• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基因組編輯脫靶研究進(jìn)展

      2017-11-21 00:48:25何秀斌谷峰
      生物工程學(xué)報 2017年10期
      關(guān)鍵詞:核酸酶鋅指基因組

      何秀斌,谷峰

      ?

      基因組編輯脫靶研究進(jìn)展

      何秀斌,谷峰

      溫州醫(yī)科大學(xué)眼視光學(xué)院眼視光學(xué)和視覺科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,浙江溫州 325000

      何秀斌, 谷峰. 基因組編輯脫靶研究進(jìn)展. 生物工程學(xué)報, 2017, 33(10): 1757–1775.He XB, Gu F. Genome-editing: focus on the off-target effects. Chin J Biotech, 2017, 33(10): 1757–1775.

      近年各種基因組編輯技術(shù)的成功研發(fā)為人類疾病的治療與預(yù)防譜寫了新的篇章,這些技術(shù)對應(yīng)的基因組編輯工具主要包括鋅指核酸酶 (ZFNs)、轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶 (TALENs) 和最近發(fā)現(xiàn)的規(guī)律成簇間隔短回文重復(fù)(CRISPR)/Cas系統(tǒng)。這些工具相應(yīng)的脫靶問題目前是制約基因組編輯技術(shù)介導(dǎo)人類疾病治療的重要瓶頸。本文將分別從基因組編輯工具的介紹、脫靶的現(xiàn)狀、解決優(yōu)化的方案和檢測方法進(jìn)行總結(jié)與探討,通過比較,進(jìn)一步了解基因組編輯工具的優(yōu)缺點(diǎn)及相關(guān)脫靶檢測方法的適用性。

      基因組編輯,脫靶,鋅指核酸酶 (ZFNs),轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶 (TALENs),規(guī)律成簇間隔短回文重復(fù) (CRISPRs)

      隨著人類基因組計(jì)劃的實(shí)施,人類對嚴(yán)重危害健康的疾病有了更加全面和深入的認(rèn)識?;蛑委?(Gene therapy) 這一概念自問世以來,正在逐漸改變?nèi)祟惣膊〉闹委煼绞??;蛑委熡绕錇閱位蜻z傳病的患者帶來了福音[1]。傳統(tǒng)的基因治療是利用野生型基因去補(bǔ)償突變基因的功能,但是仍然存在轉(zhuǎn)基因沉默和隨機(jī)插入等問題。基因組編輯工具的成功研發(fā)為基因的原位修復(fù)提供了可能?;蚪M編輯工具包括鋅指核酸酶 (Zinc-finger nucleases,ZFNs)、轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶 (Transcription activator-like effector nucleases,TALENs) 和最新發(fā)現(xiàn)的規(guī)律成簇間隔短回文重復(fù)和Cas蛋白的DNA核酸內(nèi)切酶系統(tǒng)(Clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas- based RNA-guided DNA endonucleases)。然而,這3種工具酶在識別并切割靶位點(diǎn)的同時,也對與靶位點(diǎn)相似的DNA序列同樣進(jìn)行切割,即脫靶 (Off-targets)。脫靶可能破壞細(xì)胞內(nèi)的重要基因,從而導(dǎo)致其他疾病,脫靶問題是基因組編輯工具在臨床應(yīng)用受限的重要瓶頸之一[2]。本文將對這3種基因組編輯工具的脫靶現(xiàn)狀、解決脫靶的方案、相關(guān)的脫靶檢測方法等問題進(jìn)行總結(jié),以期更好地解決該重大科學(xué)問題。

      1 基因組編輯工具的脫靶現(xiàn)狀及解決方案

      1.1 鋅指核酸酶 (ZFNs)

      鋅指核酸酶 (ZFNs) 為第一代應(yīng)用于基因組編輯的核酸酶,它由結(jié)合DNA的鋅指蛋白結(jié)構(gòu)域和非特異性的核酸內(nèi)切酶Ⅰ結(jié)構(gòu)域融合而成,其中Ⅰ源于海床黃桿菌,是一種人工設(shè)計(jì)的DNA限制性內(nèi)切酶[3]。目前已成功在擬南芥、煙草、秀麗隱桿線蟲、黑腹果蠅、斑馬魚、非洲爪蟾、大鼠、小鼠和人類細(xì)胞 (包括體細(xì)胞、胚胎干細(xì)胞、誘導(dǎo)性多能干細(xì)胞) 等中進(jìn)行基因組編輯[4]。通過在靶序列兩側(cè)設(shè)計(jì)特定的鋅指蛋白識別和結(jié)合DNA,引導(dǎo)Ⅰ二聚體在兩結(jié)合位點(diǎn)之間進(jìn)行剪切產(chǎn)生雙鏈斷裂 (Double-strand breaks,DSBs) 來實(shí)現(xiàn)同源重組修復(fù) (Homology-directed recombination,HDR) 或非同源末端連接 (Non-homologous end joining,NHEJ),從而實(shí)現(xiàn)基因組特定位點(diǎn)的編輯[6]。鋅指核酸酶編輯的靶向性與鋅指蛋白的DNA識別特異性、靶位點(diǎn)序列和鋅指核酸酶的轉(zhuǎn)運(yùn)方式等有關(guān),但大部分取決于負(fù)責(zé)識別和結(jié)合DNA的鋅指蛋白[4,6]。一般每個鋅指模塊識別3?4個堿基 (Base pair,bp),而其識別DNA長度的限制性降低了鋅指核酸酶靶向編輯的特異性 (圖1),通常需要通過設(shè)計(jì)多個模塊來提高識別的特異性[7],但仍然存在脫靶問題,在Marina Bibikova等對果蠅的基因編輯時首次被發(fā)現(xiàn)[5],隨后又在編輯斑馬魚和基因、人和基因中被檢測到[8-10]。

      針對影響鋅指核酸酶脫靶的相關(guān)因素,研究者們采取了多種策略和方法來提高其特異性。在靶序列設(shè)計(jì)方面,可以運(yùn)用在線的生物信息設(shè)計(jì)工具PROGNOS (Predicted report of genome-wide nuclease off-target sites),通過預(yù)測的脫靶情況來選擇最佳的靶序列以最大限度減少脫靶[11-12](表1)。在鋅指蛋白設(shè)計(jì)方面,鋅指模塊設(shè)計(jì)的個數(shù)越多,識別的序列就越長,相應(yīng)序列在基因組中的唯一性也越強(qiáng);另外有研究者通過設(shè)計(jì)異源的鋅指蛋白二聚體來降低脫靶的發(fā)生率,相較于同源鋅指蛋白二聚體,異源二聚體的相互作用會減弱,而與靶DNA位點(diǎn)的結(jié)合能力就相對增強(qiáng),且只有當(dāng)形成異源二聚體時才能發(fā)揮作用,減少了脫靶的可能性[13-14]。對于負(fù)責(zé)切割的非特異性Ⅰ內(nèi)切酶,也有研究者對其進(jìn)行改造,使其只切割一條鏈,在增加HDR效率的同時降低了脫靶效應(yīng)[15]。在鋅指核酸酶的轉(zhuǎn)運(yùn)方式方面,Gaj等直接將鋅指核酸酶以蛋白的形式轉(zhuǎn)入細(xì)胞,顯示高效的編輯效率和較小的脫靶率[16]。

      圖1 ZFNs的脫靶示意圖

      1.2 轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶 (TALENs)

      轉(zhuǎn)錄激活子樣效應(yīng)因子核酸酶 (TALENs) 的結(jié)構(gòu)域組成和作用模式與鋅指核酸酶相似,通過轉(zhuǎn)錄激活子樣效應(yīng)因子 (TALEs) 識別和結(jié)合DNA,引導(dǎo)Ⅰ在靶位點(diǎn)產(chǎn)生DSB,同樣通過HDR或NHEJ方式完成基因組編輯。TALEs最早在植物致病菌黃單胞桿菌中發(fā)現(xiàn),包含易位結(jié)構(gòu)域、DNA結(jié)合結(jié)構(gòu)域、核定位信號 (Nuclear localization signals,NLS) 和轉(zhuǎn)錄激活結(jié)構(gòu)域 (Transcriptional activate domain),其中DNA結(jié)合結(jié)構(gòu)域是決定TALENs特異性的重要部分,它由1.5?33.5個串聯(lián)重復(fù)序列 (Tandem repeats,TRs) 組成,每個重復(fù)包含33?35個氨基酸,而12和13位的氨基酸是可變的,能夠識別特定的堿基序列,因此這兩個氨基酸被稱為重復(fù)變異雙殘基 (Repeat variablediresidues,RVDs)[17]。TALENs目前已成功編輯了酵母、果蠅、水稻、人類體細(xì)胞和胚胎干細(xì)胞等微生物、植物和動物細(xì)胞中的內(nèi)源性基因[18],并且成功用于制造疾病細(xì)胞模型和動物模型[19-20]。相較于ZFNs,TALENs編輯效率與之相當(dāng),但是脫靶率較低[21],很大部分原因在于其每個串聯(lián)重復(fù)序列只識別一個堿基[22-23](圖2),而ZFNs的一個鋅指模塊識別3?4個堿基,在精確度上,TALENs更勝一籌。

      盡管脫靶率較低,但是若應(yīng)用于臨床疾病的基因治療,理論上需做到無脫靶,以期減少對人體的毒性作用。因此為了進(jìn)一步提高TALENs編輯基因的特異性,研究者們也提出了相應(yīng)的解決策略。第一,運(yùn)用生物信息學(xué)專業(yè)在線工具設(shè)計(jì)和選擇脫靶率低的靶序列,如CHOPCHOP、PROGNOS和TALE-NT 2.0[11,24-26](表1)。第二,TALENs的重復(fù)長度會影響特異性,偏短的TALENs對每個堿基識別的特異性更高,偏長的TALENs對整個靶序列識別的特異性更高,這與結(jié)合DNA所需要的能量有關(guān),較短的TALENs結(jié)合DNA所需的能量較少,對應(yīng)識別每個堿基所分布到的能量就多,特異性也就越強(qiáng),反之則越低;此外TALENs的作用濃度過高使靶位點(diǎn)飽和,使之傾向于結(jié)合脫靶位點(diǎn),也會降低特異性,因此設(shè)計(jì)合適的長度、采用合適的濃度是降低脫靶率的關(guān)鍵[27]。第三,通過獲得TALEs的變體篩選高特異性的TALE,結(jié)果顯示,改變C端的結(jié)構(gòu)域 (K788Q、R792Q和R801Q) 可減少陽離子電荷量,能提高特異性至野生型的10倍[27];縮短C端殘基的數(shù)目,可顯著地降低脫靶率[28-30];改變N端的結(jié)構(gòu)域,使之傾向特異識別胸腺嘧啶 (Thymine)[31-32]。第四,將TALE與其他特異性核酸內(nèi)切酶如Ⅰ-Ⅰ和Ⅰ-Ⅰ嵌合,可提高識別的特 異性[33]。

      圖2 TALENs的脫靶示意圖

      1.3 規(guī)律成簇間隔短回文重復(fù)(CRISPR)/Cas核酸酶

      CRISPR/Cas系統(tǒng)為細(xì)菌和古細(xì)菌中的免疫防御系統(tǒng),目前最常用于基因組編輯的為CRISPR/Cas9和CRISPR/Cpf1系統(tǒng),分別屬于CRISPR 2類系統(tǒng)中的Ⅱ型和Ⅴ型[[34]。CRISPR/ Cas9系統(tǒng)(圖3) 由Cas9蛋白 (包含HNH和RuvC兩個結(jié)構(gòu)域)、crRNA和tracrRNA組成,經(jīng)改造,crRNA和tracrRNA可設(shè)計(jì)為單個向?qū)NA (Single guide RNA,sgRNA) 引導(dǎo)Cas9蛋白靶向切割DNA產(chǎn)生DSB,并由HDR或NHEJ方式介導(dǎo)修復(fù),識別靶位點(diǎn)主要由互補(bǔ)的sgRNA和3′端的PAM (Protospacer adjacent motif) 序列決定,不同來源的CRISPR系統(tǒng)的PAM序列不盡相同[35]。最先用于哺乳動物細(xì)胞編輯的是來源于化膿性鏈球菌的CRISPR/SpCas9系統(tǒng),研究者采用20 nt (Nucleotide) 的sgRNA靶向帶有NGG的PAM序列,成功對內(nèi)源性基因進(jìn)行了編輯[36]。而后發(fā)現(xiàn)的來源于金黃色葡萄球菌的CRISPR/SaCas9、腦膜炎奈瑟菌的CRISPR/NmCas9、嗜熱鏈球菌的CRISPR/StCas9和最新發(fā)現(xiàn)來源于空腸彎曲菌的CRISPR/CjCas9都可成功用于哺乳動物細(xì)胞的基因組編輯,但是均存在脫靶現(xiàn)象,甚至發(fā)現(xiàn)部分脫靶位點(diǎn)的編輯效率與靶位點(diǎn)相當(dāng)或高于靶位點(diǎn)[37-43]。

      圖3 CRISPR/Cas9的脫靶示意圖

      通過研究發(fā)現(xiàn)有因素會影響CRISPR/Cas9系統(tǒng)的特異性,包括靶位點(diǎn)的選擇、Cas9蛋白、sgRNA的長度、轉(zhuǎn)運(yùn)方式及小分子化合物等。選擇脫靶率低的靶位點(diǎn)是基因組編輯的第一步,可采用一系列在線工具對靶位點(diǎn)進(jìn)行脫靶評估和篩選[44](表1)。研究發(fā)現(xiàn)SpCas9對其他PAM序列 (NGA和NAG) 也有編輯的活性,間接說明了CRISPR/Cas9脫靶問題,因此另有研究者通過結(jié)構(gòu)分析、組合設(shè)計(jì)和細(xì)菌選擇系統(tǒng)篩選了針對NGA、NGAG和NGCG PAM序列的突變SpCas9,顯示在部分位點(diǎn)具有更高的效率和特異性[45-46]。在sgRNA的設(shè)計(jì)方面,就SpCas9而言,17 nt或18 nt的截短sgRNA能減少脫靶,由于sgRNA與DNA結(jié)合所需的能量減少,相對地提高了特異性,這與TALENs的長度設(shè)計(jì)原理相似,且與Cas9n組合可進(jìn)一步提高特異性[47]。在轉(zhuǎn)運(yùn)方式上,將Cas9蛋白和sgRNA與核糖核蛋白 (Ribonucleoproteins,RNPs) 融合成復(fù)合物直接導(dǎo)入細(xì)胞,而非將質(zhì)粒導(dǎo)入細(xì)胞,結(jié)果顯示其能提高基因組編輯的特異性,由于是將Cas9蛋白導(dǎo)入細(xì)胞,其作用時間受到了一定的限制,不會像質(zhì)粒持續(xù)表達(dá)Cas9蛋白,進(jìn)而減少其他脫靶位點(diǎn)的作用[48-52],該方法已經(jīng)在治療年齡相關(guān)性黃斑變性疾病模型中取得了一定成效[53]。對于Cas9蛋白,研究者們對其進(jìn)行了各種不同的改造,麻省理工大學(xué)的張鋒組研究顯示,采用雙切口的Cas9 nickases (Cas9n) 對哺乳動物細(xì)胞和小鼠受精卵進(jìn)行編輯,與野生型Cas9相比具有更高的特異性[35],而利用單個的Cas9n對牛受精卵進(jìn)行基因敲入發(fā)現(xiàn),脫靶率與野生型Cas9相比較低,并且受精卵存活率也大幅度升高[54]。許多研究者不限于Cas9本身的突變,對其結(jié)構(gòu)也進(jìn)行了許多改造來提高特異性,比如內(nèi)含肽滅活的Cas9系統(tǒng),Cas9突變體帶有雌激素受體結(jié)合域,只有當(dāng)4-羥基他莫昔芬 (4-hydroxytamoxifen,4-HT) 與雌激素受體結(jié)合后,Cas9才能被激活進(jìn)行基因組編輯[55];類似的系統(tǒng)還有光激活的Cas9系統(tǒng)[[56-58]、分離的Cas9突變體系統(tǒng)[59-60]、小分子誘導(dǎo)的Cas9系統(tǒng)[61]和變構(gòu)調(diào)節(jié)的Cas9系統(tǒng)[62],都能不同程度地降低脫靶率。最直接的是獲得高保真的Cas9突變體eSpCas9和SpCas9-HF1,通過降低Cas9蛋白與DNA糖磷酸骨架的非特異性相互作用,從而降低脫靶率[63-64]。此外,有研究者將失活的Cas9 (Dead Cas9,dCas9) 與Ⅰ融合,形成dCas9-Ⅰ系統(tǒng)以二聚體形式作用靶位點(diǎn),也能提高特異性,dCas9雖然失去了活性,但是還保留與DNA結(jié)合的能力[65-67]。以上降低脫靶的策略理論上可以相互聯(lián)合,協(xié)同作用增加CRISPR/Cas9系統(tǒng)的靶向特異性。

      CRISPR系統(tǒng)以往一直針對基因片段進(jìn)行編輯,而目前有研究者們將CRISPR/Cas9與激活誘導(dǎo)的胞苷脫氨酶 (Activation induced-cytidine deaminase,AID) 或相應(yīng)的同源基因 (APOBEC1和 PmCDA1等) 聯(lián)合用于編輯單個堿基,希望應(yīng)用于點(diǎn)突變的原位修復(fù)。有研究者將之與nCas9或dCas9聯(lián)合,用于靶向單堿基的編輯 (Cytosine→Thymine,C→T),發(fā)現(xiàn)脫靶率相較于Cas9低,Komor等發(fā)現(xiàn)dCas9-APOBEC1的編輯在預(yù)測脫靶位點(diǎn)未發(fā)現(xiàn)脫靶現(xiàn)象[68];Nishida等在nCas9-AID和dCas9-AID介導(dǎo)的單堿基編輯中檢測到小于1.5%的脫靶率[69];Hess等發(fā)現(xiàn)利用兩個MS2發(fā)夾結(jié)構(gòu)修飾的sgRNA與dCas9-AID作用能減少脫靶[70];Kim等為降低nCas9-APOBEC1的脫靶率,采用改造的Cas9 (針對不同PAM的Cas9突變體),結(jié)果顯示脫靶率平均下降了3.6倍[71];Zong等用nCas9-APOBEC1和dCas9-APOBEC1編輯水稻在預(yù)測位點(diǎn)未發(fā)現(xiàn)脫靶[72];Kim等將nCas9-rAPOBEC1用于編輯小鼠胚胎,成功制造無義突變的疾病模型,且未在該模型中檢測到其他突變位點(diǎn),即脫靶位點(diǎn)[73]。目前從以上研究結(jié)果來看,針對單堿基編輯的脫靶率要比單用Cas9低很多,這對于點(diǎn)突變的基因糾正、疾病模型的建立和育種具有推動性的作用,但仍需要更多的實(shí)驗(yàn)來進(jìn)一步驗(yàn)證。

      CRISPR/Cpf1系統(tǒng)是近年最新發(fā)現(xiàn)的基因組編輯系統(tǒng),只需要一個類似RuvC的Cpf1結(jié)構(gòu)域和單個crRNA即可進(jìn)行基因組編輯,目前發(fā)現(xiàn)的有來源于氨基酸球菌屬 (sp. Cpf1,AsCpf1)、毛螺科菌 (Cpf1,LbCpf1) 和弗朗西斯菌屬 (Cpf1,F(xiàn)nCpf1) 等多種Cpf1,與Cas9不同,Cpf1的PAM序列在5′端,其小型和便捷的特點(diǎn)在基因組編輯應(yīng)用上更具有優(yōu)勢[74]。CRISPR/Cpf1最先在小鼠上進(jìn)行基因組編輯,Kim等采用AsCpf1和LbCpf1對小鼠受精卵進(jìn)行基因敲除,靶向深度測序 (Targeted deep sequencing) 結(jié)果顯示在2?4 bp的sgRNA錯配序列中未發(fā)現(xiàn)脫靶現(xiàn)象,但在1 bp錯配時存在約1/6的脫靶率[75],同時Hur等將Cpf1與RNP組裝同樣編輯小鼠受精卵,采用全基因組測序 (Whole genome sequencing,WGS) 檢測發(fā)現(xiàn)在7 bp及以上的錯配中未發(fā)現(xiàn)脫靶現(xiàn)象[76]。隨后,研究者們在植物上進(jìn)行了基因組編輯,在編輯大豆和煙草時,通過靶向深度測序在4 bp及以上的錯配中未檢測到脫靶[77],另有研究者對水稻進(jìn)行編輯時在預(yù)測脫靶位點(diǎn)未檢測到脫靶[78-79]。有研究運(yùn)用多種脫靶檢測方法 (Digenome-seq、GUIDE-seq和靶向深度測序) 比較了Cas9與Cpf1的脫靶率,結(jié)果顯示Cpf1在人類細(xì)胞編輯的特異性高于Cas9[80-81],因此有望設(shè)計(jì)高效率的Cpf1突變體或復(fù)合物應(yīng)用于基因治療。同時,是否可以通過設(shè)計(jì)雙切口酶的Cpf1,或進(jìn)一步與Ⅰ融合形成高保真的Cpf1,來提高其編輯的特異性。

      2 脫靶的檢測方法及優(yōu)缺點(diǎn)比較

      2.1 預(yù)測脫靶位點(diǎn)的檢測方法

      用CasFinder等多款生物信息在線工具預(yù)測脫靶位點(diǎn)[82](表1),篩選出脫靶可能性高的位點(diǎn)進(jìn)行檢測,將包含預(yù)測脫靶位點(diǎn)的片段進(jìn)行富集鑒定,如PCR擴(kuò)增后使用Sanger測序、多重PCR擴(kuò)增或液相探針特異性雜交富集脫靶片段后,進(jìn)行二代測序 (Next generation sequence,NGS)。Sanger測序簡便易行,不需要特殊的設(shè)備或技術(shù),當(dāng)樣本量大時比較耗時且不經(jīng)濟(jì),對于脫靶率低的位點(diǎn)也不能完全檢測出。NGS成本雖然相對昂貴,但是在樣本量多或者脫靶效率較小 (提高測序深度) 的情況下,通過多重PCR或液相探針雜交的方法將這些含候選脫靶位點(diǎn)的片段擴(kuò)增出來,進(jìn)行深度測序更值得考慮。也可將PCR產(chǎn)物進(jìn)行T7E1或Surveyor檢測 (圖4),T7E1對插入缺失 (Indels) 比較敏感,而Surveyor對單核苷酸突變 (SNPs) 和小片段的indels相對敏感,因而T7E1檢測DSBs產(chǎn)生的NHEJ更為敏感,但兩者均容易受溫度、時間、DNA與酶的比例和緩沖液鹽離子濃度的影響[83],優(yōu)點(diǎn)在于快速簡便,但靈敏度低。由于是對預(yù)測的脫靶位點(diǎn)進(jìn)行檢測,可能忽略了其他的脫靶位點(diǎn),因此存在一定的偏倚性,不能全面反映細(xì)胞內(nèi)脫靶情況。

      2.2 全外顯子測序與全基因組測序

      全外顯子測序 (Whole exon sequencing,WES)和全基因組測序 (Whole genome sequencing,WGS),顧名思義,前者針對基因組的所有外顯子,后者則沒有選擇性地對全基因組進(jìn)行檢測。兩者比較,后者能直接真實(shí)地反映脫靶的情況,前者有可能忽略了非編碼區(qū)的脫靶,而非編碼區(qū)也是對基因起調(diào)控作用的重要區(qū)域。研究者們已在誘導(dǎo)性多能干細(xì)胞、秀麗隱桿線蟲、瘧原蟲和擬南芥等多個物種中應(yīng)用全基因組測序檢測基因組編輯的脫靶情況[84-87]。無論是SNPs和indels,還是染色體水平的變化如易位、倒置等,WGS都能檢測到,但對于大量樣本中的低頻脫靶位點(diǎn)仍然難以檢測[88](由于測序成本等原因,WGS一般測序深度在30X?50X)。為優(yōu)化脫靶的檢測方案,以下其他的相關(guān)檢測方法將通過富集脫靶位點(diǎn),結(jié)合WES或WGS來研究脫靶。

      2.3 ChIP-seq

      染色體免疫共沉淀 (Cross-linking chromatin immunoprecipitation,ChIP) 技術(shù)可以針對性地獲得蛋白質(zhì)與DNA結(jié)合的復(fù)合物,與二代測序技術(shù)聯(lián)合則可以全面地檢測與蛋白質(zhì)結(jié)合的DNA序列,該方法稱為ChIP-seq[89]。在CRISPR/Cas9的脫靶檢測中,利用失活的Cas9即dCas9與DNA序列進(jìn)行結(jié)合而不發(fā)生切割的特點(diǎn),從而確定Cas9的具體結(jié)合位點(diǎn),包括靶位點(diǎn)和脫靶位點(diǎn)。將結(jié)合了dCas9的基因組碎片化,通過ChIP富集含有dCas9的DNA片段,再經(jīng)過純化獲得DNA進(jìn)行PCR和二代測序(圖5)。研究者利用ChIP-seq對12個sgRNAs的脫靶進(jìn)行檢測,發(fā)現(xiàn)了10–1 000個不等的脫靶位點(diǎn),基本位于染色質(zhì)開放區(qū)域,且相當(dāng)一部分與預(yù)測的脫靶位點(diǎn)不一致[39]。該技術(shù)也存在假陽性率,由于ChIP傾向結(jié)合高表達(dá)聚合酶Ⅱ、聚合酶Ⅲ和tRNA基因的區(qū)域[90],另外,與DNA結(jié)合和對DNA切割的位點(diǎn)可能存在差異。

      圖4 偏倚性預(yù)測和檢測脫靶的方法

      2.4 IDLV捕獲

      IDLV,即整合缺陷的慢病毒載體 (Integrative- deficient lentiviral vectors,IDLV),它們以游離的DNA形式存在于細(xì)胞核中,能夠整合到發(fā)生DSBs的位點(diǎn),利用該特點(diǎn)首次應(yīng)用于ZFNs的脫靶檢測中[91]。不同于完整的慢病毒載體,IDLV對基因組的整合沒有偏好性,以往利用其檢測病毒載體的安全性。當(dāng)核酸酶切割基因組產(chǎn)生DSBs時,IDLV會在NHEJ修復(fù)期間整合于靶位點(diǎn)和脫靶位點(diǎn),相當(dāng)于“標(biāo)記”了DSBs位點(diǎn)。其次提取細(xì)胞基因組并破碎,并在片段兩頭加上接頭序列,因IDLV兩端含有兩個已知的LTR (Long terminal repeats) 序列,可以利用線性擴(kuò)增PCR (Linear amplification-mediated PCR,LAM-PCR) 技術(shù)擴(kuò)增位于IDLV兩側(cè)的片段,該技術(shù)常用于擴(kuò)增未知的DNA序列,最后進(jìn)行二代測序(圖6)。隨后該技術(shù)也應(yīng)用于TALENs和CRISPR/Cas9,可以檢測到1%的脫靶率,識別1–13 bp的錯配[92-93]。使用該技術(shù)的優(yōu)勢在于IDLV能夠高效地進(jìn)入細(xì)胞核,包括難以轉(zhuǎn)染的人類細(xì)胞,但同時也會整合到其他非核酸酶引發(fā)的DSBs位點(diǎn),增加了假陽性率,因此需要做好對照。另外,該方法是否能夠捕獲到所有的脫靶的位點(diǎn)并不清晰。

      2.5 BLESS

      BLESS (Directbreaks labeling,enrichment on streptavidin,and next-generation sequencing) 技術(shù)是基于生物素-鏈親和素原理設(shè)計(jì)的[94]。首先提取完整的細(xì)胞基因組,在體外利用核酸酶進(jìn)行切割,后采用高特異性T4 DNA連接酶將生物素化的寡核苷酸與DSBs位點(diǎn)連接,該連接酶只能連接雙鏈斷裂的位置,形成發(fā)夾樣結(jié)構(gòu)。其次將基因組消化成片段,因生物素化和鏈親合素化的寡核苷酸都含有相同的酶切位點(diǎn),所以用相同的酶切后進(jìn)行連接以達(dá)到富集的目的。經(jīng)過純化,并在發(fā)夾結(jié)構(gòu)的另一端引入帶酶切位點(diǎn)的寡核苷酸連接雙鏈的斷端,最后將片段的兩頭消化形成用于擴(kuò)增的開放雙鏈模板,再進(jìn)行PCR和二代測序 (圖7)。有研究者在對小鼠和人類細(xì)胞的基因組編輯時運(yùn)用BLESS和ChIP-seq檢測脫靶,結(jié)果顯示BLESS能檢測出更多的脫靶位點(diǎn)[41,64]。雖然該技術(shù)是對原位DSBs進(jìn)行直接的檢測,但由于是在體外進(jìn)行的,可能不能真實(shí)地反映體內(nèi)的情況。

      圖5 非偏倚性脫靶檢測方法之ChIP-seq

      圖6 非偏倚性脫靶檢測方法之IDLV捕獲

      2.6 GUIDE-seq

      GUIDE-seq (Genome-wide,unbiased identification of DSBs enabled by sequencing) 技術(shù)與IDLV捕獲技術(shù)原理相似,體內(nèi)的細(xì)胞基因組在核酸酶作用下發(fā)生DSBs,此時引入“標(biāo)簽”——雙鏈寡脫氧核苷酸 (Double-stranded oligodeoxynucleotides,dsODNs),該“標(biāo)簽”會整合到DSBs位點(diǎn),然后提取細(xì)胞基因組隨機(jī)打斷成片段,在片段兩頭加上接頭,因引入的dsODNs序列和接頭序列已知,故對正反鏈分別進(jìn)行LAM-PCR,再通過二代測序即可檢測脫靶位點(diǎn)(圖8),該方法同樣能檢測到比ChIP-seq更多的脫靶位點(diǎn),敏感性小于0.1%[40]。與ChIP-seq、IDLV捕獲和BLESS技術(shù)相比,GUIDE-seq相對簡便,因此也有一些研究者以此方法檢測脫靶,但只有在發(fā)生DSBs后立即引入dsODNs才能被檢測[46,63,95]。另外,“dsODNs標(biāo)簽”是否都能夠整合到細(xì)胞所有的DSBs并不清晰,IDLV捕獲方法也有類似的問題。

      2.7 LAM-HTGTS

      LAM-HTGTS (Linear amplification-mediatedhigh-throughput genome-wide translocation sequencing)技術(shù)發(fā)展于檢測AID引發(fā)的基因重排,建立在位點(diǎn)發(fā)生DSBs的基礎(chǔ)上[96]。之后有研究者利用DSBs引發(fā)的重排原理來檢測CRISPR/Cas9和TALEN進(jìn)行基因組編輯的脫靶情況,細(xì)胞基因組在核酸酶作用下發(fā)生DSBs,引發(fā)基因重排,將提取的細(xì)胞基因組破碎,針對某個基因的脫靶,在該基因sgRNA附近設(shè)計(jì)帶有生物素標(biāo)簽的捕獲引物,通過LAM-PCR、生物素-鏈親和素系統(tǒng)富集帶有靶基因片段的序列,包括發(fā)生了重排和未發(fā)生重排的序列,再利用二代測序進(jìn)行分析[97](圖9)。該方法不需要引入額外的特殊序列,靈敏度比IDLV高,背景值比BLESS低,且相對經(jīng)濟(jì),缺點(diǎn)在于只能檢測發(fā)生重排的位點(diǎn),而重排的概率比較低,約200–1 000個細(xì)胞中發(fā)生一次[98]。

      圖7 非偏倚性脫靶檢測方法之BLESS

      圖8 非偏倚性脫靶檢測方法之ChIP-seq

      2.8 Digenome-seq

      Digenome-seq (Cas9-digested whole genome sequencing) 是完全在體外進(jìn)行的脫靶檢測技術(shù)[99-100]。首先提取細(xì)胞基因組并消化片段,在片段兩端加上相同的接頭序列,而后將Cas9蛋白和sgRNA與消化的片段混合進(jìn)行切割,這些片段中部分被切割,部分未被切割,再利用二代測序讀取所有的片段并與基因組序列進(jìn)行比對(圖10)。該方法靈敏度高,能檢測到0.1%的indels,且不限制于染色質(zhì)結(jié)構(gòu)影響,實(shí)驗(yàn)的可重復(fù)性和均一性也較高。Digenome-seq是先經(jīng)過基因組的破碎,再進(jìn)行核酸酶的切割,而前面有幾個檢測的方法都是先進(jìn)行核酸酶的切割引入各種“標(biāo)簽”,再進(jìn)行基因組的破碎,因此該技術(shù)是直接檢測切割的位點(diǎn)而不是檢測結(jié)合的位點(diǎn),脫靶位點(diǎn)的覆蓋范圍相對較大,靈敏度也相對較高。采用“標(biāo)簽”引入的方式存在效率問題,這些“標(biāo)簽”并不是都能整合到DSBs的位點(diǎn),尤其是對于低頻脫靶位點(diǎn)。Digenome-seq的缺點(diǎn)在于進(jìn)行二代測序分析時沒有對發(fā)生切割和未發(fā)生切割的片段進(jìn)行分離,故所需要的讀長量大才能檢測到低頻的位點(diǎn),最多需要400 million,并且它是完全在體外進(jìn)行的脫靶檢測技術(shù),所以可能不能真實(shí)地反映體內(nèi)的情況,由于不受染色質(zhì)結(jié)構(gòu)的影響,可能存在一定的假陽性率。

      2.9 CIRCLE-seq

      CIRCLE-seq (Circularization forreporting of cleavage effects by sequencing) 技術(shù)是研究人員最新開發(fā)的一種通過測序體外檢測切割效應(yīng)的方法[101]。同樣是體外進(jìn)行的實(shí)驗(yàn),將基因組剪切成片段,在片段兩端加上莖環(huán)結(jié)構(gòu)的接頭序列,通過酶切接頭序列和分子內(nèi)連接,使片段環(huán)化后用核酸酶切割,能被切割的環(huán)形片段都將線性化,不能被切割的維持環(huán)狀結(jié)構(gòu),在線性化的片段上再次加上接頭序列,然后進(jìn)行PCR和NGS進(jìn)行檢測(圖11)。該技術(shù)的優(yōu)點(diǎn)在于它的讀長量少 (4?5 million) 且隨機(jī)讀長背景低,而Digenome-seq的讀長量最多需要400 million,并且CIRCLE-seq能檢測到小于0.1%的脫靶位點(diǎn)。研究人員以靶向基因?yàn)槔?,顯示CIRCLE-seq能鑒定出Digenome-seq已檢測到的29個位點(diǎn)中的26個,并且還檢測到156個其他方法無法檢測的新位點(diǎn)。但由于該技術(shù)是在體外進(jìn)行的,同樣可能不能真實(shí)地反映在體內(nèi)的情況。

      圖9 非偏倚性脫靶檢測方法之LAM-HTGTS

      圖10 非偏倚性脫靶檢測方法之Digenome-seq

      2.10 SITE-seq

      SITE-seq (Selective enrichment and identification of tagged genomic DNA ends by sequencing) 技術(shù)是與CIRCLE-seq同期出現(xiàn)的一項(xiàng)新的脫靶檢測方法[102],也是體外進(jìn)行的方法。首先獲取高分子量的細(xì)胞基因組,用Cas9/RNA復(fù)合體 (sgRNPs) 體外切割基因組,在切割的位點(diǎn)加上生物素化的接頭序列,然后進(jìn)行基因組的破碎,再利用生物素進(jìn)行富集,得到的是被核酸酶切割過的片段,在該片段的另一端加上接頭序列后,進(jìn)行PCR和二代測序分析 (圖12)。與HTGTS和Guide-seq相比,SITE-seq不依賴于核酸酶的轉(zhuǎn)運(yùn)方式、細(xì)胞的類型和DNA的修復(fù),但是SITE-seq檢測到的位點(diǎn)比另外兩者要多;相比于Digenome-seq,該技術(shù)能將脫靶位點(diǎn)進(jìn)行富集并檢測,提高了檢測的靈敏度。在該技術(shù)中,檢測到的脫靶位點(diǎn)的數(shù)量與sgRNPs的使用濃度相關(guān),低濃度時檢測到的脫靶位點(diǎn)少,相反高濃度時檢測到的數(shù)量多,在一定濃度時能覆蓋利用體內(nèi)脫靶檢測方法檢測到的位點(diǎn)。利用該技術(shù)可以定位編輯活性高的基因組區(qū)域,指導(dǎo)選擇活性和特異性最高的位點(diǎn)來減少脫靶效應(yīng)。缺點(diǎn)在于SITE-seq是完全在體外進(jìn)行,隨著sgRNPs濃度的增加,其檢測到的脫靶位點(diǎn)遠(yuǎn)多于體內(nèi)檢測到的位點(diǎn),所以可能不能真實(shí)地反映細(xì)胞內(nèi)的脫靶情況,但可以為編輯位點(diǎn)的選擇提供指導(dǎo)依據(jù)。

      3 展望

      當(dāng)前的ZFNs、TALENs和CRISPRs這三大類基因組編輯技術(shù)給基因治療帶來了極具潛能的應(yīng)用前景,其中ZFNs的脫靶率比另兩者都要高,即使經(jīng)過改造以提高特異性。由于鋅指結(jié)構(gòu)的固有識別特點(diǎn),使得其可改造的空間小于后兩者。如果比較未經(jīng)改造的TALENs和CRISPR系統(tǒng),TALENs的特異性要高于CRISPR系統(tǒng),但由于其設(shè)計(jì)和技術(shù)的復(fù)雜性限制了它的廣泛使用,因此CRISPR系統(tǒng)的相對簡便性和可改造性使其在基因組編輯領(lǐng)域處于優(yōu)勢和領(lǐng)先地位。盡管存在一系列脫靶問題,研究者們也針對該問題提出了多種解決的策略和方案,比如雙切口的nCas9[36]、高保真的Cas9[63-64]、Cas9與小分子結(jié)合的系統(tǒng)[56-58,61-62]、dCas9-AID或nCas9-AID系統(tǒng)[68-69,71]等。利用相對合適的脫靶檢測技術(shù) (各脫靶檢測技術(shù)的比較見表2) 和利用現(xiàn)有的方法最大限度地改善脫靶問題,降低其對細(xì)胞產(chǎn)生的毒性作用,以期將基因組編輯技術(shù)應(yīng)用于臨床的疾病治療,從根本改善或治愈相關(guān)的遺傳或非遺傳性疾病。

      圖11 非偏倚性脫靶檢測方法之CIRCLE-seq

      圖12 非偏倚性脫靶檢測方法之SITE-seq

      表2 各脫靶檢測方法的比較

      a, bThe quantity of $ or * represents the extent of corresponding strategy’s cost, time & complexity.cdetection means using the nucleases to cut the genome in living cells and then perform the off-target detection.detection means using the nucleases to cut the genomic DNAand then perform the off-target detection.

      [1] King A. Gene therapy: a new chapter. Nature, 2016, 537(7621): S158–S159.

      [2] Fruman DA, O’Brien S. Cancer: a targeted treatment with off-target risks. Nature, 2017, 542(7642): 424–425.

      [3] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156–1160.

      [4] Jo YI, Kim H, Ramakrishna S. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cell Mol Life Sci, 2015, 72(20): 3819–3830.

      [5] Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169–1175.

      [6] Cornu TI, Thibodeau-Beganny S, Guhl E, et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther, 2008, 16(2): 352–358.

      [7] Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol, 2016, 428(5): 963–989.

      [8] Meng XD, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 2008, 26(6): 695–701.

      [9] Gupta A, Meng XD, Zhu LJ, et al. Zinc finger protein-dependent and -independent contributions to theoff-target activity of zinc finger nucleases. Nucleic Acids Res, 2011, 39(1): 381–392.

      [10] Sander JD, Ramirez CL, Linder SJ, et al.abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res, 2013, 41(19): e181.

      [11] Fine EJ, Cradick TJ, Zhao CL, et al. An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res, 2014, 42(6): e42.

      [12] Cai YJ, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife, 2014, 3: e01911.

      [13] Miller JC, Holmes MC, Wang JB, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol, 2007, 25(7): 778–785.

      [14] Szczepek M, Brondani V, Büchel J, et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol, 2007, 25(7): 786–793.

      [15] Ramirez CL, Certo MT, Mussolino C, et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res, 2012, 40(12): 5560–5568.

      [16] Gaj T, Guo J, Kato Y, et al. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods, 2012, 9(8): 805–807.

      [17] Deng D, Yan CY, Pan XJ, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335(6069): 720–723.

      [18] Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 2013, 14(1): 49–55.

      [19] Ding QR, Lee YK, Schaefer EAK, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12(2): 238–251.

      [20] Ke Q, Li WQ, Lai XQ, et al. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res, 2016, 26(9): 1048–1061.

      [21] Mussolino C, Alzubi J, Fine EJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res, 2014, 42(10): 6762–6773.

      [22] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501.

      [23] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512.

      [24] Doyle EL, Booher NJ, Standage DS, et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res, 2012, 40(W1): W117–W122.

      [25] Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res, 2014, 42(W1): W401–W407.

      [26] Labun K, Montague TG, Gagnon JA, et al. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res, 2016, 44(W1): W272–W276.

      [27] Guilinger JP, Pattanayak V, Reyon D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods, 2014, 11(4): 429–435.

      [28] Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011, 29(2): 143–148.

      [29] Kim Y, Kweon J, Kim A, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol, 2013, 31(3): 251–258.

      [30] Miller JC, Zhang L, Xia DF, et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods, 2015, 12(5): 465–471.

      [31] Lamb BM, Mercer AC, Barbas CF, III. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res, 2013, 41(21): 9779–9785.

      [32] Doyle EL, Hummel AW, Demorest ZL, et al. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat-1. PLoS ONE, 2013, 8(12): e82120.

      [33] Lin JF, Chen H, Luo L, et al. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells. Nucleic Acids Res, 2015, 43(2): 1112–1122.

      [34] Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13(11): 722–736.

      [35] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821.

      [36] Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380–1389.

      [37] Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9): 822–826.

      [38] Hou ZG, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from. Proc Natl Acad Sci USA, 2013, 110(39): 15644–15649.

      [39] Kuscu C, Arslan S, Singh R, et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol, 2014, 32(7): 677–683.

      [40] Tsai SQ, Zheng ZL, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015, 33(2): 187–197.

      [41] Ran FA, Cong L, Yan WX, et al.genome editing usingCas9. Nature, 2015, 520(7546): 186–191.

      [42] Müller M, Lee CM, Gasiunas G, et al.CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther, 2016, 24(3): 636–644.

      [43] Kim E, Koo T, Park SW, et al.genome editing with a small Cas9 orthologue derived from. Nat Commun, 2017, 8: 14500.

      [44] Chuai GH, Wang QL, Liu Q.meets: towards computational CRISPR-based sgRNA design. Trends Biotechnol, 2017, 35(1): 12–21.

      [45] Zhang YL, Ge XL, Yang FY, et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep, 2014, 4: 5405.

      [46] Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481–485.

      [47] Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014, 32(3): 279–284.

      [48] Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res, 2014, 24(6): 1012–1019.

      [49] Ramakrishna S, Dad ABK, Beloor J, et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res, 2014, 24(6): 1020–1027.

      [50] Lin S, Staahl BT, Alla RK, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014, 3: e04766.

      [51] Zuris JA, Thompson DB, Shu YL, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editingand. Nat Biotechnol, 2015, 33(1): 73–80.

      [52] Liu J, Gaj T, Yang YF, et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc, 2015, 10(11): 1842–1859.

      [53] Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res, 2017, 27(3): 419–426.

      [54] Gao YP, Wu HB, Wang YS, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol, 2017, 18: 13.

      [55] Davis KM, Pattanayak V, Thompson DB, et al. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol, 2015, 11(5): 316–318.

      [56] Hemphill J, Borchardt EK, Brown K, et al. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc, 2015, 137(17): 5642–5645.

      [57] Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol, 2015, 33(7): 755–760.

      [58] Jain PK, Ramanan V, Schepers AG, et al. Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew Chem, 2016, 55(40): 12440–12444.

      [59] Wright AV, Sternberg SH, Taylor DW, et al. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA, 2015, 112(10): 2984–2989.

      [60] Truong DJJ, Kühner K, Kühn R, et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res, 2015, 43(13): 6450–6458.

      [61] Dow LE, Fisher J, O’Rourke KP, et al. Induciblegenome editing with CRISPR-Cas9. Nat Biotechnol, 2015, 33(4): 390–394.

      [62] Oakes BL, Nadler DC, Flamholz A, et al. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol, 2016, 34(6): 646–651.

      [63] Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495.

      [64] Slaymaker IM, Gao LY, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84–88.

      [65] Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 toI nuclease improves the specificity of genome modification. Nat Biotechnol, 2014, 32(6): 577–582.

      [66] Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guidedI nucleases for highly specific genome editing. Nat Biotechnol, 2014, 32(6): 569–576.

      [67] Wyvekens N, Topkar VV, Khayter C, et al. Dimeric CRISPR RNA-guidedI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther, 2015, 26(7): 425–431.

      [68] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424.

      [69] Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, doi: 10.1126/science.aaf8729. (in Press)

      [70] Hess GT, Frésard L, Han K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods, 2016, 13(12): 1036–1042.

      [71] Kim YB, Komor AC, Levy JM, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol, 2017, 35(4): 371–376.

      [72] Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017, 35(5): 438–440.

      [73] Kim K, Ryu SM, Kim ST, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol, 2017, 35(5): 435–437.

      [74] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759–771.

      [75] Kim Y, Cheong SA, Lee JG, et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol, 2016, 34(8): 808–810.

      [76] Hur JK, Kim K, Been KW, et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol, 2016, 34(8): 807–808.

      [77] Kim H, Kim ST, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun, 2017, 8: 14406.

      [78] Xu RF, Qin RY, Li H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J, 2017, 15(6): 713–717.

      [79] Wang MG, Mao YF, Lu YM, et al. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant, 2017, 10(7): 1011–1013.

      [80] Kim D, Kim J, Hur JK. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol, 2016, 34(8): 863–868.

      [81] Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol, 2016, 34(8): 869–874.

      [82] Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv, 2017, 35(1): 95–104.

      [83] Vouillot L, Thélie A, Pollet N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3, 2015, 5(3): 407–415.

      [84] Feng ZY, Mao YF, Xu NF, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in. Proc Natl Acad Sci USA, 2014, 111(12): 4632–4637.

      [85] Smith C, Gore A, Yan W, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 2014, 15(1): 12–13.

      [86] Paix A, Wang YM, Smith HE, et al. Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in. Genetics, 2014, 198(4): 1347–1356.

      [87] Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasiteusing the CRISPR-Cas9 system. Nat Biotechnol, 2014, 32(8): 819–821.

      [88] Veres A, Gosis BS, Ding QR, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 2014, 15(1): 27–30.

      [89] Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 2009, 10(10): 669–680.

      [90] Teytelman L, Thurtle DM, Rine J, et al. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci USA, 2013, 110(46): 18602–18607.

      [91] Gabriel R, Lombardo A, Arens A, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol, 2011, 29(9): 816–823.

      [92] Wang XL, Wang YB, Wu XW, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol, 2015, 33(2): 175–178.

      [93] Osborn MJ, Webber BR, Knipping F, et al. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther, 2016, 24(3): 570–581.

      [94] Crosetto N, Mitra A, Silva MJ, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods, 2013, 10(4): 361–365.

      [95] Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol, 2016, 34(2): 184–191.

      [96] Chiarle R, Zhang Y, Frock RL, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell, 2011, 147(1): 107–119.

      [97] Frock RL, Hu JZ, Meyers RM, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol, 2015, 33(2): 179–186.

      [98] Hu JZ, Meyers RM, Dong JC, et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nat Protoc, 2016, 11(5): 853–871.

      [99] Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Biotechnol, 2015, 12(3): 237–243.

      [100] Kim D, Kim S, Kim S, et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res, 2016, 26(3): 406–415.

      [101] Tsai SQ, Nguyen NT, Malagon-Lopez J, et al. CIRCLE-seq: a highly sensitivescreen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods, 2017, 14(6): 607–614.

      [102] Cameron P, Fuller CK, Donohoue PD, et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods, 2017, 14(6): 600–606.

      (本文責(zé)編 陳宏宇)

      Genome-editing: focus on the off-target effects

      Xiubin He, and Feng Gu

      State Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China

      Breakthroughs of genome-editing in recent years have paved the way to develop new therapeutic strategies. These genome-editing tools mainly include Zinc-finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases. However, off-target effects are still the major issue in genome editing, and limit the application in gene therapy. Here, we summarized the cause and compared different detection methods of off-targets.

      genome editing, off-target, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regulatory interspaced short palindromic repeats (CRISPRs)

      May 5, 2017;

      August 18, 2017

      Feng Gu. Tel: +86-577-88831367; E-mail: gufenguw@gmail.com

      Supported by:National Basic Research Program of China (973 Program) (No. 2013CB967502), National Natural Science Foundation of China (No. 81201181), Science and Technology Project of Zhejiang Province (No. 2017C37176).

      國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃 (973計(jì)劃) (No. 2013CB967502),國家自然科學(xué)基金 (No. 81201181),浙江省科技項(xiàng)目 (No. 2017C37176)資助。

      谷峰 博士,溫州醫(yī)科大學(xué)研究員,中國遺傳學(xué)會基因組編輯分會委員,任《遺傳》和Scientific Reports 期刊的編委。主要從事新型基因組編輯工具研發(fā)、遺傳病致病基因發(fā)現(xiàn)與相關(guān)的基因/干細(xì)胞治療研究。在Cell Stem Cell、Nucleic Acids Research、Molecular Therapy-Nucleic Acids、Human Mutation 等期刊發(fā)表多篇文章。

      猜你喜歡
      核酸酶鋅指基因組
      粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
      鋅指蛋白與肝細(xì)胞癌的研究進(jìn)展
      牛參考基因組中發(fā)現(xiàn)被忽視基因
      C2H2型鋅指蛋白在腫瘤基因調(diào)控中的研究進(jìn)展
      含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
      多種Cas12a蛋白變體能識別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
      用megaTAL 核酸酶對原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
      Myc結(jié)合的鋅指蛋白1評估實(shí)驗(yàn)性急性胰腺炎疾病嚴(yán)重程度的價值
      鋅指蛋白及人工鋅指蛋白對微生物代謝影響的研究進(jìn)展
      基因組DNA甲基化及組蛋白甲基化
      遺傳(2014年3期)2014-02-28 20:58:49
      静海县| 固原市| 乌鲁木齐县| 民县| 岳普湖县| 大同县| 吉安县| 双江| 玛沁县| 稷山县| 广灵县| 石屏县| 焦作市| 孝感市| 南昌市| 寻乌县| 舟山市| 乌拉特中旗| 永康市| 广灵县| 怀集县| 明溪县| 清水河县| 疏附县| 万州区| 宝山区| 新营市| 泸溪县| 绍兴县| 体育| 苍梧县| 虹口区| 广宁县| 泽库县| 大荔县| 长宁区| 个旧市| 霍林郭勒市| 金阳县| 油尖旺区| 嘉鱼县|