
(21)
公式4代入公式21得:

(22)
求解公式22,又Vc>0得:

(23)
當(dāng)光合作用受TP轉(zhuǎn)運(yùn)速率限制時(shí),Vc由公式23給出,代入公式8得:

(24)
公式24為FvCB光合模型TPU階段的子模型。當(dāng)a=0時(shí),公式24可簡(jiǎn)化為公式19。
1.4 葉肉導(dǎo)度
1980年,Farquhar等認(rèn)為葉肉細(xì)胞對(duì)CO2擴(kuò)散的阻力很小,在FvCB模型中可以忽略不計(jì),即Cc等于胞間CO2濃度(Ci)[1]。隨著研究的深入,人們發(fā)現(xiàn)葉肉細(xì)胞對(duì)CO2擴(kuò)散的阻力是光合作用的一個(gè)重要限制因子[9]。一般把CO2從胞間到Rubisco酶羧化位點(diǎn)擴(kuò)散的導(dǎo)度稱為葉肉導(dǎo)度,記為gm:

(25)
為估計(jì)參數(shù)gm,需結(jié)合公式25和FvCB模型的3個(gè)子模型推導(dǎo)出A關(guān)于Ci的函數(shù)表達(dá)式。根據(jù)公式25計(jì)算出Cc,再分別代入公式9、公式18和公式24得改進(jìn)后的FvCB模型。
首先是Rubisco酶限制階段。由公式25和公式9得Ac關(guān)于Ci的函數(shù)[19]:
(26)
求解公式26并取正解得:


(27)
其次是RuBP再生速率限制階段。由公式25和公式18得Aj關(guān)于Ci的函數(shù)[19]:
(28)
求解公式28并取正解得:



(29)
第三是TPU限制階段。由公式25和公式24得AP關(guān)于Ci的函數(shù)[20]:
(30)




b=3Tp-Rd+[Ci-1+3αΓ*]gm
c={3Ci-Γ*Tp-[Ci-1+3αΓ*]Rd}gm
(31)
公式27、公式29和公式31為加入gm參數(shù)后改進(jìn)的FvCB模型。
1.5 參數(shù)擬合
在模型擬合中,一般假定所有C3植物有相等的Rubisco酶動(dòng)力學(xué)常數(shù)(Kc和Ko),葉綠體內(nèi)O2濃度等于空氣O2濃度。由于FvCB模型本身存在超參數(shù)現(xiàn)象,一般把Γ*作為輸入常數(shù)[20]。根據(jù)公式27、公式29、公式31,FvCB模型擬合CO2響應(yīng)曲線可以獲得Vcmax、Jmax、Tp、a等階段特異性參數(shù)和gm、Rd等共同參數(shù),而擬合的關(guān)鍵點(diǎn)是3個(gè)子模型分界點(diǎn)Ci的確定。一般,把Rubisco酶活性限制階段到RuBP再生速率限制階段轉(zhuǎn)換點(diǎn)的Ci記為Ci_CJ;RuBP再生速率限制到TPU限制轉(zhuǎn)換點(diǎn)的Ci記為Ci_JP。根據(jù)分界點(diǎn)Ci確定方法的不同,可以把現(xiàn)有的擬合方案大致分為3類[17]。第1類方案認(rèn)為Ci_CJ在20—40Pa的范圍內(nèi)變化[21- 22],并且TPU限制階段在田間試驗(yàn)中很少出現(xiàn)。第2類方案利用CO2響應(yīng)曲線中的全部數(shù)據(jù)同時(shí)來擬合FvCB模型[23-24]。第3類方案認(rèn)為FvCB模型是變點(diǎn)模型,并采用特有的擬合方法進(jìn)行模型擬合[20]。第1類方案的擬合過程相對(duì)簡(jiǎn)單,但有很多潛在的問題。首先,共同參數(shù)的取值不好確定。對(duì)2個(gè)子模型分別進(jìn)行擬合,會(huì)獲得2組不相等的gm和Rd參數(shù),實(shí)踐中一般取平均值。其次,轉(zhuǎn)換點(diǎn)Ci_CJ的不確定性。大量研究表明Ci_CJ隨物種和環(huán)境條件的不同而不同[21,25],并且Ci_CJ的錯(cuò)誤會(huì)影響參數(shù)擬合的準(zhǔn)確性[21]。第2類方案雖然克服了人為確定Ci_CJ的缺點(diǎn),但其擬合獲得的最佳階段分配組合可能不符合Rubisco酶活性限制、RuBP再生速率限制和TPU限制的實(shí)際順序。第3類方案不僅克服3個(gè)階段人為劃分的缺點(diǎn),而且符合3個(gè)階段的實(shí)際順序,是較好的擬合方法,但是,其計(jì)算過程復(fù)雜,難以普遍使用。
1.6 參數(shù)的溫度相關(guān)性
根據(jù)FvCB模型的溫度相關(guān)性,不同溫度下Kc、Ko和Γ*等參數(shù)的取值不同。為此,一般把25℃下的Kc、Ko和Γ*等參數(shù)值作為標(biāo)準(zhǔn)(如表1),并根據(jù)參數(shù)的溫度相關(guān)性函數(shù)來計(jì)算某測(cè)量溫度下的參數(shù)值[26]。實(shí)踐中,一般用阿倫尼烏斯方程來建立參數(shù)與溫度間的函數(shù)關(guān)系:
PT=P(25℃)e{[T-25]E/[298R(273+T)]}
(32)
式中,T為測(cè)量溫度、P(T)為測(cè)量溫度T下的參數(shù)(Kc、Ko和Γ*)、P(25℃)為25℃下的參數(shù)、E為活化能、R為通用的氣體常數(shù)。

表1 25℃下的Kc、Ko、Γ*、E等參數(shù)[26]
經(jīng)過30多年的發(fā)展,FvCB模型已基本完善,并通過大量實(shí)驗(yàn)的驗(yàn)證。但在RuBP再生速率限制階段中,光合電子傳遞全為線性電子傳遞的假設(shè)及ATP需求的忽略[1]會(huì)影響FvCB模型及其參數(shù)估計(jì)的準(zhǔn)確性。由于gm的組分非常復(fù)雜,而FvCB模型把gm作為一個(gè)復(fù)合參數(shù)進(jìn)行估計(jì),這也會(huì)影響模型參數(shù)估計(jì)的準(zhǔn)確性。由于FvCB模型可以不進(jìn)行葉片離體實(shí)驗(yàn),而根據(jù)簡(jiǎn)單的氣體交換數(shù)據(jù)獲得葉片Vcmax、Jmax、Tp、gs、gm等光合生理生化信息[3],它在植物光合生理與環(huán)境因子相互關(guān)系的研究中有廣泛的應(yīng)用。接下來將對(duì)FvCB模型在葉片光合生理對(duì)環(huán)境因子響應(yīng)的應(yīng)用研究進(jìn)展進(jìn)行論述。
2 FvCB模型在葉片光合生理對(duì)環(huán)境因子響應(yīng)的應(yīng)用研究進(jìn)展
FvCB模型結(jié)合葉片Rubisco酶、細(xì)胞色素f(cyt f)和ATP合成酶等生理指標(biāo)可以揭示葉片活體光合系統(tǒng)對(duì)光照、CO2濃度、溫度、水分和N養(yǎng)分等環(huán)境因子變化的響應(yīng)機(jī)制,其中,Vcmax反映光合系統(tǒng)中Rubisco酶最大羧化能力、Jmax反映光合電子傳遞鏈的最大電子傳遞能力、Tp反映磷酸丙糖的合成能力、gs和gm反映CO2擴(kuò)散阻力對(duì)光合作用的限制。
2.1 光照
在不同環(huán)境光強(qiáng)下,葉片的形態(tài)和生化成分發(fā)生改變[27- 28],其光合機(jī)構(gòu)也會(huì)發(fā)生變化。大量研究表明陽(yáng)生葉片的細(xì)胞色素f(cyt f)、ATP合成酶、Rubisco酶等含量均大于陰生葉片[29-31],導(dǎo)致陽(yáng)生葉片Vcmax和Jmax參數(shù)均顯著大于陰生葉片[32-33],由此,陽(yáng)生葉片的光合能力顯著大于陰生葉片。Hanba等發(fā)現(xiàn)陽(yáng)生葉片的氣孔密度顯著大于陰生葉片[31],這可能導(dǎo)致陽(yáng)生葉片的gs顯著大于陰生葉片[32,34]。Piel等發(fā)現(xiàn)陽(yáng)生葉片gm有效路徑的長(zhǎng)度顯著小于陰生葉片[32]。另外,有研究表明槭樹和水青岡陽(yáng)生葉片中單位面積葉綠體暴露在胞間的面積(Sc)顯著大于陰生葉片[32,34]。這兩個(gè)因素可能導(dǎo)致陽(yáng)生葉片的gm顯著大于陰生葉片。
雖然瞬時(shí)光強(qiáng)對(duì)葉片Vcmax和Jmax參數(shù)沒有顯著影響,但對(duì)CO2擴(kuò)散阻力有顯著的影響。研究表明gs與瞬時(shí)光強(qiáng)呈正相關(guān)[35- 36]。有人認(rèn)為葉片光合系統(tǒng)與保衛(wèi)細(xì)胞之間可能存在信號(hào)傳遞[35- 36],使葉片可以通過改變氣孔的張開程度來平衡gs與光合速率的大小。有研究發(fā)現(xiàn)水稻[35]、桉樹[36]、煙草[22]和班克木[37]等葉片的gm隨測(cè)量光強(qiáng)增大而增加,但小麥和煙草葉片的gm在不同瞬時(shí)光強(qiáng)下保持穩(wěn)定不變[38-39]。Douthe等認(rèn)為不同物種光合特性的差異可能導(dǎo)致gm隨瞬時(shí)光強(qiáng)的響應(yīng)情況不同[36]。另外,水通道蛋白基因的表達(dá)速率隨光強(qiáng)的增加而加快[40- 41],而水通道蛋白的含量與CO2的跨膜轉(zhuǎn)運(yùn)過程直接相關(guān)[42- 43],所以,光強(qiáng)的瞬時(shí)變化可能通過調(diào)控水通道蛋白基因的表達(dá)來改變gm。
2.2CO2濃度
在長(zhǎng)期高CO2濃度下,植物葉片的結(jié)構(gòu)和成分會(huì)發(fā)生變化,從而影響其光合作用[44]。長(zhǎng)期高CO2濃度下生長(zhǎng)的植株葉片Rubisco酶含量及活性和葉片N含量均顯著小于正常CO2濃度下生長(zhǎng)的植株[45- 46]。而葉片N含量可以影響光合系統(tǒng)中Rubisco酶含量及活性、光捕獲組分、光合電子傳遞鏈組分的功能[47- 48],進(jìn)而影響葉片的光合能力,從而使得長(zhǎng)期高CO2濃度下生長(zhǎng)植株的葉片Vcmax[45]和Jmax[49- 50]等均顯著小于在正常CO2濃度下生長(zhǎng)的植株。長(zhǎng)期高CO2濃度下生長(zhǎng)的植株gs[44- 45]和gm[50]均小于在正常CO2濃度下生長(zhǎng)的植株。研究發(fā)現(xiàn)在長(zhǎng)期高CO2處理后,植株葉片的氣孔特性和表皮細(xì)胞密度發(fā)生改變[51- 52],這可能使得gs減小。Kürschner等發(fā)現(xiàn)長(zhǎng)期高CO2濃度下生長(zhǎng)的植株葉片厚度大于正常條件下生長(zhǎng)的植株[53],而葉片厚度的增大可能會(huì)增大gm的有效路徑,導(dǎo)致gm減小。
CO2濃度的短期變化不影響葉片的Vcmax和Jmax參數(shù),但對(duì)CO2擴(kuò)散阻力有顯著影響。Flexas等發(fā)現(xiàn)gs與CO2濃度的短期變化呈負(fù)相關(guān)關(guān)系[22],對(duì)此,一般有3種解釋:1)Hedrish等發(fā)現(xiàn)葉片質(zhì)外體中的pH值和膜電位[54]會(huì)隨CO2濃度的增加而發(fā)生改變,并伴隨著氣孔關(guān)閉,從而導(dǎo)致gs變小。2)CO2濃度的大小會(huì)影響葉肉細(xì)胞中蘋果酸的釋放,蘋果酸又可以調(diào)控保衛(wèi)細(xì)胞質(zhì)膜中陰離子的釋放代謝,從而調(diào)控氣孔行為[55]。3)CO2濃度變化還可能通過ATP調(diào)節(jié)機(jī)制[56]對(duì)gs進(jìn)行調(diào)控。大量研究表明gm與CO2濃度呈負(fù)相關(guān)關(guān)系[22,36,57],但也有部分研究表明gm與CO2濃度不相關(guān)[58- 59]。對(duì)此,一般有2種解釋:1)由于水通道蛋白基因的表達(dá)速率受CO2濃度變化的影響[60],gm對(duì)CO2濃度短期變化的快速響應(yīng)可能受水通道蛋白的調(diào)節(jié)。2)Sharkey發(fā)現(xiàn)葉綠體的變形可能會(huì)減小葉肉導(dǎo)度[61]。而且Tholen認(rèn)為葉綠體的移動(dòng)對(duì)gm有顯著的影響[62]。由此可知,葉綠體的行為可能與不同CO2濃度下gm的快速調(diào)控有關(guān)。
2.3 溫度
FvCB模型常用于研究溫度(不對(duì)植物產(chǎn)生損傷)對(duì)葉片光合系統(tǒng)內(nèi)在變化狀況的影響。有研究發(fā)現(xiàn)Rubisco酶羧化能力、光合電子傳遞能力和CO2擴(kuò)散過程均隨溫度的變化而改變。由于Rubisco酶及其激活酶活性均隨溫度的增加而增大(10—40℃),Kc、Ko、Vcmax會(huì)隨溫度的增加而增大[63- 64]。Bernacchi等用指數(shù)函數(shù)來描述Vcmax的溫度相關(guān)性[64]。光系統(tǒng)II(PSII)電子傳遞速率、光系統(tǒng)I(PSI)和光系統(tǒng)II(PSII)間的電子傳遞速率(質(zhì)體醌PQ和質(zhì)體藍(lán)素PC)[65- 66]和循環(huán)電子傳遞速率[63,67]均隨溫度的增加而增大,從而導(dǎo)致Jmax隨溫度的增加而增大[68]。溫度不僅影響葉片的光合能力,而且影響CO2的擴(kuò)散阻力。盡管gs與溫度變化不相關(guān)[69- 70],但gm會(huì)隨溫度的增加而增大[35,70]。Evans等認(rèn)為Sc、細(xì)胞壁厚度(Tcell_wall)、細(xì)胞液和葉綠體膜厚度等細(xì)胞結(jié)構(gòu)特點(diǎn)會(huì)影響gm[71],而von Caemmerer等發(fā)現(xiàn)CO2的質(zhì)膜滲透性和CO2擴(kuò)散的液相路徑長(zhǎng)度也受溫度的影響[70]。由此可以推測(cè)溫度可能通過改變?nèi)~肉細(xì)胞結(jié)構(gòu)來調(diào)控gm。另外,Kuwagata等發(fā)現(xiàn)水通道蛋白基因的表達(dá)速度會(huì)隨溫度的增加而增大[72],所以,溫度還可能通過控制水通道蛋白基因的表達(dá)速率來調(diào)控gm。
2.4 干旱或鹽脅迫
干旱和鹽脅迫可以直接導(dǎo)致植物缺水[73],進(jìn)而影響植物光合作用。有研究表明干旱或鹽脅迫盡管對(duì)Vcmax和Jmax參數(shù)沒有顯著影響[74- 75],但對(duì)CO2的擴(kuò)散阻力有顯著影響[76]。在干旱或鹽脅迫條件下,植株為減少蒸騰作用,葉片氣孔會(huì)關(guān)閉。另外,在鹽脅迫條件下,鹽離子會(huì)在葉片保衛(wèi)細(xì)胞內(nèi)積累進(jìn)而干擾氣孔功能[77- 78],導(dǎo)致氣孔關(guān)閉。因此,在干旱或鹽脅迫條件下植株葉片gs顯著小于在正常條件下生長(zhǎng)的植株[79- 80]。大量研究表明在干旱或鹽脅迫條件下生長(zhǎng)的植株葉片gm顯著小于在正常條件下生長(zhǎng)植株的葉片[74,79-80]。長(zhǎng)期干旱或鹽脅迫顯著減少了表皮細(xì)胞和葉肉細(xì)胞的斷面面積、寬度和半徑[81-82],從而使gm減小。另外,由于水通道蛋白基因的表達(dá)速率受干旱或鹽脅迫的影響[83],干旱或鹽脅迫可能通過控制水通道蛋白基因的表達(dá)來調(diào)控gm。
2.5 葉片N含量
由于葉肉細(xì)胞光合系統(tǒng)中的Rubisco酶、光捕獲組分(葉綠素和相關(guān)蛋白)和cty f等均含有大量的N元素[84],葉片N含量對(duì)光合作用有顯著影響。FvCB模型常用于研究葉片N含量對(duì)葉片光合系統(tǒng)內(nèi)在變化狀況的影響。大量研究表明葉片Rubisco酶含量與葉片N含量呈正相關(guān)[35,85],而葉片Rubisco酶含量及活性決定Vcmax的大小,從而使得葉片Rubisco酶的羧化能力與葉片N含量呈正相關(guān)[47- 48]。Nakano等發(fā)現(xiàn)葉綠素和Cyt f等含量均與葉片N含量呈正相關(guān)[47],從而使得Jmax與葉片N含量呈正相關(guān)[84,86]。葉片N含量不僅影響光合能力,還影響CO2的擴(kuò)散阻力。有研究表明葉片N含量與gs呈正相關(guān)[35]。雖然已知gs與氣孔特點(diǎn)(大小和密度)、氣孔張開程度有關(guān),但氣孔對(duì)葉片N含量變化的具體響應(yīng)機(jī)制還不清楚。大量研究表明葉片N含量與gm呈正相關(guān)[35,87]。大量研究表明Tcell_wall、單位葉面積葉肉細(xì)胞接觸胞間間隙的面積(Sm)、Sc等細(xì)胞結(jié)構(gòu)特點(diǎn)與gm直接相關(guān)[71,88]。Xiong等研究發(fā)現(xiàn)Sc會(huì)隨葉N含量的增加而增大[35]。Yong還發(fā)現(xiàn)葉綠體的尺寸與葉片N含量呈正相關(guān)[89]。由此可知,葉片N含量可能通過改變?nèi)~片結(jié)構(gòu)來調(diào)控gm。另外,由于葉片N含量的增加可以促進(jìn)水通道蛋白的基因表達(dá)[90],不同葉片N含量還可能通過控制水通道蛋白的表達(dá)來調(diào)控gm。
目前關(guān)于植物光合生理與環(huán)境因子的關(guān)系已有大量研究,但這些研究多停留在單因子水平,更沒有考慮相互作用的生物因素與環(huán)境因素協(xié)同作用對(duì)植物光合生理的影響。同時(shí),盡管人們已經(jīng)提出多種假設(shè)來解釋光合生理反應(yīng)隨環(huán)境因子變化的響應(yīng)機(jī)制,但尚缺乏直接的實(shí)驗(yàn)證據(jù)。因此,結(jié)合植物生理分子實(shí)驗(yàn)與FvCB模型進(jìn)行綜合分析是研究不同環(huán)境因子下植物光合生理響應(yīng)機(jī)制的有效途徑。
3 研究展望
FvCB模型光合參數(shù)的準(zhǔn)確估計(jì)不僅有利于正確理解植物光合生理對(duì)環(huán)境變化的響應(yīng)機(jī)理,而且可以更精確地估計(jì)作物產(chǎn)量和全球氣候變暖情況[91]。光合電子傳遞、碳反應(yīng)ATP需求和葉肉細(xì)胞內(nèi)CO2的具體擴(kuò)散路徑等方面的假設(shè)影響FvCB模型理論及參數(shù)估計(jì)的準(zhǔn)確性,從而制約相關(guān)領(lǐng)域的研究。此外,盡管科學(xué)家已經(jīng)開展了大量植物光合作用對(duì)環(huán)境條件變化響應(yīng)等方面的研究,但是,在光合作用對(duì)環(huán)境因子變化的響應(yīng)機(jī)制的研究中仍然存在很多問題。為此,未來需加強(qiáng)以下幾個(gè)方面的研究。
1)羧化速率與光合電子傳遞速率間的聯(lián)系
羧化速率與光合電子傳遞速率間的聯(lián)系直接影響到RuBP再生速率限制階段的子模型,進(jìn)而影響Jmax、Vcmax、Tp、Rd、gm等參數(shù)估計(jì)的準(zhǔn)確性。在RuBP再生速率限制階段,Farquhar等忽略了假電子傳遞、循環(huán)電子傳遞以及碳反應(yīng)的ATP需求,并根據(jù)碳反應(yīng)的NADPH消耗速率與J相等來獲得RuBP再生速率限制階段的子模型[1]。盡管人們已經(jīng)開展J和NADPH/ATP生成速率等相關(guān)的研究[92],但J與ATP生成速率之間的關(guān)系比較復(fù)雜,目前仍未研究清楚[2]。因此,未來應(yīng)該加強(qiáng)光合電子傳遞、NADPH/ATP代謝化學(xué)計(jì)量學(xué)等方面研究,以正確地建立Vc與J間的聯(lián)系。
2)葉肉細(xì)胞內(nèi)CO2的擴(kuò)散阻力
Sun等發(fā)現(xiàn)gm對(duì)Vcmax、Jmax、Tp等的參數(shù)估計(jì)有很大的影響[93]。目前,人們認(rèn)為細(xì)胞壁、細(xì)胞膜、細(xì)胞質(zhì)、葉綠體膜和葉綠體基質(zhì)均對(duì)CO2的擴(kuò)散有限制作用。并且,線粒體呼吸作用和光呼吸釋放的CO2有一部分會(huì)被光合作用重新固定。這部分CO2需通過線粒體膜、細(xì)胞質(zhì)、葉綠體膜和葉綠體基質(zhì)最終到達(dá)Rubisco酶羧化位點(diǎn)[94],這使得CO2的擴(kuò)散路徑變得非常復(fù)雜。目前,有研究已經(jīng)把gm區(qū)分為細(xì)胞壁阻力和葉綠體膜阻力[12,95],但gm各組分的估計(jì)還有待進(jìn)一步的研究。因此,未來可以結(jié)合細(xì)胞顯微結(jié)構(gòu)觀察、葉肉細(xì)胞內(nèi)CO2擴(kuò)散同位素跟蹤技術(shù)和FvCB模型對(duì)gm各組分的參數(shù)估計(jì)進(jìn)行研究。
3)gs和gm對(duì)環(huán)境因子變化的具體調(diào)控機(jī)制
大量研究表明gs[34,36,70,79]和gm[31,35,36,39]隨環(huán)境因子的變化而改變。盡管人們已經(jīng)提出多種與氣孔相關(guān)的調(diào)控機(jī)制,但其具體調(diào)控機(jī)制還不清楚,未來的研究可結(jié)合氣孔調(diào)控相關(guān)生理指標(biāo)測(cè)量、光合機(jī)構(gòu)信號(hào)傳導(dǎo)和FvCB模型等3方面的實(shí)驗(yàn)對(duì)氣孔的調(diào)控機(jī)制進(jìn)行深入研究。目前,人們已經(jīng)提出細(xì)胞結(jié)構(gòu)特點(diǎn)、水通道蛋白和葉綠體行為等幾種假說來解釋gm的調(diào)控機(jī)制,但缺乏直接的實(shí)驗(yàn)證據(jù)。因此,未來的研究要重點(diǎn)研究不同環(huán)境條件下葉片細(xì)胞結(jié)構(gòu)、水通道蛋白代謝和葉綠體行為的改變情況,并結(jié)合FvCB模型來研究gm的調(diào)控機(jī)制。而gm的相關(guān)研究需多領(lǐng)域的科學(xué)家共同參與
[1] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta, 1980, 149(1): 78- 90.
[2] von Caemmerer S. Steady-state models of photosynthesis. Plant, Cell and Environment, 2013, 36(9): 1617- 1630.
[3] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, 54(392): 2393- 2401.
[4] Zhu X G, Portis A R Jr, Long S P. Would transformation of C3crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell and Environment, 2004, 27(2): 155- 165.
[5] Sellers P J, Randall D A, Collatz G J, Berry J A, Field C B, Dazlich D A, Zhang C, Collelo G D, Bounoua L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. Journal of Climate, 1996, 9(4): 676- 705.
[6] Collatz G J, Ribas-Carbo M, Berry J A. Coupled photosynthesis-stomatal conductance model for leaves of C4plants. Australian Journal of Plant Physiology, 1992, 19(5): 519- 538.
[7] von Caemmerer S, Furbank R T. The modeling of C4photosynthesis//Sage R, Monson R, eds. The Biology of C4Photosynthesis. New York: Academic Press, 1999: 169- 207.
[8] 黃紅英, 竇新永, 孫蓓育, 鄧斌, 吳國(guó)江, 彭長(zhǎng)連. 兩種不同生態(tài)型麻瘋樹夏季光合特性的比較. 生態(tài)學(xué)報(bào), 2009, 29(6): 2861- 2867.
[9] 王海珍, 韓路, 徐雅麗, 牛建龍. 胡楊異形葉光合作用對(duì)光強(qiáng)與CO2濃度的響應(yīng). 植物生態(tài)學(xué)報(bào), 2014, 38(10): 1099- 1109.
[10] 高志奎, 高榮孚, 何俊萍, 王梅, 鐘傳飛. 溫室茄子(SolanummelongenaL.)光合數(shù)學(xué)模型與光合生化模型模擬分析. 生態(tài)學(xué)報(bào), 2007, 27(6): 2265- 2271.
[11] Sharkey T D. Photosynthesis in intact leaves of C3plants: physics, physiology and rate limitations. The Botanical Review, 1985, 51(1): 53- 105.
[12] Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell and Environment, 2008, 31(5): 602- 621.
[13] Laing W A, Ogren W L, Hageman R H. Regulation of soybean net photosynthetic CO2fixation by the interaction of CO2, O2, and ribulose- 1,5-diphosphate carboxylase. Plant Physiology, 1974, 54(5): 678- 685.
[14] Farquhar G D, von Caemmerer S. Modelling of photosynthetic response to environmental conditions//Lange O L, Nobel P S, Osmond C B, Ziegler H, eds. Physiological Plant Ecology II. Berlin Heidelberg: Springer, 1982: 549- 587.
[15] Keys A J, Bird I F, Cornelius M J, Lea P J, Wallsgrove R M, Miflin B J. Photorespiratory nitrogen cycle. Nature, 1978, 275(5682): 741- 743.
[16] Farquhar G D, Wong S C. An empirical model of stomatal conductance. Australian Journal of Plant Physiology, 1984, 11(3): 191- 210.
[17] Sharkey T D, Vassey T L. Low oxygen inhibition of photosynthesis is caused by inhibition of starch synthesis. Plant Physiology, 1989, 90(2): 385- 387.
[18] Harley P C, Sharkey T D. An improved model of C3photosynthesis at high CO2: reversed O2sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 1991, 27(3): 169- 178.
[19] Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell and Environment, 2004, 27(2): 137- 153.
[20] Gu L H, Pallardy S G, Tu K, Law B E, Wullschleger S D. Reliable estimation of biochemical parameters from C3leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell and Environment, 2010, 33(11): 1852- 1874.
[21] Manter D K, Kerrigan J.A/Cicurve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. Journal of Experimental Botany, 2004, 55(408): 2581- 2588.
[22] Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant, Cell and Environment, 2007, 30(10): 1284- 1298.
[23] Dubois J J B, Fiscus E L, Booker F L, Flowers M D, Reid C D. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist, 2007, 176(2): 402- 414.
[24] Yin X Y, Struik P C, Romero P, Harbinson J, Evers J B, van der Putten P E L, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticumaestivum) canopy. Plant, Cell and Environment, 2009, 32(5): 448- 464.
[25] Wullschleger S D. Biochemical limitations to carbon assimilation in C3plants---a retrospective analysis of theA/Cicurves from 109 species. Journal of Experimental Botany, 1993, 44(5): 907- 920.
[26] von Caemmerer S. Biochemical Models of Leaf Photosynthesis. Collingwood: CSIRO Publishing, 2000: 44- 45.
[27] Niinemets ü, Kull O, Tenhunen J D. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 1998, 18(10): 681- 696.
[28] Terashima I, Araya T, Miyazawa S I, Sone K, Yano S. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 2005, 95(3): 507- 519.
[29] Hikosaka K, Terashima I, Katoh S. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (IpomoeatricolorCav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 1994, 97(4): 451- 457.
[30] Makino A, Sato T, Nakano H, Mae T. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta, 1997, 203(3): 390- 398.
[31] Hanba Y T, Kogami H, Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis inAcerspecies differing in light demand. Plant, Cell and Environment, 2002, 25(8): 1021- 1030.
[32] Piel C, Frak E, Le Roux X, Genty B. Effect of local irradiance on CO2transfer conductance of mesophyll in walnut. Journal of Experimental Botany, 2002, 53(379): 2423- 2430.
[33] Schultz H R. Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (VitisviniferaL. cvv. White Riesling and Zinfandel). Functional Plant Biology, 2003, 30(6): 673- 687.
[34] Warren C R, L?w M, Matyssek R, Tausz M. Internal conductance to CO2transfer of adultFagussylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environmental and Experimental Botany, 2007, 59(2): 130- 138.
[35] Xiong D L, Liu X, Liu L M, Douthe C, Li Y, Peng S B, Huang J L. Rapid responses of mesophyll conductance to changes of CO2concentration, temperature and irradiance are affected by N supplements in rice. Plant, Cell and Environment, 2015, 38(12): 2541- 2550.
[36] Douthe C, Dreyer E, Epron D, Warren C R. Mesophyll conductance to CO2, assessed from online TDL-AS records of13CO2discrimination, displays small but significant short-term responses to CO2and irradiance inEucalyptusseedlings. Journal of Experimental Botany, 2011, 62(15): 5335- 5346.
[37] Hassiotou F, Ludwig M, Renton M, Veneklaas E J, Evans J R. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany, 2009, 60(8): 2303- 2314.
[38] Tazoe Y, von Caemmerer S, Badger M R, Evans J R. Light and CO2do not affect the mesophyll conductance to CO2diffusion in wheat leaves. Journal of Experimental Botany, 2009, 60(8): 2291- 2301.
[39] Yamori W, Evans J R, von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO2assimilation rate in tobacco leaves. Plant, Cell and Environment, 2010, 33(3): 332- 343.
[40] Cochard H, Venisse J S, Barigah T S, Brunel N, Herbette S, Guilliot A, Tyree M T, Sakr S. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology, 2007, 143(1): 122- 133.
[41] Voicu M C, Cooke J E K, Zwiazek J J. Aquaporin gene expression and apoplastic water flow in bur oak (Quercusmacrocarpa) leaves in relation to the light response of leaf hydraulic conductance. Journal of Experimental Botany, 2009, 60(14): 4063- 4075.
[42] Terashima I, Ono K. Effects of HgCl2on CO2dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2diffusion across the plasma membrane. Plant and Cell Physiology, 2002, 43(1): 70- 78.
[43] Flexas J, Ribas-Carbó M, Hanson D T, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2invivo. The Plant Journal, 2006, 48(3): 427- 439.
[44] Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. The New Phytologist, 2005, 165(2): 351- 371.
[45] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment, 2006, 15(3): 271- 282.
[46] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 1999, 22(6): 583- 621.
[47] Nakano H, Makino A, Mae T. The effect of elevated partial pressures of CO2on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 1997, 115(1): 191- 198.
[48] Makino A, Nakano H, Mae T. Responses of ribulose- 1,5-bisphosphate carboxylase, cytochromef, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiology, 1994, 105(1): 173- 179.
[49] Curtis P S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment, 1996, 19(2): 127- 137.
[50] Singsaas E L, Ort D R, Delucia E H. Elevated CO2effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant, Cell and Environment, 2004, 27(1): 41- 50.
[51] Ferris R, Nijs I, Behaeghe T, Impens I. Elevated CO2and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Annals of Botany, 1996, 78(4): 489- 497.
[52] Masle J. The effects of elevated CO2concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiology, 2000, 122(4): 1399- 1415.
[53] Kürschner W M, Stulen I, Wagner F, Kuiper P J C. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak [Quercuspetraea(Fagaceae)] in response to environmental change. Annals of Botany, 1998, 81(5): 657- 664.
[54] Hedrich R, Neimanis S, Savchenko G, Felle H H, Kaiser W M, Heber U. Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. Planta, 2001, 213(4): 594- 601.
[55] Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt H W. Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2concentration. The Plant Journal, 1994, 6(5): 741- 748.
[56] Buckley T N, Mott K A, Farquhar G D. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment, 2003, 26(10): 1767- 1785.
[57] Flexas J, Barbour M M, Brendel O, Cabrera H M, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio J P, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets ü, Peguero-Pina J J, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren C R. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 2012, 193- 194: 70- 84.
[58] von Caemmerer S, Evans J R. Determination of the average partial pressure of CO2in chloroplasts from leaves of several C3plants. Australian Journal of Plant Physiology, 1991, 18(3): 287- 305.
[59] Loreto F, Harley P C, Di Marco G, Sharkey T D. Estimation of mesophyll conductance to CO2flux by three different methods. Plant Physiology, 1992, 98(4): 1437- 1443.
[60] Alguacil M D M, Kohler J, Caravaca F, Roldán A. Differential effects ofPseudomonasmendocinaandGlomusintraradiceson lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2and drought. Microbial Ecology, 2009, 58(4): 942- 951.
[61] Sharkey T D, Vassey T L, Vanderveer P J, Vierstra R D. Carbon metabolism enzymes and photosynthesis in transgenic tobacco (NicotianatabacumL.) having excess phytochrome. Planta, 1991, 185(3): 287- 296.
[62] Tholen D, Boom C, Noguchi K O, Ueda S, Katase T, Terashima I. The chloroplast avoidance response decreases internal conductance to CO2diffusion inArabidopsisthalianaleaves. Plant, Cell and Environment, 2008, 31(11): 1688- 1700.
[63] Sage R F, Kubien D S. The temperature response of C3and C4photosynthesis. Plant, Cell and Environment, 2007, 30(9): 1086- 1106.
[64] Bernacchi C J, Singsaas E L, Pimentel C, Portis A R Jr, Long S P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 2001, 24(2): 253- 259.
[65] Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiology, 2002, 128(3): 1087- 1097.
[66] Yamori W, Noguchi K, Kashino Y, Terashima I. The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. Plant and Cell Physiology, 2008, 49(4): 583- 591.
[67] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermo tolerance provided by isoprene. Plant, Cell and Environment, 2005, 28(3): 269- 277.
[68] Bernacchi C J, Pimentel C, Long S P.Invivotemperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment, 2003, 26(9): 1419- 1430.
[69] Warren C R, Dreyer E. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. Journal of Experimental Botany, 2006, 57(12): 3057- 3067.
[70] von Caemmerer S, Evans J R. Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell and Environment, 2014, 38(4): 629- 637.
[71] Evans J R, Kaldenhoff R, Genty B, Terashima I. Resistances along the CO2diffusion pathway inside leaves. Journal of Experimental Botany, 2009, 60(8): 2235- 2248.
[72] Kuwagata T, Ishikawa-Sakurai J, Hayashi H, Nagasuga K, Fukushi K, Ahamed A, Takasugi K, Katsuhara M, Murai-Hatano M. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. Plant and Cell Physiology, 2012, 53(8): 1418- 1431.
[73] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30(3): 239- 264.
[74] Flexas J, Barón M, Bota J, Ducruet J M, GalléA, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H. Photosynthesis limitations during water stress acclimation and recovery in the drought-adaptedVitishybrid Richter- 110 (V.berlandieri×V.rupestris). Journal of Experimental Botany, 2009, 60(8): 2361- 2377.
[75] James R A, von Caemmerer S, Condon A G, Zwart A B, Munns R. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology, 2008, 35(2): 111- 123.
[76] Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3Plants. Plant Biology, 2004, 6(3): 269- 279.
[77] Gibberd M R, Turner N C, Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (DaucuscarotaL.). Annals of Botany, 2002, 90(6): 715- 724.
[78] James R A, Rivelli A R, Munns R, von Caemmerer S. Factors affecting CO2assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 2002, 29(12): 1393- 1403.
[79] Perez-Martin A, Michelazzo C, Torres-Ruiz J M, Flexas J, Fernández J E, Sebastiani L, Diaz-Espejo A. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 2014, 65(12): 3143- 3156.
[80] Chen T W, Kahlen K, Stützel H. Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. Plant, Cell and Environment, 2015, 38(8): 1528- 1542.
[81] Hu Y C, Fromm J, Schmidhalter U. Effect of salinity on tissue architecture in expanding wheat leaves. Planta, 2005, 220(6): 838- 848.
[82] Tosens T, Niinemets ü, Vislap V, Eichelmann H, Díez P C. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities inPopulustremula: how structure constrains function. Plant, Cell and Environment, 2012, 35(5): 839- 856.
[83] Kawase M, Hanba Y T, Katsuhara M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. Journal of Plant Research, 2013, 126(4): 517- 527.
[84] Walcroft A S, Whitehead D, Silvester W B, Kelliher F M. The response of photosynthetic model parameters to temperature and nitrogen concentration inPinusradiataD. Don. Plant, Cell and Environment, 1997, 20(11): 1338- 1348.
[85] Yamori W, Nagai T, Makino A. The rate-limiting step for CO2assimilation at different temperatures is influenced by the leaf nitrogen content in several C3crop species. Plant, Cell and Environment, 2011, 34(5): 764- 777.
[86] Sage R F, Sharkey T D, Pearcy R W. The effect of leaf nitrogen and temperature on the CO2response of photosynthesis in the C3dicot MChenopodiumalbumL. Australian Journal of Plant Physiology, 1990, 17(2): 135- 148.
[87] Warren C R. The photosynthetic limitation posed by internal conductance to CO2movement is increased by nutrient supply. Journal of Experimental Botany, 2004, 55(406): 2313- 2321.
[88] Muir C D, Hangarter R P, Moyle L C, Davis P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanumsect.Lycopersicon, sect.Lycopersicoides; Solanaceae). Plant, Cell and Environment, 2014, 37(6): 1415- 1426.
[89] Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. Light-saturated photosynthetic rate in high-nitrogen rice (OryzasativaL.) leaves is related to chloroplastic CO2concentration. Journal of Experimental Botany, 2009, 60(8): 2351- 2360.
[90] Guo S W, Kaldenhoff R, Uehlein N, Sattelmacher B, Brueck H. Relationship between water and nitrogen uptake in nitrate- and ammonium-suppliedPhaseolusvulgarisL. plants. Journal of Plant Nutrition and Soil Science, 2007, 170(1): 73- 80.
[91] Sun Y, Gu L H, Dickinson R E, Norby R J, Pallardy S G, Hoffman F M. Impact of mesophyll diffusion on estimated global land CO2fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15774- 15779.
[92] Yin X, van Oijen M, Schapendonk A H C M. Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3photosynthesis. Plant, Cell and Environment, 2004, 27(10): 1211- 1222.
[93] Sun Y, Gu L H, Dickinson R E, Pallardy S G, Baker J, Cao Y H, Damatta F M, Dong X J, Ellsworth D, Van Goethem D, Jensen A M, Law B E, Loos R, Vitor Martins S C, Norby R J, Warren J, Weston D, Winter K. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell and Environment, 2014, 37(4): 978- 994.
[94] Tholen D, éthier G, Genty B. Mesophyll conductance with a twist. Plant, Cell and Environment, 2014, 37(11): 2456- 2458.
[95] Tholen D, Ethier G, Genty B, Pepin S, Zhu X G. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant, Cell and Environment, 2012, 35(12): 2087- 2103.
Advancesinphoto-physiologicalresponsesofleavestoenvironmentalfactorsbasedontheFvCBmodel
TANG Xinglin1,2, CAO Yonghui1,2, GU Lianhong3, ZHOU Benzhi1,2,*
1ResearchInstituteofSubtropicalForestry,ChineseAcademyofForestry,Hangzhou311400,China2QianjiangyuanForestEcosystemResearchStation,StateForestryAdministration,Hangzhou311400,China3EnvironmentalSciencesDivision,OakRidgeNationalLaboratory,OakRidge,TN37831,USA
Biochemical models of leaf photosynthesis are invaluable tools for exploring the photo-physiological responses to environmental factors and identify potential targets to improve the efficiency of CO2fixation. The FvCB model can be used to fit CO2response curves developed under different environmental conditions and predict underlying photosynthetic biochemistry. However, to do this successfully it is important to improve chloroplast electron transport modeling, and gain a better understanding of internal CO2diffusion limitations and elucidate the mechanisms of stomatal (gs) and mesophyll (gm) conductance responses to environmental factors. The FvCB model and its application in determining the photo-physiological responses to environmental factors, such as light, CO2, water, temperature, and N nutrition have been reviewed in this paper. To improve the veracity of the parameter estimations and reveal the mechanism of photo-physiological responses to environmental factors, the following studies should be emphasized in the future: 1) the relationship between the carboxylation rate of Rubisco and chloroplast electron transport rate; 2) the CO2diffusion limitations in mesophyll cells and its effect on parameter estimations; and 3) the regulation ofgsandgmresponses to different environmental conditions.
C3plants; photosynthesis; FvCB model; photosynthetic physiology; environmental factors
國(guó)家林業(yè)局948項(xiàng)目(2014- 4- 57);浙江省自然科學(xué)基金項(xiàng)目(LY13C160002);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(RISF2013002)資助
2016- 07- 16; < class="emphasis_bold">網(wǎng)絡(luò)出版日期
日期:2017- 05- 27
*通訊作者Corresponding author.E-mail: benzhi_zhou@126.com
10.5846/stxb201607161450
唐星林,曹永慧,顧連宏,周本智.基于FvCB模型的葉片光合生理對(duì)環(huán)境因子的響應(yīng)研究進(jìn)展.生態(tài)學(xué)報(bào),2017,37(19):6633- 6645.
Tang X L, Cao Y H, Gu L H, Zhou B Z.Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model.Acta Ecologica Sinica,2017,37(19):6633- 6645.