• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      酰胺酶催化機(jī)制研究進(jìn)展

      2017-09-12 10:45:18金建強(qiáng)吳哲明鄭仁朝
      發(fā)酵科技通訊 2017年3期
      關(guān)鍵詞:質(zhì)子化水解酶酰基

      金建強(qiáng),吳哲明,鄭仁朝

      (浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)

      酰胺酶催化機(jī)制研究進(jìn)展

      金建強(qiáng),吳哲明,鄭仁朝

      (浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)

      酰胺酶是一類主要作用于分子內(nèi)C—N鍵,催化酰胺水解生成相應(yīng)的羧酸和氨的水解酶,在自然界中廣泛存在.根據(jù)酰胺酶氨基酸序列,可將其分為腈水解酶家族和酰胺酶標(biāo)簽家族兩類.綜述了近年來(lái)對(duì)上述兩類酰胺酶結(jié)構(gòu)和催化機(jī)制方面的研究進(jìn)展,并著重闡述了數(shù)個(gè)不同來(lái)源酰胺酶的具體催化過(guò)程.腈水解酶家族成員的催化三聯(lián)體為Cys-Lys-Glu,其催化過(guò)程比較一致,Cys主要負(fù)責(zé)親核進(jìn)攻,Glu作為廣義堿參與催化反應(yīng),Lys則負(fù)責(zé)穩(wěn)定過(guò)渡態(tài).酰胺酶標(biāo)簽家族酰胺酶的催化三聯(lián)體為Ser-cisSer-Lys,但不同來(lái)源的酰胺酶之間的催化機(jī)理差異較大,依據(jù)Lys所扮演的角色可以將其催化機(jī)制分為廣義酸催化和廣義堿催化兩種模式.

      酰胺酶;腈水解酶家族;酰胺酶標(biāo)簽家族;催化機(jī)制

      酰胺酶(Amidase,EC 3.5.1.x)又稱酰胺水解酶(Amidohydrolase),是一類能夠催化酰胺鍵斷裂生成相應(yīng)羧酸和氨的水解酶,廣泛存在于細(xì)菌(廣譜酰胺酶)、霉菌(青霉素?;?、真菌(甲酰胺酶,乙酰胺酶以及廣譜酰胺酶)、酵母(煙酰胺酶以及廣譜酰胺酶)、植物(肽酶)和動(dòng)物(花生四烯酸乙醇胺酰胺酶)等[1-2]生物體中.Claridge等[3]曾于1960年報(bào)道了青霉素?;?Penicillin amidase).隨后,Kelly和Jakoby于1964年分別從Pseudomonasaeruginosa和Pseudomonasfluorescens中發(fā)現(xiàn)了酰胺酶[4-5].絕大部分酰胺酶的底物譜廣,能高效催化各種脂肪族、芳香族以及雜環(huán)族酰胺的水解.酰胺酶因具有良好的化學(xué)和立體選擇性,在手性羧酸、酰胺衍生物和光學(xué)純氨基酸等手性化合物的合成中極具潛力,正日益受到工業(yè)界的重視.

      隨著對(duì)酰胺酶研究的不斷深入,其分子結(jié)構(gòu)和催化機(jī)制成為了研究者關(guān)注的重點(diǎn).分析多種酰胺酶之間的結(jié)構(gòu)及其催化機(jī)理有助于系統(tǒng)并深入地理解其空間結(jié)構(gòu)與功能的關(guān)系.近年來(lái),關(guān)于酰胺酶結(jié)構(gòu)和催化機(jī)制的研究已經(jīng)有了一定的進(jìn)展.筆者主要闡述了一些酰胺酶的結(jié)構(gòu)和催化機(jī)制,為酰胺酶的催化反應(yīng)研究提供理論基礎(chǔ).

      1 酰胺酶的分類及結(jié)構(gòu)

      根據(jù)酰胺酶的氨基酸序列,可以將其大致分為兩類[2,6]:腈水解酶家族(Nitrilase superfamily)酰胺酶,其催化三聯(lián)體為Cys-Lys-Glu;酰胺酶標(biāo)簽(Amidase signature,AS)家族酰胺酶,以Lys-Ser-Ser為催化三聯(lián)體,在其一級(jí)結(jié)構(gòu)中含有一段約130 個(gè)保守氨基酸殘基且富含GGSS序列片段的特征序列(標(biāo)簽序列)[7].

      腈水解酶家族酰胺酶是一類巰基酶,含有保守的親核半胱氨酸[8].腈水解酶家族酰胺酶的底物譜較窄,通常只能催化脂肪族酰胺水解.該家族酰胺酶和腈水解酶具有序列相似性,其與腈水解酶可能存在進(jìn)化上的相關(guān)性.腈水解酶家族酰胺酶多重序列比對(duì)結(jié)果表明,其一級(jí)結(jié)構(gòu)含有許多保守片段,并且與腈水解酶、腈水合酶和β-丙氨酸合成酶同源.腈水解酶家族成員的四級(jí)結(jié)構(gòu)通常為同源四聚體或同源六聚體.其單體一般呈α-β-β-α式夾心折疊結(jié)構(gòu),并且有一個(gè)高度保守的催化三聯(lián)體Cys-Lys-Glu負(fù)責(zé)共價(jià)鍵催化(圖1),其中Cys為親核體[9].有關(guān)腈水解酶家族酰胺酶的晶體結(jié)構(gòu)很少,已報(bào)道的該家族酰胺酶主要來(lái)源于Geobacilluspallidus[9-11],P.aeruginosa[12],Agrobacteriumsp.[13]和Helicobacterpylori[14]等.圖1中:Agrobacterium為N-carbamyl-D-amino acid amidohydrolase (DCase) A鏈,來(lái)源于Agrobacteriumsp. KNK712,PDB ID code: 1ERZ;Helicobacter為Formamidase (AmiF) A鏈,來(lái)源于Helicobacterpylori,PDB ID code: 2DYU;Geobacillus為Geobacilluspallidus酰胺酶,來(lái)源于GeobacilluspallidusRAPc8,PDB ID code: 2PLQ;Pseudomonas為Aliphatic amidase,來(lái)源于Pseudomonasaeruginosa,GenBank accession No. KSP66314.1;催化三聯(lián)體Cys-Lys-Glu以▼標(biāo)記.

      圖1 腈水解酶家族酰胺酶序列比對(duì)Fig.1 Amino acid sequence alignment of nitrilase superfamily

      酰胺酶標(biāo)簽家族酰胺酶與腈水解酶家族成員有明顯的區(qū)別.該家族酰胺酶通常有較寬的底物譜,可催化如脂肪族酰胺、芳香族酰胺、雜環(huán)類酰胺和α-取代酰胺等的水解.其四級(jí)結(jié)構(gòu)與腈水解酶家族成員不同,一般呈同源二聚體或同源八聚體[8,15-16].標(biāo)簽家族成員的催化三聯(lián)體并非典型的絲氨酸水解酶類結(jié)構(gòu)(Ser-Asp-His)[7],而是Ser-cisSer-Lys.其中Ser作為親核體通過(guò)其側(cè)鏈上的羥基氧(Oγ)對(duì)底物的羰基發(fā)動(dòng)親核進(jìn)攻,而cisSer為不常見(jiàn)的順式結(jié)構(gòu),處于GGSS指紋序列的中心位置(圖2),并與Lys一起組成了質(zhì)子傳遞網(wǎng)絡(luò).此外,親核體Ser以及與其相連的2~3 個(gè)保守氨基酸(通常為Gly,Thr或Asp)構(gòu)成了活性中心的發(fā)卡環(huán)結(jié)構(gòu),參與氧負(fù)離子洞的形成.目前關(guān)于酰胺酶標(biāo)簽家族酰胺酶的結(jié)構(gòu)報(bào)道包括Malonamidase E2 (MAE2)[7,17],Glu-tRNAGln-dependent amidotransferase (GatCAB)[18],6-aminohexanoate cyclic dimer hydrolase (NylA)[19],F(xiàn)atty acid amide hydrolase (FAAH)[20-22],Peptide amidase (Pam)[23]和Aryl acylamidase (AAA)[24]等.圖2中:PAM為Peptide amidase,來(lái)源于Stenotrophomonasmaltophilia,GenBank acession No. CAC93616;MAE2為Malonamidase E2,來(lái)源于Bradyrhizobiumjaponicum,GenBank acession No. AAD01507;NylA為6-aminohexanoate cyclic dimer hydrolase,來(lái)源于Arthrobactersp. KI72,PDB ID code: 3A2P;AAA為Aryl acylamidase,來(lái)源于某土壤細(xì)菌CSBL00001,PDB ID code: 4YJI;FAAH為Fatty acid amide hydrolase,來(lái)源于Rattusnorvegicus,PDB ID code: 2VYA;催化三聯(lián)體Ser-cisSer-Lys以▼標(biāo)記.

      圖2 酰胺酶標(biāo)簽家族酰胺酶序列比對(duì)Fig.2 Amino acid sequence alignment of amidase signature family

      此外,絕大多數(shù)酰胺酶不含金屬離子,但有一些研究者報(bào)道了Rhodococcussp.[25],KlebsiellapneumoniaeNCTR 1[26]和BrevundimonasdiminutaTPU 5720[27]的酰胺酶的活性位點(diǎn)上含有Co2+和/或Fe3+.

      2 酰胺酶的催化機(jī)制

      酰胺酶可以催化包括酰胺水解、酰基轉(zhuǎn)移、酸轉(zhuǎn)移、酯水解和酯轉(zhuǎn)移等在內(nèi)的多種反應(yīng),但以酰胺水解和酰基轉(zhuǎn)移反應(yīng)的活性最高[1-2].當(dāng)反應(yīng)體系存在羥胺時(shí),由于羥胺具有比水更強(qiáng)的親核性,底物酰胺會(huì)優(yōu)先和羥胺發(fā)生?;D(zhuǎn)移反應(yīng).1986年,Maestracci等[28]基于此特性研究了Brevibacteriumsp. R312酰胺酶的?;D(zhuǎn)移反應(yīng).他們以乙酰胺和羥胺為雙底物,發(fā)現(xiàn)該反應(yīng)符合“Bi-Bi Ping-Pong”機(jī)制.在?;D(zhuǎn)移反應(yīng)中,酰胺酶首先與底物酰胺結(jié)合形成酶-底物-?;虚g體,同時(shí)釋放出氨;隨后親核試劑羥胺與中間體反應(yīng)生成氧肟酸;最后氧肟酸脫離,酰胺酶恢復(fù)為初始狀態(tài).隨后,Kobayashi等[29]提出了酰胺酶的催化機(jī)制,他們認(rèn)為底物酰胺的羰基在受到親核進(jìn)攻后,會(huì)與酶形成一個(gè)四面體中間體.中間體存在時(shí)間極短,其因氨的形成并脫離而快速轉(zhuǎn)變?yōu)轷;?酶復(fù)合物.在水分子加入后,?;?酶復(fù)合物發(fā)生水解,酶脫離并形成相應(yīng)的酸.Fournand等[2]通過(guò)對(duì)酰胺酶的酰胺水解反應(yīng)以及酰基轉(zhuǎn)移反應(yīng)研究,同樣確認(rèn)了兩者反應(yīng)過(guò)程均符合“Bi-Bi Ping-Pong”機(jī)制.酰胺酶酰基轉(zhuǎn)移反應(yīng)和水解反應(yīng)的“Bi-Bi Ping-Pong”機(jī)制[1-2]為

      2.1 腈水解酶家族酰胺酶的催化機(jī)制

      有關(guān)腈水解酶家族酰胺酶催化機(jī)理的研究較少,已報(bào)道的主要集中于N-carbamyl-D-amino acid amidohydrolase (DCase),F(xiàn)ormamidase (AmiF)和G.pallidusRAPc8 aliphatic amidase等少數(shù)幾個(gè)酶中.從這幾個(gè)酶來(lái)看,腈水解酶家族酰胺酶的催化過(guò)程比較一致:催化三聯(lián)體中,Cys負(fù)責(zé)親核進(jìn)攻,處于去質(zhì)子化狀態(tài)的Glu作為廣義堿,增強(qiáng)Cys的親核性并負(fù)責(zé)質(zhì)子的傳遞,而Lys則是用于穩(wěn)定催化過(guò)程中的過(guò)渡態(tài),并不直接參與質(zhì)子傳遞.Nakai等[13]對(duì)來(lái)源于Agrobacteriumsp. KNK712的N-氨甲?;?D-氨基酸酰胺水解酶(DCase)進(jìn)行了晶體結(jié)構(gòu)解析,確認(rèn)其催化三聯(lián)體為Cys171-Lys126-Glu46,并提出了該酶的具體催化過(guò)程:

      1) Glu46處于去質(zhì)子化狀態(tài),直接與Cys171相互作用,奪取后者巰基上的質(zhì)子,激活其親核進(jìn)攻能力.活化的Cys171進(jìn)攻底物的羰基碳,形成帶氧負(fù)離子的酶-底物復(fù)合體,并被Lys126所穩(wěn)定.

      2) 復(fù)合體的氨基氮奪取Glu46的質(zhì)子變?yōu)榘狈肿佣撾x,羰基重新形成,構(gòu)成?;?酶中間體,Glu46恢復(fù)去質(zhì)子化狀態(tài).

      3) 水分子取代氨分子進(jìn)入反應(yīng)中心,被Glu46奪去一個(gè)質(zhì)子后,成為活化狀態(tài),進(jìn)攻酰基-酶中間體并與之共價(jià)結(jié)合,而羰基再次解體產(chǎn)生氧負(fù)離子.

      4) 中間體解體,Cys171脫離并獲得Glu46的質(zhì)子,恢復(fù)穩(wěn)定.羰基恢復(fù),形成催化產(chǎn)物N-羧基氨基酸,并進(jìn)一步自發(fā)水解為氨基酸和二氧化碳.

      DCase的催化機(jī)制[13]為

      另一種報(bào)道的腈水解酶家族成員為來(lái)源于H.pylori的甲酰胺酶(AmiF),AmiF的催化機(jī)制[14]為Hung等[14]通過(guò)對(duì)AmiF晶體結(jié)構(gòu)的解析,認(rèn)為該酶的具體催化步驟為:

      1) 底物甲酰胺分子進(jìn)入催化活性中心,去質(zhì)子化的Glu60奪取Cys166的巰基質(zhì)子,激活其親核進(jìn)攻反應(yīng).Cys166與底物共價(jià)結(jié)合,形成帶氧負(fù)離子的酶-底物復(fù)合體,并被Lys133和His167通過(guò)氫鍵所穩(wěn)定.

      2) 底物氨基獲得Glu60的質(zhì)子形成氨被釋放,復(fù)合體分解,羰基恢復(fù),構(gòu)成酰基-酶中間體.

      3) 水分子進(jìn)入反應(yīng)中心,經(jīng)Glu60活化后進(jìn)攻?;?酶中間體.中間體分解,羰基恢復(fù),形成產(chǎn)物甲酸,Cys166從Glu60處獲得質(zhì)子,三聯(lián)體恢復(fù)初始狀態(tài).

      2.2 酰胺酶標(biāo)簽家族酰胺酶的催化機(jī)理

      2.2.1 去質(zhì)子化Lys介導(dǎo)的廣義堿催化模式

      脂肪酸酰胺水解酶(FAAH)是一種來(lái)源于哺乳動(dòng)物的內(nèi)源性大麻素降解酶,屬于典型的酰胺酶標(biāo)簽家族酰胺酶,關(guān)于其結(jié)構(gòu)研究的報(bào)道較多[31-36].Patricelli等[36-37]研究結(jié)果表明:催化初始階段,F(xiàn)AAH的Lys142并未處于質(zhì)子化狀態(tài),而是作為廣義堿接受來(lái)自cisSer217的質(zhì)子.其具體催化步驟[31-33]如下:

      1) 處于去質(zhì)子化狀態(tài)的Lys142首先奪取cisSer217的質(zhì)子,失去質(zhì)子的cisSer217則奪取Ser241的質(zhì)子,激活Ser241的親核能力.

      2) 活化的Ser241進(jìn)攻底物中的羰基碳并與之共價(jià)結(jié)合,羰基解體,產(chǎn)生氧負(fù)離子(由Gly240-Gly239-Ile238構(gòu)成的氧負(fù)離子洞穩(wěn)定),形成酶-底物復(fù)合體.與此同時(shí),cisSer217將其質(zhì)子貢獻(xiàn)給氨基氮,并獲得Lys142的質(zhì)子補(bǔ)償,兩者恢復(fù)去質(zhì)子化狀態(tài).

      3) 酰胺底物的C—N鍵斷裂,形成胺脫離復(fù)合體,羰基重新恢復(fù),形成?;?酶中間體.隨后,Lys142再次質(zhì)子化,獲得cisSer217的羥基氫.而失去質(zhì)子的cisSer217作為廣義堿奪取水分子的一個(gè)質(zhì)子,并激活水分子的親核進(jìn)攻能力.活化的水分子(即HO-部分)進(jìn)攻?;?酶中間體的羰基碳,羰基再次解體并產(chǎn)生氧負(fù)離子,形成新的四面體中間體.

      4) 最后,中間體分解、羰基恢復(fù),形成第二個(gè)產(chǎn)物——羧酸.Ser241脫離后獲得cisSer217的質(zhì)子,而后者則得到Lys142的質(zhì)子補(bǔ)償,三聯(lián)體恢復(fù)初始狀態(tài).

      酰胺酶FAAH催化機(jī)制[33]為

      芳基?;0访?AAA)以Ser187,Ser163與Lys84作為催化三聯(lián)體,其中Lys84同樣是作為廣義堿角色,接受來(lái)自Ser163的質(zhì)子,并輔助Ser163活化親核體Ser187[24].但其催化步驟與FAAH并不完全相同,主要包括:

      1) 在堿性環(huán)境(pH>10)下的Lys84處于去質(zhì)子化狀態(tài),其通過(guò)質(zhì)子傳遞網(wǎng)絡(luò)獲得cisSer163的質(zhì)子,并使之轉(zhuǎn)而奪取親核體Ser187上的質(zhì)子,激活Ser187對(duì)底物的親核進(jìn)攻反應(yīng).

      2) 去質(zhì)子化的Ser187與底物(對(duì)乙酰氨基酚)的羰基碳共價(jià)結(jié)合,氧負(fù)離子則由發(fā)卡環(huán)上的兩個(gè)氨基酸殘基(Gly185和Gly184)通過(guò)氫鍵穩(wěn)定,構(gòu)成四面體中間體.

      3)cisSer163質(zhì)子化底物的亞氨基,形成對(duì)氨基苯酚脫離催化體系.失去質(zhì)子的cisSer163直接奪取水分子上的質(zhì)子,并激活其對(duì)中間體的脫酰反應(yīng).

      4) 活化的水分子進(jìn)攻中間體并與之結(jié)合,導(dǎo)致Ser187脫離,中間體解體,羰基恢復(fù),形成羧酸.Ser187則奪取cisSer163的質(zhì)子,后者則拿回在Lys84上的質(zhì)子.最終酶與產(chǎn)物分離,酰胺酶獲得再生.

      酰胺酶AAA的催化機(jī)制[24]為

      2.2.2 質(zhì)子化Lys介導(dǎo)的廣義酸催化模式

      Labahn等[23]測(cè)定了Stenotrophomonasmaltophilia的肽酰胺酶Pam的四級(jí)結(jié)構(gòu),確定其催化三聯(lián)體為Ser226-cisSer202-Lys123.他們認(rèn)為Pam的Lys123在催化起始階段就處于質(zhì)子化狀態(tài),作為廣義酸參與反應(yīng),并據(jù)此提出了相應(yīng)的催化機(jī)制.該假設(shè)得到了動(dòng)力學(xué)模擬研究結(jié)果的支持[30].Pam的具體水解反應(yīng)過(guò)程為:

      1) 處于質(zhì)子化狀態(tài)的Lys123降低了cisSer202的親核性,但同時(shí)增強(qiáng)了cisSer202對(duì)底物酰胺羰基氧的質(zhì)子化能力.Ser226作為親核體首先進(jìn)攻底物酰胺的羰基碳原子,同時(shí)cisSer202質(zhì)子化羰基氧.隨后,失去質(zhì)子的cisSer202奪取Ser226的質(zhì)子,形成酶-底物復(fù)合體.

      2) 復(fù)合體上的氨基奪取cisSer202的質(zhì)子,失去質(zhì)子的cisSer202轉(zhuǎn)而攻擊帶正電的Lys123并獲得質(zhì)子補(bǔ)償,恢復(fù)穩(wěn)定.

      3) 質(zhì)子化的氨基形成氨脫離復(fù)合體.Lys123重新奪回cisSer202上的質(zhì)子,而cisSer202則獲得底物上的羥基質(zhì)子,兩者恢復(fù)原來(lái)狀態(tài).同時(shí),底物的羰基也重新產(chǎn)生,形成酶-?;虚g體.

      4) 隨后,與Ser226通過(guò)氫鍵連接的水分子進(jìn)攻酶-?;虚g體使其分解,形成產(chǎn)物羧酸.同時(shí)Ser226獲得水分子上的一個(gè)質(zhì)子,重新恢復(fù)穩(wěn)定狀態(tài).

      酰胺酶PAM的催化機(jī)制[23]為

      Shin等[7,17]對(duì)丙二酰胺酶MAE2的研究表明,其Lys62同樣處于質(zhì)子化狀態(tài).但與Pam有所區(qū)別,MAE2的親核體Ser155由于受到Arg158的胍基的影響,其pKa降低,因此他們認(rèn)為親核體Ser155在催化初始階段就處于去質(zhì)子化狀態(tài)(Ser155—O-),并且通過(guò)與cisSer131形成兩個(gè)氫鍵來(lái)保持穩(wěn)定性.該酶的具體催化機(jī)制如下:

      1) Lys62處于質(zhì)子化狀態(tài),而Ser155處于去質(zhì)子化狀態(tài).在該狀態(tài)下,Ser131的親核性被減弱,但其質(zhì)子化底物酰胺羰基氧的能力得到加強(qiáng).催化開(kāi)始時(shí),處于激活狀態(tài)下Ser177側(cè)鏈氧原子(Oγ-)攻擊底物酰胺上的羰基碳,與之共價(jià)結(jié)合,形成攜帶氧負(fù)離子的酶-底物復(fù)合體,并被Thr152,Gly153,Gly154以及Ser155組成的氧負(fù)離子洞所穩(wěn)定.

      2) 緊接著,cisSer131作為酸催化劑將其側(cè)鏈上的質(zhì)子傳遞給復(fù)合體上的底物氨基使其質(zhì)子化,形成氨脫離反應(yīng)體系.同時(shí),羰基恢復(fù),最終形成酶-?;虚g體.失去質(zhì)子的cisSer131則從質(zhì)子化狀態(tài)下的Lys80那里獲得質(zhì)子補(bǔ)償.

      3) 隨后,水分子進(jìn)入反應(yīng)中心.Lys80重新拿回cisSer131上的質(zhì)子,后者被活化,進(jìn)攻水分子并獲得質(zhì)子補(bǔ)償,恢復(fù)穩(wěn)定狀態(tài).而失去質(zhì)子的水分子則進(jìn)攻酶-?;虚g體,使其水解并形成羧酸.而Ser155則脫離并恢復(fù)為去質(zhì)子化狀態(tài).至此,MAE2完成一個(gè)底物的水解反應(yīng)過(guò)程.

      MAE2的催化機(jī)制[17]為

      來(lái)源于Arthrobactersp. KI72的NylA的催化過(guò)程與MAE2基本類似,但初始狀態(tài)的Ser174并未處于去質(zhì)子化狀態(tài),需要Ser150的激活才能進(jìn)行親核進(jìn)攻[19].

      3 結(jié) 論

      作為一類應(yīng)用廣泛的生物催化劑,酰胺酶近年來(lái)受到越來(lái)越多的關(guān)注,不斷有各種酰胺酶的空間結(jié)構(gòu)被鑒定和解析,其相應(yīng)的催化反應(yīng)機(jī)制也逐漸被揭示.空間結(jié)構(gòu)與催化機(jī)制的闡明對(duì)于酰胺酶的開(kāi)發(fā)、改造和應(yīng)用具有重要的意義.根據(jù)已知的酰胺酶結(jié)構(gòu),通過(guò)分子對(duì)接和動(dòng)力學(xué)等方法研究藥物與酶的結(jié)合模式和作用關(guān)鍵殘基,可以使藥物改造具有更好的方向性和針對(duì)性.通過(guò)探究酰胺酶的結(jié)構(gòu)和作用機(jī)理,有助于準(zhǔn)確高效地利用基因重組技術(shù)和蛋白質(zhì)工程等手段改造酰胺酶,提升其催化活力和穩(wěn)定性,為酰胺酶的工業(yè)化應(yīng)用奠定基礎(chǔ).然而,酰胺酶來(lái)源廣泛、類型眾多,其催化過(guò)程并不相同,目前還沒(méi)有統(tǒng)一的催化機(jī)制來(lái)解釋其反應(yīng)過(guò)程.另外,一些金屬依賴型酰胺酶的催化機(jī)制并未明確.因此,對(duì)酰胺酶催化機(jī)理的研究仍有待深入.

      [1] SHARMA M, SHARMA N N, BHALLA T C. Amidases: versatile enzymes in nature[J]. Reviews in environmental science and bio/technology, 2009, 8(4): 343-366.

      [2] FOURNAND D, ARNAUD A. Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity[J]. Journal of applied microbiology, 2001, 91(3): 381-393.

      [3] CLARIDGE C A, GOUREVITCH A, LEIN J. Bacterial penicillin amidase[J]. Nature, 1960, 187: 237-238.

      [4] KELLY M, KORNBERG H L. Purification and properties of acyltransferases fromPseudomonasaeruginosa[J]. Biochemical journal, 1964, 93(3): 557-566.

      [5] JAKOBY W B, FREDERICKS J. Reactions catalyzed by amidases: acetamidase[J]. Journal of biological chemistry, 1964, 239: 1978-1982.

      [6] MAKHONGELA H S, GLOWACKA A E, AGARKAR V B, et al. A novel thermostable nitrilase superfamily amidase fromGeobacilluspallidusshowing acyl transfer activity[J]. Applied microbiology and biotechnology, 2007, 75(4): 801-811.

      [7] SHIN S, LEE T H, HA N C, et al. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature[J]. EMBO journal, 2002, 21(11): 2509-2516.

      [8] NOVO C, TATA R, CLEMENTE A, et al.Pseudomonasaeruginosaaliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism[J]. FEBS letters, 1995, 367(3): 275-279.

      [9] KIMANI S W, AGARKAR V B, COWAN D A, et al. Structure of an aliphatic amidase fromGeobacilluspallidusRAPc8[J]. Acta crystallographica section D: biological crystallography, 2007, 63(10): 1048-1058.

      [10] WEBER B W, KIMANI S W, VARSANI A, et al. The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning[J]. Journal of biological chemistry, 2013, 288(40): 28514-28523.

      [11] AGARKAR V B, KIMANI S W, COWAN D A, et al. The quaternary structure of the amidase fromGeobacilluspallidusRAPc8 is revealed by its crystal packing[J]. Acta crystallographica, 2006, 62(12): 1174-1178.

      [12] FARNAUD S, TATA R, SOHI M K, et al. Evidence that cysteine-166 is the active-site nucleophile ofPseudomonasaeruginosaamidase: crystallization and preliminary X-ray diffraction analysis of the enzyme[J]. Biochemical journal, 1999, 340(3): 711-714.

      [13] NAKAI T, HASEGAWA T, YAMASHITA E, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases[J]. Structure, 2000, 8(7): 729-737.

      [14] HUNG Chiulien, LIU Jiahsin, CHIU Weichun, et al. Crystal structure ofHelicobacterpyloriformamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad[J]. Journal of biological chemistry, 2007, 282(16): 12220-12229.

      [15] CHEBROU H, BIGEY F, ARNAUD A, et al. Study of the amidase signature group[J]. Biochimica et biophysica acta, 1996, 1298(2): 285-293.

      [16] MAYAUX J F, CERBELAUD E, SOUBRIER F, et al. Purification, cloning, and primary structure of a new enantiomer-selective amidase from aRhodococcusstrain: structural evidence for a conserved genetic coupling with nitrile hydratase[J]. Journal of bacteriology, 1991, 173(21): 6694-6704.

      [17] SHIN S, YUN Y S, KOO H M, et al. Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad[J]. Journal of biological chemistry, 2003, 278(27): 24937-24943.

      [18] NAKAMURA A, YAO M, CHIMNARONK S, et al. Ammonia channel couples glutaminase with transamidase reactions in GatCAB[J]. Science, 2006, 312(5782): 1954-1958.

      [19] YASUHIRA K, SHIBATA N, MONGAMI G, et al. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation[J]. Journal of biological chemistry, 2010, 285(2): 1239-1248.

      [20] MILENI M, JOHNSON D S, WANG Z, et al. Structure-guided inhibitor design for human FAAH by interspecies active site conversion[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(35): 12820-12824.

      [21] MIN X, THIBAULT S T, PORTER A C, et al. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH)[J]. Proceedings of the national academy of sciences of the United States of America, 2011, 108(18): 7379-7384.

      [22] PALERMO G, ROTHLISBERGER U, CAVALLI A, et al. Computational insights into function and inhibition of fatty acid amide hydrolase[J]. European journal of medicinal chemistry, 2015, 91: 15-26.

      [23] LABAHN J, NEUMANN S, BüLDT G, et al. An alternative mechanism for amidase signature enzymes[J]. Journal of molecular biology, 2002, 322(5): 1053-1064.

      [24] LEE S, PARK E H, KO H J, et al. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family[J]. Biochemical and biophysical research communications, 2015, 467(2): 268-274.

      [25] NAWAZ M S, KHAN A A, SENG J E, et al. Purification and characterization of an amidase from an acrylamide-degradingRhodococcussp.[J]. Applied and environmental microbiology, 1994, 60(9): 3343-3348.

      [26] NAWAZ M S, KHAN A A, BHATTACHARAYYA D, et al. Physical, biochemical, and immunological characterization of a thermostable amidase fromKlebsiellapneumoniaeNCTR 1[J]. Journal of bacteriology, 1996, 178(8): 2397-2401.

      [27] KOMEDA H, HARIYAMA N, ASANO Y. L-Stereoselective amino acid amidase with broad substrate specificity fromBrevundimonasdiminuta: characterization of a new member of the leucine aminopeptidase family[J]. Applied microbiology and biotechnology, 2006, 70(4): 412-421.

      [28] MAESTRACCI M, THIERY A, ARNAUD A, et al. A study of the mechanism of the reactions catalyzed by the amidaseBrevibacteriumsp. R312[J]. Agricultural and biological chemistry, 1986, 50(9): 2237-2241.

      [29] KOBAYASHI M, FUJIWARA Y, GODA M, et al. Identification of active sites in amidase: evolutionary relationship between amide bond-and peptide bond-cleaving enzymes[J]. Proceedings of the national academy of sciences of the United States of America, 1997, 94(22): 11986-11991.

      [31] LABAR G, MICHAUX C. Fatty acid amide hydrolase: from characterization to therapeutics[J]. Chemistry & biodiversity, 2007, 4(8): 1882-1902.

      [32] MCKINNEY M K, CRAVATT B F. Structure and function of fatty acid amide hydrolase[J]. Annual review of biochemistry, 2005, 74: 411-432.

      [33] MILENI M, KAMTEKAR S, WOOD D C, et al. Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation[J]. Journal of molecular biology, 2010, 400(4): 743-754.

      [34] MCKINNEY M K, CRAVATT B F. Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase[J]. Journal of biological chemistry, 2003, 278(39): 37393-37399.

      [35] PATRICELLI M P, CRAVATT B F. Clarifying the catalytic roles of conserved residues in the amidase signature family[J]. Journal of biological chemistry, 2000, 275(25): 19177-19184.

      [36] PATRICELLI M P, LOVATO M A, CRAVATT B F. Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties[J]. Biochemistry, 1999, 38(31): 9804-9812.

      [37] PATRICELLI M P, CRAVATT B F. Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a nonconventional catalytic mechanism[J]. Biochemistry, 1999, 38(43): 14125-14130.

      (責(zé)任編輯:朱小惠)

      Progress on the catalytic mechanism of amidase

      JIN Jianqiang, WU Zheming, ZHENG Renchao

      (College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China)

      Amidases are a class of hydrolases, which catalyze the hydrolysis of C—N bonds of various amides to the corresponding carboxylic acids and ammonia. They are ubiquitous in many different types of organisms. According to their amino acid sequences, amidases can be assigned into nitrilase superfamily and amidase signature family. Here, we systematically review the progress of study in molecular structures and catalytic mechanisms of amidases, as well as the specific catalytic processes of specific amidases. All members of the nitrilase superfamily possess the conserved catalytic triad Cys-Lys-Glu, and exhibit similar catalytic processes. The residue Cys is responsible for the nucleophilic attack, Glu acts as a general base, while Lys is involved in the stabilization of the transition states. As for amidase signature family, the conserved catalytic triad is Ser-cisSer-Lys, and the catalytic processes vary from different signature amidases. According to the role of Lys, the catalytic mechanism can be divided into two types: general acid catalysis and general base catalysis.

      amidase; nitrilase superfamily; amidase signature family; catalytic mechanism

      2017-04-29

      國(guó)家自然科學(xué)基金資助項(xiàng)目(21602199)

      金建強(qiáng)(1991—),男,浙江臺(tái)州人,碩士研究生,研究方向?yàn)樯锎呋c酶工程,E-mail: jinjq6967@163.com. 通信作者:鄭仁朝教授,E-mail: zhengrc@zjut.edu.cn.

      Q556.4

      A

      1674-2214(2017)03-0170-08

      猜你喜歡
      質(zhì)子化水解酶?;?/a>
      無(wú)底物情況下來(lái)白R(shí)hoclococcus zopfii的腈水解酶中親核進(jìn)攻試劑CYS165的活性狀態(tài)的探究(英文)
      腈水解酶反應(yīng)機(jī)制與催化性能調(diào)控研究進(jìn)展
      氨基甲酸乙酯水解酶的家族生物信息學(xué)分析
      石油化工應(yīng)用(2018年3期)2018-03-24 14:54:36
      N-月桂酰基谷氨酸鹽性能的pH依賴性
      5-羥甲基胞嘧啶pKa值的理論研究
      New Situation in the Economic and Trade Cooperation and Competition between China and the US
      當(dāng)代化工研究(2016年2期)2016-03-20 16:21:23
      N-脂肪?;被猁}的合成、性能及應(yīng)用
      質(zhì)子化胞嘧啶碰撞誘導(dǎo)解離的實(shí)驗(yàn)和理論研究
      牡丹江市| 湖北省| 呼和浩特市| 德阳市| 额敏县| 涟水县| 天全县| 二手房| 丰台区| 锡林浩特市| 奎屯市| 册亨县| 和静县| 沙坪坝区| 普格县| 朔州市| 加查县| 云梦县| 昆山市| 昭苏县| 祁东县| 赣州市| 中牟县| 卢湾区| 苏州市| 宝应县| 榆树市| 东城区| 绥宁县| 东港市| 边坝县| 青阳县| 金山区| 河津市| 凤台县| 廊坊市| 揭东县| 大连市| 云浮市| 都江堰市| 榆树市|