張 媛,謝華桃,朱映天
(1美國(guó)TissueTech生物公司研發(fā)部,佛羅里達(dá)邁阿密33173;2華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院眼科,湖北武漢430022)
人角膜內(nèi)皮細(xì)胞的分離、培養(yǎng)及鑒定
張 媛1,謝華桃2,朱映天1
(1美國(guó)TissueTech生物公司研發(fā)部,佛羅里達(dá)邁阿密33173;2華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院眼科,湖北武漢430022)
人角膜內(nèi)皮細(xì)胞(HCECs)位于角膜內(nèi)側(cè),增殖能力有限,損傷后容易失去代償功能,發(fā)生內(nèi)皮盲.目前,角膜移植是治療該疾病的唯一有效的方法,但供體短缺等因素制約了角膜移植術(shù)的應(yīng)用.因此,使用組織工程角膜作為傳統(tǒng)角膜供體的替代物已迫在眉睫.本文回顧了近年來(lái)國(guó)內(nèi)外相關(guān)研究成果,闡述了為克服接觸性抑制和內(nèi)皮-間質(zhì)轉(zhuǎn)化(EMT)的問(wèn)題,學(xué)者們對(duì)HCECs的分離和體外培養(yǎng)方法進(jìn)行改進(jìn),并總結(jié)了從形態(tài)學(xué),關(guān)鍵標(biāo)志物以及基因水平來(lái)鑒定HCECs的方法,為HCECs組織工程角膜內(nèi)皮植片的進(jìn)一步研究提供參考.
人角膜內(nèi)皮細(xì)胞;分離;體外培養(yǎng);鑒定
人的角膜位于眼球前部,組織學(xué)上從前向后分為五層:上皮細(xì)胞層、前彈力層、基質(zhì)層、后彈力層和內(nèi)皮細(xì)胞層.角膜內(nèi)皮由神經(jīng)嵴發(fā)育而來(lái),由單層六角形細(xì)胞構(gòu)成,通過(guò)細(xì)胞間緊密連接形成的屏障功能和主動(dòng)液泵功能對(duì)維持角膜相對(duì)脫水狀態(tài)和透明性起著至關(guān)重要的作用[1-2].然而人角膜內(nèi)皮細(xì)胞(human corneal endothelial cells,HCECs)屬于終末細(xì)胞,增殖能力有限,在體內(nèi)幾乎不進(jìn)行有絲分裂,損傷后主要依靠臨近細(xì)胞的擴(kuò)張和移行來(lái)修補(bǔ)[3].若角膜內(nèi)皮的疾病(如Fuchs角膜內(nèi)皮營(yíng)養(yǎng)不良),外傷,手術(shù)(如白內(nèi)障超聲乳化術(shù))等原因造成內(nèi)皮細(xì)胞損傷較多,失去代償功能,則會(huì)造成角膜水腫及大泡性角膜病變,最終發(fā)生內(nèi)皮盲[4].
目前,角膜移植是治療內(nèi)皮盲的唯一有效方法.在過(guò)去的幾十年里,治療該疾病的手術(shù)方法已經(jīng)從傳統(tǒng)的穿透性角膜移植發(fā)展為角膜內(nèi)皮移植,即從捐獻(xiàn)的角膜取下有活性的內(nèi)皮植片來(lái)替換患者已經(jīng)失代償?shù)膬?nèi)皮,植片可以附帶或者不附帶角膜基質(zhì).較穿透性移植而言,這種術(shù)式恢復(fù)更快,視覺(jué)質(zhì)量更好,排斥率更低,而且減少了外源性的角膜散光[5].可以預(yù)想,角膜移植手術(shù)的成功必然擴(kuò)大對(duì)供體植片的需求,但全球人口老齡化以及供體短缺等因素嚴(yán)重制約了該術(shù)式的應(yīng)用[6].因此,使用體外培養(yǎng)的角膜內(nèi)皮,即組織工程角膜內(nèi)皮作為傳統(tǒng)角膜供體的替代物已迫在眉睫.本文回顧了近年來(lái)的相關(guān)研究成果,對(duì)角膜內(nèi)皮干細(xì)胞的分離、培養(yǎng)以及鑒定的研究現(xiàn)狀作如下綜述.
HCECs的分離方法經(jīng)歷了一系列的演化.首先被報(bào)道的是機(jī)械刮削法[7].該方法由于會(huì)發(fā)生內(nèi)皮-間質(zhì)轉(zhuǎn)化(endothelial-mesenchymal transition,EMT)[7]而被棄用.隨后,胰蛋白酶和中性蛋白酶被用于分離 HCECs[8-9].但這兩種方法同樣會(huì)誘發(fā)EMT,使得HCECs失去原有的表型[4,9-13].我們[14]研究發(fā)現(xiàn),當(dāng)有表皮生長(zhǎng)因子(epidermal growth factor,EGF)和/或成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)存在的條件下,EMT是經(jīng)由經(jīng)典Wnt信號(hào)通路來(lái)發(fā)揮作用的,如果在此基礎(chǔ)上添加TGF-β1,并導(dǎo)致核表達(dá)pSmad2/3和Zeb1/2,則該過(guò)程不可逆.
為了解決單細(xì)胞培養(yǎng)易發(fā)生EMT的問(wèn)題[4],我們使用膠原酶來(lái)消化剝離下來(lái)的角膜內(nèi)皮[9].具體方法為,使用鑷子剝離整個(gè)角膜內(nèi)皮連帶后彈力層,放入膠原酶消化過(guò)夜,之后離心去除多余的酶,再漂洗一次,即得到所需要的細(xì)胞[9].膠原酶消化可以得到緊實(shí)的內(nèi)皮細(xì)胞團(tuán),并且保留閉鎖連接蛋白-1 (zonula occludens-1,ZO-1)介導(dǎo)的細(xì)胞間連接.這是因?yàn)槟z原酶選擇性地去除了間質(zhì)膠原而非基底膜膠原,從而不干擾細(xì)胞間連接以及細(xì)胞的相互作用.這樣得到的細(xì)胞團(tuán)可以被擴(kuò)增成表達(dá)ZO-1的單層六角形角膜內(nèi)皮細(xì)胞[2].近年來(lái),使用膠原酶來(lái)消化分離HCECs的方法已成為主流.
除了改進(jìn)分離方法,學(xué)者們也嘗試在培養(yǎng)過(guò)程中抑制EMT.其中一項(xiàng)主要改進(jìn)是在培養(yǎng)基中加入ROCK的抑制物Y27632.在家兔[15]和猴[16]的角膜外傷實(shí)驗(yàn)中已經(jīng)證明,這種小分子物質(zhì)可以保留HCECs的增殖能力[17]和保持其正常表型而不發(fā)生EMT[15].這種作用很可能是通過(guò)保持Wnt信號(hào)通路的失活狀態(tài)來(lái)實(shí)現(xiàn)的[18].我們也有數(shù)據(jù)證明,使用小分子的RhoA和ROCK抑制物,可以在細(xì)胞連接被打破的情況下抑制EMT[19].
在HCECs的體外培養(yǎng)過(guò)程中,除了容易發(fā)生EMT,導(dǎo)致培養(yǎng)失敗,另一主要問(wèn)題就是接觸性抑制作用造成的細(xì)胞無(wú)法增殖.曾有文獻(xiàn)[20]報(bào)道,HCECs處于非增殖狀態(tài)的主要原因就是接觸性抑制,此時(shí)細(xì)胞停留在有絲分裂的G1期.為了解決增殖能力的問(wèn)題,許多學(xué)者和團(tuán)隊(duì)嘗試了各種培養(yǎng)HCECs的底物.這些底物包括硫酸軟骨素和層粘連蛋白[21],牛細(xì)胞外基質(zhì)[22],層粘連蛋白-5[23],纖連蛋白[24]和Ⅳ型膠原[9,25]等.盡管牛細(xì)胞外基質(zhì),纖連蛋白和層粘連蛋白已廣泛用于培養(yǎng)HCECs,但膠原Ⅳ可以更好地維持HCECs的存活、分裂能力和維持其特性(表1).
另外,為了解決接觸性抑制的問(wèn)題,我們嘗試了干擾RNA技術(shù).經(jīng)過(guò)研究,我們發(fā)現(xiàn)在SHEM培養(yǎng)基,即以DMEM/F-12(1∶1)為基礎(chǔ),再添加5%胎牛血清,0.5%二甲基亞砜,2 ng/mL EGF,5 μg/mL胰島素,5 μg/mL轉(zhuǎn)鐵蛋白,5 ng/mL硒,0.5 mg/mL氫化可的松和1 nM霍亂毒素[2]的培養(yǎng)基中,通過(guò)敲減p120基因,可以在體外培養(yǎng)出直徑2.1±0.4 mm的HCECs植片,且可以維持HCECs的表型.這一作用在敲減β-連環(huán)蛋白,N-鈣黏蛋白,或者ZO-1時(shí)無(wú)法實(shí)現(xiàn)[18].隨后,我們發(fā)現(xiàn)如果同時(shí)敲減p120和Kaiso基因,維持表型的HCECs植片直徑可以達(dá)到5.0± 0.3 mm.這時(shí),細(xì)胞核表達(dá)p120,激活p120-Kaiso信號(hào)通路.同時(shí),在SHEM培養(yǎng)基中,RhoA-ROCK-非經(jīng)典BMP信號(hào)通路也被激活,此時(shí)核表達(dá)磷酸化的NFκB(pNFκB)[1].
表1 體外培養(yǎng)HCECs的常用底物及其特點(diǎn)
為了進(jìn)一步擴(kuò)大HCECs植片,滿足臨床上內(nèi)皮植片直徑常為7~8 mm的需求,我們嘗試更換培養(yǎng)基來(lái)擴(kuò)大植片直徑.在近年來(lái)的研究中,數(shù)種培養(yǎng)基曾被用于角膜內(nèi)皮細(xì)胞的擴(kuò)增.如DMEM,SHEM,Ham's F12/M199和Opti-MEM-I[26].這些培養(yǎng)基多是含有較多營(yíng)養(yǎng)成分的廣譜細(xì)胞培養(yǎng)基.Peh等[27]曾報(bào)道在上述四種培養(yǎng)基中,HCECs可以在6 h內(nèi)貼壁并增殖,但DMEM中的HCECs無(wú)法傳代,而Ham's F12/M199和Opti-MEM-I中的HCECs無(wú)法維持六角形的細(xì)胞形態(tài).另外,有學(xué)者[28]比較了SFM,F(xiàn)99,含有2%小牛血清的MEM和含有5%小牛血清的MEM這四種培養(yǎng)基對(duì)HCECs成活率的影響.結(jié)果顯示,四種培養(yǎng)基中生長(zhǎng)的細(xì)胞形態(tài)都不令人滿意,而且含有小牛血清的MEM培養(yǎng)基中HCECs有較高的凋亡比例[28].我們實(shí)驗(yàn)室曾成功使用無(wú)血清的MESCM,即以DMEM/F-12(1∶1)為基礎(chǔ),再添加10%敲除血清,5 μg/mL胰島素,5 μg/mL轉(zhuǎn)鐵蛋白,5 ng/mL亞硒酸鈉,4 ng/mL bFGF,10 ng/mL白血病抑制因子(leukemia inhibitory factor,LIF),50 μg/mL慶大霉素和1.25 μg/mL兩性霉素B來(lái)培養(yǎng)角膜緣微環(huán)境干細(xì)胞[29-30],因此,我們將培養(yǎng)基從 SHEM換成了無(wú)血清的MESCM[2].研究[31]發(fā)現(xiàn),在同時(shí)敲減 p120和Kaiso基因的基礎(chǔ)上,將培養(yǎng)基從SHEM換成MESCM可以使HCECs植片的直徑增大到11.0±0.6 mm,這一現(xiàn)象除了p120-Kaiso信號(hào)通路,還得益于LIF-JAKSTAT3信號(hào)通路的激活對(duì)于接觸性抑制的延遲.這一大小已經(jīng)可以滿足臨床角膜內(nèi)皮移植的需求,為臨床使用該植片提供可能性[1-2].
角膜內(nèi)皮從供體上剝離時(shí),常常帶有其它層的細(xì)胞,因此,對(duì)體外培養(yǎng)的HCECs需要在形態(tài)學(xué)、關(guān)鍵標(biāo)志物以及基因水平上進(jìn)行鑒定.在形態(tài)學(xué)上,通過(guò)顯微鏡或者電鏡進(jìn)行觀察,原代培養(yǎng)的HCECs通常是單層六角形細(xì)胞,排列比較緊密[32-33].其干細(xì)胞較小,具有較高的增殖潛能[34].在關(guān)鍵標(biāo)志物方面,HCECs表達(dá)細(xì)胞連接的一些關(guān)鍵性蛋白如ZO-1,間隙連接蛋白-43,N-鈣黏蛋白等,其陽(yáng)性可證明培養(yǎng)的HCECs具有細(xì)胞間及細(xì)胞與細(xì)胞外基質(zhì)間形成連接的潛能.另外,水孔蛋白,Na+/K+泵也是常用的HCECs標(biāo)志物[35-37].HCECs的干細(xì)胞表達(dá) AP2α,AP2β,F(xiàn)OXD3,HNK1,MSX1,p75NTR和Sox9等神經(jīng)嵴細(xì)胞的標(biāo)志物[2,38-40].同時(shí),這些細(xì)胞還表達(dá)Myc,Klf4,Nanog,Nestin,Oct4,Rex1,Sox2,SSEA4等胚胎干細(xì)胞標(biāo)志物[2,31,38-40].在基因水平上,有學(xué)者[41]通過(guò)分析來(lái)自培養(yǎng)的HCECs的反轉(zhuǎn)錄產(chǎn)物與人COL8A2 cDNA具有100%的同源性來(lái)進(jìn)行鑒定.這一方法的理論依據(jù)為COL8A2基因編碼的α2-Ⅷ膠原蛋白是構(gòu)成后彈力層的重要成分,該成分是由HCECs分泌而來(lái)[41].也有學(xué)者[42]通過(guò)檢測(cè)CYYR1,SLC4A11,和COL8A2這一組基因的表達(dá)來(lái)鑒定體外培養(yǎng)的HCECs.不過(guò)該學(xué)者也表示迄今為止,仍然沒(méi)有一個(gè)特異性的基因可以作為鑒定HCECs的標(biāo)志物[42].
在過(guò)去的幾十年里,一些實(shí)驗(yàn)室已經(jīng)報(bào)道了體外培養(yǎng)角膜內(nèi)皮植片的動(dòng)物實(shí)驗(yàn).曾有學(xué)者報(bào)道了應(yīng)用人及動(dòng)物角膜內(nèi)皮體外培養(yǎng)植片進(jìn)行角膜移植的案例[43],受體動(dòng)物有家兔[44]、牛[45]、貓[46]和鼠類[47]等.目前,角膜內(nèi)皮移植(包括DSAEK,DMEK等)已成為治療角膜內(nèi)皮失代償?shù)闹饕椒ǎ?8-50],而全球人口老齡化以及供體短缺等因素嚴(yán)重制約了角膜移植術(shù)的應(yīng)用[6].HCECs的體外培養(yǎng)方法雖已基本建立,但是這種方法培養(yǎng)的HCECs存在增殖緩慢、不易保存等問(wèn)題[4,51],這些都制約著體外培養(yǎng)的HCECs走向臨床.隨著技術(shù)的成熟,相信在不久的將來(lái),人們可以通過(guò)體外培養(yǎng)的方法,制備出穩(wěn)定的組織工程角膜內(nèi)皮植片,為角膜病患者帶來(lái)福音.
[1]Zhu YT,Han B,Li F,et al.Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway[J].Invest Ophthalmol Vis Sci,2014,55(3):1509-1518.
[2]Zhu YT,Li F,Han B,et al.Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells[J].J Cell Biol,2014,206(6):799-811.
[3]Konomi K,Joyce NC.Age and topographical comparison of telomere lengths in human corneal endothelial cells[J].Mol Vis,2007,13: 1251-1258.
[4]Lee JG,Kay EP.FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells[J].Exp Eye Res,2006,83(6):1309-1316.
[5]Zhu YT,Tighe S,Chen SL,et al.Engineering of human corneal endothelial grafts[J].Curr Ophthalmol Rep,2015,3(3):207-217.
[6]McColgan K.Corneal transplant surgery[J].J Perioper Pract,2009,19(2):51-54.
[7]Petroll WM,Jester JV,Bean JJ,et al.Myofibroblast transformation of cat corneal endothelium by transforming growth factor-β1,-β2,and-β3[J].Invest Ophthalmol Vis Sci,1998,39(11):2018-2032.
[8]Chen KH,Azar D,Joyce NC.Transplantation of adult human corneal endothelium ex vivo:a morphologic study[J].Cornea,2001,20(7): 731-737.
[9]Li W,Sabater AL,Chen YT,et al.A novel method of isolation,preservation,and expansion of human corneal endothelial cells[J].Invest Ophthalmol Vis Sci,2007,48(2):614-620.
[10]Yokoo S,Yamagami S,Yanagi Y,et al.Human corneal endothelial cell precursors isolated by sphere-forming assay[J].Invest Ophthalmol Vis Sci,2005,46(5):1626-1631.
[11]Hsiue GH,Lai JY,Chen KH,et al.A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet[J].Transplantation,2006,81(3):473-476.
[12]Sumide T,Nishida K,Yamato M,et al.Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces[J].FASEB J,2006,20(2):392-394.
[13]Hatou S,Yoshida S,Higa K,et al.Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling[J].Stem Cells Dev,2013,22(5):828-839.
[14]Chen HC,Zhu YT,Chen SY,et al.Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition[J].Lab Invest,2012,92(5):676-687.
[15]Okumura N,Koizumi N,Ueno M,et al.ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue[J].Am J Pathol,2012,181(1):268-277.
[16]Okumura N,Koizumi N,Kay EP,et al.The ROCK inhibitor eye drop accelerates corneal endothelium wound healing[J].Invest Ophthalmol Vis Sci,2013,54(4):2493-2502.
[17]Okumura N,Nakano S,Kay EP,et al.Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors(Y-27632 and Y-39983)during wound healing of corneal endothelium[J].InvestOphthalmol Vis Sci,2013,55(1):318-329.
[18]Zhu YT,Chen HC,Chen SY,et al.Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions[J].J Cell Sci,2012,125(Pt 15):3636-3648.
[19]Chen HC,Zhu YT,Chen SY,et al.Selective Activation of p120 (ctn)-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition[J].PLoS One,2012,7(5):e36864.
[20]Joyce NC.Cell cycle status in human corneal endothelium[J].Exp Eye Res,2005,81(6):629-638.
[21]Engelmann K,Bhnke M,F(xiàn)riedl P.Isolation and long-term cultivation of human corneal endothelial cells[J].Invest Ophthalmol Vis Sci,1988,29(11):1656-1662.
[22]Miyata K,Drake J,Osakabe Y,et al.Effect of donor age on morphologic variation of cultured human corneal endothelial cells[J].Cornea,2001,20(1):59-63.
[23]Yamaguchi M,Ebihara N,Shima N,et al.Adhesion,migration,and proliferation of cultured human corneal endothelial cells by laminin-5[J].Invest Ophthalmol Vis Sci,2011,52(2):679-684.
[24]Hara S,Hayashi R,Soma T,et al.Identification and potential application of human corneal endothelial progenitor cells[J].Stem Cells Dev,2014,23(18):2190-2201.
[25]Zhu YT,Hayashida Y,Kheirkhah A,et al.Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro[J].Invest Ophthalmol Vis Sci,2008,49(9):3879-3886.
[26]Mimura T,Yokoo S,Yamagami S.Tissue engineering of corneal endothelium[J].J Funct Biomater,2012,3(4):726-744.
[27]Peh GS,Toh KP,Wu FY,et al.Cultivation of human corneal endothelial cells isolated from paired donor corneas[J].PLoS One,2011,6(12):e28310.
[28]Jckel T,Knels L,Valtink M,et al.Serum-free corneal organ culture medium(SFM)but not conventional minimal essential organ culture medium(MEM)protects human corneal endothelial cells from apoptotic and necrotic cell death[J].Br J Ophthalmol,2011,95(1):123-130.
[29]Chen SY,Hayashida Y,Chen MY,et al.A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells[J].Tissue Eng Part C Methods,2011,17(5): 537-548.
[30]Xie HT,Chen SY,Li GG,et al.Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation[J].Stem Cells,2011,29(11):1874-1885.
[31]Liu X,Tseng SC,Zhang MC,et al.LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells[J].Cell Cycle,2015,14(8):1197-1206.
[32]Schmedt T,Chen Y,Nguyen TT,et al.Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers[J].PLoS One,2012,7(12):e51427.
[33]Jay L,Bourget JM,Goyer B,et al.Characterization of tissue-engineered posterior corneas using second-and third-harmonic generation microscopy[J].PLoS One,2015,10(4):e0125564.
[34] Yoo H,F(xiàn)eng X,Day RD.Adolescents'empathy and prosocial behavior in the family context:a longitudinal study[J].J Youth Adolesc,2013,42(12):1858-1872.
[35]Okumura N,Kay EP,Nakahara M,et al.Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine[J].PLoS One,2013,8(2):e58000.
[36]Noh JW,Kim JJ,Hyon JY,et al.Stemness characteristics of human corneal endothelial cells cultured in various media[J].Eye Contact Lens,2015,41(3):190-196.
[37]Zhang Z,Niu G,Choi JS,et al.Bioengineered multilayered human corneas from discarded human corneal tissue[J].Biomed Mater,2015,10(3):035012.
[38]Liu Y,Sun H,Hu M,et al.Human corneal endothelial cells expanded in vitro are a powerful resource for tissue engineering[J].Int J Med Sci,2017,14(2):128-135.
[39]Lu WJ,Tseng SC,Chen S,et al.Senescence mediated by p16ink4a impedes reprogramming of human corneal endothelial cells into neural crest progenitors[J].Sci Rep,2016,6:35166.
[40]Zhu YT,Tighe S,Chen SL,et al.Engineering of human corneal endothelial grafts[J].Curr Ophthalmol Rep,2015,3(3):207-217.
[41]Engler C,Kelliher C,Wahlin KJ,et al.Comparison of non-viral methods to genetically modify and enrich populations of primary human corneal endothelial cells[J].Mol Vis,2009,15:629-637.
[42]Chng Z,Peh GS,Herath WB,et al.High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells[J].PLoS One,2013,8(7):e67546.
[43]Insler MS,Lopez JG.Extended incubation times improve corneal endothelial cell transplantation success[J].Invest Ophthalmol Vis Sci,1991,32(6):1828-1836.
[44]Gospodarowicz D,Greenburg G,Alvarado J.Transplantation of cultured bovine corneal endothelial cells to rabbit cornea:clinical implications for human studies[J].Proc Natl Acad Sci U S A,1979,76(1):464-468.
[45]Lange TM,Wood TO,McLaughlin BJ.Corneal endothelial cell transplantation using Descemet's membrane as a carrier[J].J Cataract Refract Surg,1993,19(2):232-235.
[46]Gospodarowicz D,Greenburg G,Alvarado J.Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium.The cat as an experimental model[J].Arch Ophthalmol,1979,97(11):2163-2169.
[47]Joo CK,Green WR,Pepose JS,et al.Repopulation of denuded murine Descemet's membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation[J].Graefes Arch Clin Exp Ophthalmol,2000,238(2):174-180.
[48]Koenig SB,Covert DJ.Early results of small-incision Descemet's stripping and automated endothelial keratoplasty[J].Ophthalmology,2007,114(2):221-226.
[49]Terry MA,Shamie N,Chen ES,et al.Endothelial keratoplasty a simplified technique to minimize graft dislocation,iatrogenic graft failure,and pupillary block[J].Ophthalmology,2008,115(7): 1179-1186.
[50]Price MO,Baig KM,Brubaker JW,et al.Randomized,prospective comparison of precut vs surgeon-dissected grafts for descemet stripping automated endothelial keratoplasty[J].Am J Ophthalmol,2008,146(1):36-41.
[51]Soh YQ,Peh GS,Mehta JS.Translational issues for human corneal endothelial tissue engineering[J].J Tissue Eng Regen Med,2016.
Isolation,expansion and characterization of human corneal endothelial cells
ZHANG Yuan1,XIE Hua-Tao2,ZHU Ying-Tian1
1Research and DevelopmentDepartment,TissueTech,Inc.,Miami,F(xiàn)lorida 33173,USA;2Department of Ophthalmology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China
Human corneal endothelial cells(HCECs)are located in the posterior cornea.They are well-known for their limited proliferative capability and therefore prone to corneal endothelial dysfunction that eventually may lead to blindness.At present,the only effective way to cure corneal endothelial dysfunction is corneal transplantation.However,because of the global shortage of donor corneas,it is vital to engineer corneal tissue in vitro that could potentially be transplanted clinically.In this review,we elaborately review recent research achivements of isolation and expansion of HCECs in order to unlock the contact inhibition and further avoid endothelial-mesenchymal transition(EMT).Also,we summarize the characterization methods from the morphology,key markers and genetics level,and provide reference for potential clinical application of corneal endothelial cell grafts.
human corneal endothelial cells;isolation;expansion;characterization
R77;R772.2
A
2095-6894(2017)08-72-04
2017-07-03;接受日期:2017-07-20
國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(81300736)
張 媛.博士,研究員.研究方向:眼科,眼表疾病,干細(xì)胞.E-mail:yuanzdr@outlook.com
朱映天.博士,高級(jí)科學(xué)家.研究方向:眼科,眼表疾病,干細(xì)胞.E-mail:yzhu@tissuetechinc.com