(zhuǎn)化率為(16.0±1.3)%,E為11.4,e.e.值為(82±2.7)%,后對(duì)其進(jìn)行固定化,最大轉(zhuǎn)化率、E和e.e.值分別提高到了45.9%,128.8和(96±0.1)%.
2.2 腈水合酶/酰胺酶雙酶體系
目前也有利用腈水合酶和酰胺酶雙酶體系制備光學(xué)純酮洛芬的報(bào)道.Layh等[29]以酮洛芬腈為唯一氮原篩選得到的RhodococcusequiK2a能將酮洛芬腈及酮洛芬酰胺轉(zhuǎn)化為(S)-(+)-酮基布洛芬,e.e.值均為99%,轉(zhuǎn)化率分別為27%和25%;Heinemann等[30]篩選得到的Agrobacteriumsp. LK中含有的腈水合酶/酰胺酶雙酶體系能夠催化2-(3-苯甲酰苯基)丙腈轉(zhuǎn)化成酮基布洛芬,e.e.值為91%;Salvo等[31]利用Agrobacteriumradiobacter30″60 (NCIMB 41108)靜息細(xì)胞水解酮洛芬腈,(S)-(+)-酮基布洛芬的產(chǎn)率為45%,光學(xué)純度為96%.利用腈水合酶/酰胺酶雙酶體系制備(S)-(+)-酮基布洛芬[30]的途徑為
2.3 腈水解酶
目前尚無利用腈水解酶制備(S)-(+)-酮基布洛芬的報(bào)道,但本課題組通過基因挖掘從NCBI數(shù)據(jù)庫中挖掘得到一個(gè)腈水解酶Nit1,可選擇性水解(R,S)-2-(3-苯甲酰苯基)丙腈生成(S)-(+)-酮基布洛芬,e.e.值為14.2%.對(duì)其進(jìn)行分子改造后獲得一個(gè)突變體W56G,該突變體的對(duì)映體選擇性有了明顯的提升.利用腈水解酶制備(S)-(+)-酮基布洛芬的途徑為
生物催化法具有條件溫和,化學(xué)選擇性、區(qū)域選擇性及對(duì)映體選擇性高等特點(diǎn),且其對(duì)環(huán)境友好、耗能低,符合綠色發(fā)展的理念,建立酶法制備(S)-(+)-酮基布洛芬的新工藝,具有重要的意義.盡管在生物催化法制備(S)-(+)-酮基布洛芬方面進(jìn)行了大量的研究,但由于酶拆分法存在著反應(yīng)時(shí)間長(zhǎng)、穩(wěn)定性差等缺陷,該法還沒有得到產(chǎn)業(yè)化應(yīng)用.目前,已有較多通過對(duì)酶進(jìn)行改造、固定化等手段從而改善了酶催化特性的例子,一定程度上突破了上述的限制,基因工程及酶工程的發(fā)展將極大推動(dòng)生物催化制備(S)-(+)-酮基布洛芬技術(shù)的發(fā)展.
[1] 石開云, 余清寶, 鄒曉川. 酮洛芬合成方法研究進(jìn)展[J]. 精細(xì)化工, 2015, 32(8):841-848.
[2] HUTT A J, CALDWELL J. The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs[J]. Clinical pharmacokinetics, 1984, 9(4):371-373.
[3] 趙運(yùn)英, 劉瑞恩, 許麗娟, 等. 拆分獲得(S)-酮基布洛芬脂肪酶基因在枯草芽孢桿菌中的克隆與表達(dá)[J]. 微生物學(xué)報(bào), 2010, 50(5):634-640.
[4] YONEYOSHI Y, KUDO J, NISHIOKA T. Optically active secondary amine compound, process for producing optically active secondary amine compound and process for producing optically active carboxylic acid by using said compound: US5510519[P]. 1994-03-29.
[5] LUKAS H, SCHUSTER O, RAU G. Process to separate mixtures of enantiomeric arylpropionic acids: US 4983765 A[P]. 1991-01-08.
[6] VAN E P, FRANCIS M X, LOPEZ J L. Process for resolving chiral acids with 1-aminoindan-2-ols: US 5677469 A[P]. 1997-10-14.
[7] MANIMARAN T, POTTER A A. Resolution of ketoprofen: US5162576[P]. 1992-11-10.
[8] BLASCHKE G, SCHULTE K E. Process for obtaining enantiomers of 2-arylpropionic acids: US 4973745[P]. 1990-11-27.
[9] HAMON D P G, MASSY-WESTROPP R A, NEWTON J L. ChemInform abstract: enantioselective syntheses of 2-arylpropanoic acid non-steroidal antiinflammatory drugs and related compounds[J]. Cheminform, 1996, 27(11):12645-12660.
[10] LAUE C, SCHR?DER G, ARLT D. 2-Arylpropenic acids and their utilisation in the preparation of 5-ketoprofen: EP0529444[P]. 1997-04-16
[11] WANG Y, LI Q, ZHANG Z, et al. Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R,S)-2-octanol and (R,S)-2-pentanol[J]. Journal of molecular catalysis B enzymatic, 2009, 56(2/3):146-150.
[12] 胡艾希, 董先明. 2-芳基丙酸類消炎藥的酶催化拆分研究進(jìn)展[J]. 中國(guó)醫(yī)藥工業(yè)雜志, 2001, 32(6):284-288.
[13] MCCOY M. Making drugs with little bugs[J]. Chemical & engineering news, 2010, 79(21):37-43.
[14] AI L O, KAMARUDDIN A H, BHATIA S. Current technologies for the production of (S)-ketoprofen: process perspective[J]. Process biochemistry, 2005, 40(11):3526-3535.
[15] PARK H J, CHOI W J, HUH E C, et al. Production of optically active ketoprofen by direct enzymatic esterification[J]. Journal of bioscience & bioengineering, 1999, 87(4):545-547.
[16] ONG A L, KAMARUDDIN A H, BHATIA S, et al. Enantioseparation of (R,S)-ketoprofen usingCandidaantarcticalipase B in an enzymatic membrane reactor[J]. Journal of separation science, 2008, 31(31):2476-2485.
[17] LI X, LIU T, XU L, et al. Resolution of racemic ketoprofen in organic solvents by lipase fromBurkholderiacepacianG63[J]. Biotechnology and bioprocess engineering, 2012, 17(6):1147-1155.
[18] KIM J, KIM S, YOON S, et al. Improved enantioselectivity of thermostable esterase fromArchaeoglobusfulgidustoward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases[J]. Applied microbiology and biotechnology, 2015, 99(15):6293-6301.
[19] KIM S H, KIM T K, SHIN G S, et al. Enantioselective hydrolysis of insoluble (R,S)-ketoprofen ethyl ester in dispersed aqueous reaction system induced by chiral cyclodextrin[J]. Biotechnology letters, 2004, 26(12):965-969.
[20] ZHANG Y Y, LIU J H. Kinetic study of enantioselective hydrolysis of (R,S)-ketoprofen ethyl ester using immobilizedT.laibacchiilipase[J]. Biochemical engineering journal, 2011, 54(1):40-46.
[21] MIN G K, LEE E G, CHUNG B H. Improved enantioselectivity ofCandidarugosa, lipase towards ketoprofen ethyl ester by a simple two-step treatment[J]. Process biochemistry, 2000, 35(9):977-982.
[22] LONG Z D, XU J H, ZHAO L L, et al. Overexpression ofSerratiamarcescenslipase inEscherichiacolifor efficient bioresolution of racemic ketoprofen[J]. Journal of molecular catalysis B enzymatic, 2007, 47(3):105-110.
[23] SATHISHKUMAR M, JAYABALAN R, MUN S P, et al. Role of bicontinuous microemulsion in the rapid enzymatic hydrolysis of (R,S)-ketoprofen ethyl ester in a micro-reactor[J]. Bioresource technology, 2010, 101(20):7834-7840.
[24] WANG Y H, YANG B, REN J, et al. Optimization of medium composition for the production of clavulanic acid byStreptomycesclavuligerus[J]. Process biochemistry, 2005, 40(3/4):1161-1166.
[25] ZHANG W W, JIA J Q, WANG N, et al. Improved activity of lipase immobilized in microemulsion-based organogels for (R,S)-ketoprofen ester resolution: long-term stability and reusability[J]. Biotechnology reports, 2015, 7:1-8.
[26] YOON S, KIM S, PARK S, et al. Improving the enantioselectivity of an esterase toward (S)-ketoprofen ethyl ester through protein engineering[J]. Journal of molecular catalysis B enzymatic, 2014, 100(4):25-31.
[27] GéRARD D, GUéROULT M, CASAS-GODOY L, et al. Efficient resolution of profen ethyl ester racemates by engineeredYarrowialipolyticaLip2p lipase[J]. Tetrahedron asymmetry, 2017, 28(3):433-441.
[28] HU C, NA W, ZHANG W, et al. Immobilization ofAspergillusterreuslipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester[J]. Journal of biotechnology, 2015, 194:12-18.
[29] LAYH N, KNACKMUSS H J, STOLZ A. Enantioselective hydrolysis of ketoprofen amide byRhodococcussp. C3II andRhodococcuserythropolisMP 50[J]. Biotechnology letters, 1995, 17(2):187-192.
[30] HEINEMANN U, KIZIAK C, ZIBEK S, et al. Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria[J]. Applied microbiology and biotechnology, 2003, 63(3):274-281.
[31] SALVO G, BRANDT A, CECCHETELLI L. A micro-organism possessing enantioselective and regioselective nitrile hydratase/amidase activities: EP1291435[P]. 2003-03-12.
(責(zé)任編輯:朱小惠)
Progress in biosynthesis of chiral ketoprofen
HU Qiwei1, ZHANG Junwei2, WANG Yuanshan1
(1.College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; 2.Hangzhou Anow Microfiltration Co., Ltd., Hangzhou 311404, China)
Ketoprofen is one of the most prominent non-steroidal anti-inflammatory drugs,which was widely used in rheumatism, rheumatoid arthritis, myelitis, gout and other diseases. Most of the commercially available ketoprofen drugs are racemic. However, the (S)-enantiomer has therapeutic activity against inflammation and pain, while the existence of (R)-enantiomer resulted in increased physiological side effects and toxicity. Chiral ketoprofen is currently produced by chemical synthesis. Compared to chemical methods, biosynthesis of ketoprofen is preferable because of its mild reaction conditions and eco-friendliness. In this review, the progress in biosynthesis of chiral ketoprofen with lipase, esterase, and nitrile hydratase/amidase bienzyme system as biocatalysts was summarized.
biocatalysis; ketoprofen; lipase; esterase
2017-05-27
浙江省公益技術(shù)研究社會(huì)發(fā)展項(xiàng)目(2014C33223)
胡琦蔚(1992—),女,浙江嵊州人,碩士研究生,研究方向?yàn)樯锎呋c生物轉(zhuǎn)化,E-mail:hudei92@sina.com.通信作者:王遠(yuǎn)山副教授,E-mail:yuanshan@zjut.edu.cn.
Q814
A
1674-2214(2017)03-0153-05