徐言慧,尹顯洪,邱江源,黃在銀,譚春萍,胡玉平
多孔材料Cu3(BTB)2和H2O2處理偶氮染料廢水及機理
徐言慧1,2,尹顯洪1,邱江源1,黃在銀1,2,譚春萍3,胡玉平1,2
(1廣西民族大學(xué)化學(xué)化工學(xué)院,廣西南寧 530006;2廣西林產(chǎn)化學(xué)與工程重點實驗室,廣西南寧 530006;3南寧學(xué)院,廣西 南寧 530200)
采用溶劑熱法合成了Cu3(BTB)2(BTB=4,4',4"-benzenetri benzoate)介孔材料,并進(jìn)行了SEM、BET、FTIR和XRD表征。該材料呈多孔球形,比表面積為1293m2/g,平均粒徑為10μm。應(yīng)用該材料進(jìn)行剛果紅偶氮染料廢水處理,發(fā)現(xiàn)Cu3(BTB)2單獨作用時,廢水去除率為10.29%;Cu3(BTB)2和H2O2共同作用,去除率驟增到91.65%。通過紫外-可見光譜、高效液相色譜、微量熱、捕獲劑等手段分析其降解機理,Cu3(BTB)2與H2O2共存時,342nm處紫外特征吸收峰右移,HPLC峰強度顯著降低,放熱反應(yīng)標(biāo)準(zhǔn)摩爾反應(yīng)焓為2068.74kJ/mol,加入自由基捕獲劑異丙醇或氯仿后,去除率大幅降低。實驗結(jié)果表明:Cu3(BTB)2單獨作用為多孔吸附,去除率較低,與H2O2共存時去除率高,歸結(jié)于Fenton-like反應(yīng)產(chǎn)生活性自由基(·OH和O2–)使CR分子鍵斷裂,且·OH占主導(dǎo)作用。
金屬-有機框架化合物;Cu3(BTB)2;過氧化氫;吸附;降解;焓;自由基
目前,有機偶氮染料已普遍應(yīng)用在紙、塑料、紡織品和橡膠等工業(yè)生產(chǎn)中[1-2],染料廢水排放量逐年增加,即使在低溶度下也高度可見,這些有色廢水進(jìn)入河流或地表水系統(tǒng),嚴(yán)重擾亂生態(tài)環(huán)境[3]。許多有機染料具有復(fù)雜的芳香環(huán)結(jié)構(gòu)導(dǎo)致難以降解,持久的保存在環(huán)境中,造成嚴(yán)重的水質(zhì)和公共衛(wèi)生問題,如過敏性皮炎、皮膚刺激、癌癥和突變等,它們的毒性還可能直接破壞或抑制微生物的催化能力[3]。這已嚴(yán)重威脅到環(huán)境以及人類健康[4-6],因此研究有機染料廢水處理[7]對社會具有重要 意義。
金屬-有機框架化合物(MOF)擁有有趣拓?fù)浣Y(jié)構(gòu)、高孔隙率以及可調(diào)孔隙結(jié)構(gòu),受到化學(xué)、物理以及材料學(xué)科等多領(lǐng)域的關(guān)注,成為科研界新寵。不僅在吸附存儲方面有深入的研究,如CO2的吸 附[8-9]、可燃性氣體的分離與儲存[10],而且在催化反應(yīng)方面也得到了廣泛的運用,如苯羥基化反應(yīng)[11]、偶聯(lián)反應(yīng)[12]、氧化脫氫[13]、催化還原反應(yīng)[14]、Knoevenagel縮合反應(yīng)[15]等。
Cu3(BTB)2(BTB=4,4',4"-benzenetri benzoate)又稱MOF-14,被CHEN等[16]合成后在運用研究上一直滯后。直到近幾年才逐漸發(fā)現(xiàn)它的價值,不僅設(shè)計出簡單快捷的合成方法,如KLIMAKOW等[17]的球磨法、劉慶等[18-19]的超聲波反應(yīng)法(并加入添加劑促進(jìn)粒子的成核率得到不同形貌的MOF-14),而且在氣體的吸附儲存與分離以及硫化物的吸附方面也呈現(xiàn)出卓越優(yōu)勢,如GLOSSMAN-MITNIK 等[10]研究了MOF-14對可燃性氣體CH4/ H2的選擇性吸附,CH4選擇性為17,相比于YANG等[20]報道的MOF-5和MOF-177更高;KARRA等[21]研究了MOF-14對CO2、CH4、N2和H2O的吸附性能,研究結(jié)果表明,MOF-14具有較好的水穩(wěn)定性,雖然水處理后部分水分子在Cu的作用力下難以去除導(dǎo)致比表面積降低,但不破壞其結(jié)構(gòu);ZHAO等[22]報道,MOF-14對汽油中的有機硫化物具有卓越的吸附性能和選擇性,并且在水、有機溶劑中具有較好的穩(wěn)定性。此外,YAO等[23]還將Cu3(BTB)2作為中間體,通過過渡金屬離子交換法合成其他無法直接得到的同結(jié)構(gòu)不同金屬的MOF,如SUMOF-1-Zn、SUMOF-1-Co等。然而,Cu3(BTB)2對有機染料分子進(jìn)行吸附降解機理的研究還很少,尤其是在熱力學(xué)方面的研究還相當(dāng)不完善,對處理過程的熵、焓和吉布斯自由能等熱力學(xué)函數(shù)值的研究報道更少。
本文采用高精度、高靈敏度的原位微量熱技術(shù)[24-25]測得了反應(yīng)過程的標(biāo)準(zhǔn)摩爾反應(yīng)焓,為MOF材料處理偶氮染料廢水機制研究奠定了實驗基礎(chǔ)。
H3BTB[1,3,5-tris(4-carboxyphenyl)benzene],分析純,濟南恒化科技有限公司;三水硝酸銅[Cu(NO3)2·3H2O]、乙醇、-二甲基甲酰胺(DMF)、30%雙氧水(H2O2),分析純,成都市科龍化工試劑廠;剛果紅(CR),指示劑級,阿拉丁試劑公司;異丙醇(IPA)、氯仿(CF),分析純,天津市富宇精細(xì)化工有限公司;實驗用水均采用二次去離子水。
X射線粉末衍射儀(XRD),Ultima Ⅳ型,日本理學(xué)公司;傅里葉變換紅外光譜儀(FTIR),MAGNA-1R550型,美國賽默飛世爾科技公司;場發(fā)射掃描電子顯微鏡(SEM),AUPRA 55 Sapphire型,德國卡爾蔡司(carl ZEISS)公司;吸附分析儀(BET),ASAP 2020型,美國麥克默瑞提克公司;紫外-可見分光光度計,Agilent Cary60 型,美國安捷倫科技公司;高效液相色譜儀(HPLC),LC-15C型,日本島津公司;微熱量熱器,RD496-CK2000型,中國綿陽中物熱分析儀器有限公司。
在聚四氟乙烯罐中加入H3BTB(0.052mmol)、Cu(NO3)2·3H2O(0.28mmol)以及乙醇∶DMF∶水(體積比)=3∶3∶2的混合溶液,常溫攪拌至溶解完全,放入烘箱,65℃下反應(yīng)24h,以5℃/h的速率冷卻至室溫,得到藍(lán)色小顆粒晶體。過濾,用5mL DMF洗兩遍,然后用5mL的無水乙醇浸泡4次,每次12h,過濾后放入真空干燥箱70℃干燥12h,得到目標(biāo)產(chǎn)物Cu3(BTB)2。
Cu3(BTB)2對CR的處理:常溫常壓下,將Cu3(BTB)2(50mg)加入到裝有250mL CR水溶液(20mg/L)的錐形瓶中,攪拌,每隔5min(或10min)取出5mL反應(yīng)液,離心,取上層清液測量200~800nm 范圍內(nèi)紫外-可見光譜的吸光度,待峰值不變時加入H2O2(1mL),繼續(xù)進(jìn)行光譜測量,直到降解完全。
自由基機理:在7個(A、A1、A2、B、C、D、E)裝有250mLCR水溶液(20mg/L)的錐形瓶中,分別加入H2O2、H2O2+IPA(22.50mL)、H2O2+CF(23.65mL)、Cu3(BTB)2、Cu3(BTB)2+H2O2、Cu3(BTB)2+H2O2+IPA(22.50mL)和Cu3(BTB)2+H2O2+CF(23.65mL),攪拌,90min內(nèi)測量其紫外-可見光譜。
結(jié)果處理:取CR溶液在498nm處的紫外特征吸收峰的吸光度值計算CR染料的去除率,計算公式為式(1)。
式中,0為CR初始溶度;C為時刻CR溶度;0為初始的吸光度值;A為時刻的吸光度值。
用微量電子天平稱取Cu3(BTB)2(2.000mg),放入微量熱計的大試樣池內(nèi),取H2O2與0.287mmol/L的CR混合溶液(1mL)移入微量熱計的小試樣池內(nèi),將小試樣池套入大試樣池中,試樣池套管放入15mL不銹鋼套筒中,封裝后,將不銹鋼套筒放入微量熱計主體,恒溫298.15K。待基線穩(wěn)定后將小試樣池輕輕捅破,使CR溶液與Cu3(BTB)2材料發(fā)生反應(yīng),使用微量熱計原位測量反應(yīng)過程的熱力學(xué)數(shù)據(jù),直至曲線再次回到基線,反應(yīng)完成得到反應(yīng)過程中產(chǎn)生的熱量。以同樣的方法,在小試樣池內(nèi)先加入1mL的0.287mmol/L CR溶液,待反應(yīng)完全后加入50μL H2O2(0.784mol/L)繼續(xù)反應(yīng)直至完全。
2.1.1 XRD表征
Cu3(BTB)2多孔材料的XRD譜圖見圖1。由圖1可看出,Cu3(BTB)2在4.6°、8.4°、10.8°、11.8°、12.7°、20.9°等處顯示出明顯的特征峰,與單晶XRD數(shù)據(jù)模擬譜圖完全吻合。表明合成的試樣是晶包參數(shù)為===2.649nm、===90°、空間群為Im-3的立方晶系多孔材料[26]。
圖1 Cu3(BTB)2多孔材料的XRD譜圖
2.1.2 FTIR表征
圖2為Cu3(BTB)2與配體H3BTB 的FTIR譜圖。由圖2可看出,兩者在3420cm–1處均出現(xiàn)水分子的特征峰。Cu3(BTB)2在1588cm–1和1400cm–1處出現(xiàn)—COO—的反對稱伸縮振動特征峰和BTB–形成—COO—的對稱伸縮振動特征峰,說明Cu2+和配體中的羧酸根相結(jié)合。此外,配體中1607cm–1和1278cm–1處的C==O 和C—OH的伸縮振動峰在Cu3(BTB)2中消失,說明H3BTB被完全質(zhì)子化,合成的Cu3(BTB)2試樣中沒有配體存在。
2.1.3 SEM表征
圖3為Cu3(BTB)2多孔材料不同放大倍數(shù)下的SEM圖像。由圖3可以發(fā)現(xiàn),Cu3(BTB)2主要呈現(xiàn)出圓球狀和多面體類似于足球狀的形貌,放大的圓球狀顆粒表面可以明顯看出分布的空隙。顆粒平均粒徑為10μm左右。
2.1.4 N2吸附表征
圖4為Cu3(BTB)2在77K下的N2吸附等溫線和孔徑分布曲線。由圖4可以發(fā)現(xiàn),吸附等溫線和脫附等溫線不完全一致,這預(yù)示著孔隙中介孔的存在。由孔徑分布曲線可以看出,材料中存在1.48nm微孔以及3.44nm、6.69nm、12.60nm共3種介孔。同時通過計算軟件擬合BET模型得出材料的比表面積為1293m2/g。
圖2 Cu3(BTB)2與配體的FTIR譜圖
圖3 Cu3(BTB)2多孔材料不同放大倍數(shù)下的SEM圖
圖4 77K下的N2吸附等溫線和孔徑分布曲線
H2O2對CR去除率的影響見圖5。如圖5所示,僅加入Cu3(BTB)2材料時,342nm和498nm處的吸收峰均等比例降低,到3h時基本不變;而加入H2O2后342nm處的特征吸收峰稍微右移且升高,去除率迅速攀升到90%以上。顯然H2O2的加入對CR染料的去除有十分顯著的影響。
2.2.1 HPLC分析
通過HPLC分析(圖6)發(fā)現(xiàn),加入Cu3(BTB)2后的出峰保留時間與最初CR溶液的基本一致,電信號強度稍微降低(550mV降到500mV),在5.160min出現(xiàn)一個很弱的峰,可能是材料中殘留的少量溶劑產(chǎn)生,表明僅溶度有所降低,成分基本沒有變化。這是因為Cu3(BTB)2材料具有高比表面積,且結(jié)構(gòu)中的羰基能與偶氮染料含氮基團(—NH2)形成氫鍵[27-28]以及Cu元素能與偶氮染料分子形成靜電力[28-29],所以能提供大量有效吸附位點吸附溶液中的CR分子,該過程為吸附過程。同時加入H2O2后,CR染料主要出峰時間的電信號強度顯著降低(從550mV降為55mV),紅色溶液變?yōu)槌吻逡海以?.073min、5.035min、5.276min出現(xiàn)3個明顯的峰,說明CR分子結(jié)構(gòu)斷裂,溶液中有新的物質(zhì)生成,該過程為降解過程。
圖5 H2O2對CR去除率的影響
2.2.2 標(biāo)準(zhǔn)摩爾反應(yīng)焓
利用微量熱技術(shù)測試了各反應(yīng)階段產(chǎn)生的熱量,圖7為一步反應(yīng)時的熱譜曲線,全過程整體上表現(xiàn)為放熱反應(yīng),標(biāo)準(zhǔn)摩爾反應(yīng)焓為2041.47 kJ/mol,如表1。由放大圖可知,該過程剛開始時吸熱大于放熱,熱譜曲線呈現(xiàn)下降趨勢,之后放熱大于吸熱,熱譜曲線開始迅速上升,說明在反應(yīng)中有明顯的吸附吸熱過程。進(jìn)一步的研究得出,吸附吸熱反應(yīng)的標(biāo)準(zhǔn)摩爾反應(yīng)焓為–14.65kJ/mol,降解放熱反應(yīng)的標(biāo)準(zhǔn)摩爾反應(yīng)焓為2068.74kJ/mol,這也進(jìn)一步闡釋了前者為CR分子移向Cu3(BTB)2固體顆粒表面,分子運動速度降低,是能量減少的吸附反應(yīng);后者為發(fā)生化學(xué)鍵的斷裂,釋放出大量熱的降解 反應(yīng)。
圖6 反應(yīng)過程HPLC色譜圖
圖7 一步反應(yīng)時的熱譜曲線
表1 不同方式去除CR染料的標(biāo)準(zhǔn)摩爾反應(yīng)焓
2.2.3 H2O2的影響機理
反應(yīng)條件對CR去除率的影響見圖8。在圖8中可以發(fā)現(xiàn),CR染料溶液的主要特征峰出現(xiàn)在342nm和498nm處,分別為CR的雙萘環(huán)結(jié)構(gòu)和偶氮基的特征吸收峰[30],單獨的H2O2或Cu3(BTB)2均不會造成這兩峰的偏移,然而兩者共同作用時342nm處的特征峰右移到366nm處,峰值不減反增,伴隨著大量的能量釋放,直到最終降解完全HPLC中出現(xiàn)新的峰。這均表明H2O2的加入會使CR分子中的雙萘環(huán)結(jié)構(gòu)和偶氮基斷裂[31]。
研究表明(如圖8、表2),分別加入IPA與CF后降解效果明顯變差,去除率分別降為40.56%、70.60%,且單獨的IPA和CF對CR染料無影響(如A1、A2)。IPA含-氫,極易與?OH反應(yīng)(IPA,?OH= 6.0×109mol–1?s–1)[33],不易與?O2–反應(yīng);相反,CF極易與?O2發(fā)生反應(yīng)(e-,CF=3.0×1010mol–1?s–1)[32],不易與?OH反應(yīng)(?OH,CF=5.0×106mol–1?s–1)[32]。因此使用IPA和CF分別作為?OH與?O2–的俘獲 劑[33]用于清除反應(yīng)體系中H2O2產(chǎn)生的活性氧,研究自由基對反應(yīng)的影響。結(jié)果表明,Cu3(BTB)2與H2O2共同作用時能發(fā)生Fenton-like反應(yīng)[34]產(chǎn)生羥基自由基和超氧自由基,其中羥基自由基的氧化電位高達(dá)2.8V,僅次于氟(3.03V),具有強氧化性[35],在CR染料的降解過程中占主導(dǎo)地位,它們使CR染料分子的C—S、N==N、C—N、C—C鍵斷裂,發(fā)生開環(huán)和脫羧反應(yīng)[36-37],降解成各種小分子物質(zhì),最終礦化成為CO2、H2O和NO3–等無機離子[33,38-39],降解過程中伴隨大量氣泡產(chǎn)生。相比類似的反應(yīng),Cu3(BTB)2具有獨特的多核金屬簇,使它對CR有機染料的降解產(chǎn)生如此優(yōu)越的效果。根據(jù)實驗可推斷反應(yīng)公式如式(2)~式(4),過程圖見圖9。
表2 不同反應(yīng)條件下CR的去除率
CuⅡ-MOF+H2O2—→Cu?-MOF+?O2–+2H+(2)
Cu?-MOF+H2O2—→CuⅡ-MOF+?OH+OH-(3)
?OH+?O2–+CR—→intermediates—→CO2+H2O (4)
(1)XRD分析、FTIR分析、SEM觀察和N2吸附測量等實驗結(jié)果表明,合成了比表面積為1293m2/g、粒徑為10μm,以介孔為主的球形多孔顆粒材料。
(2)Cu3(BTB)2能吸附10.29%的CR偶氮染料分子,是吸熱反應(yīng),標(biāo)準(zhǔn)摩爾反應(yīng)焓為–14.65kJ/mol。
(3)Cu3(BTB)2與少量的H2O2能發(fā)生Fenton-like反應(yīng),產(chǎn)生羥基自由基和超氧自由基,迅速降解91.65%的CR染料分子,使分子鍵斷裂放出熱量,標(biāo)準(zhǔn)摩爾反應(yīng)焓為2068.74kJ/mol。
圖8 反應(yīng)條件對CR去除率的影響
圖9 Cu3(BTB)2與H2O2降解染料廢水的機理
(4)在降解過程中羥基自由基起主導(dǎo)作用,加入IPA和CF俘獲劑后,降解速度明顯減慢,降解率降為40.56%和70.60%。
(5)以Cu3(BTB)2多孔材料處理CR的研究為基礎(chǔ),為今后MOFs處理有機染料的研究在機理上提供了參考。
[1] FAN W,GAO W,ZHANG C,et al.Hybridization of graphene sheets and carbon-coated Fe3O4nanoparticles as a synergistic adsorbent of organic dyes[J].Journal of Materials Chemistry,2012,22:25108-25115.
[2] LIANG M,CHEN J. Arylamine organic dyes for dye-sensitized solar cells[J].Chemical Society Reviews,2013,42:3453-3488.
[3] GONG R,YE J,DAI W,et al. Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon[J]. Industrial & Engineering Chemistry Research,2013,52:14297-14303.
[4] UDDIN M T,ISLAM M A,MAHMUD S,et al.Adsorptive removal of methylene blue by tea waste[J].Journal of Hazardous Materials,2009,164:53-60.
[5] HAQUE E,JUN J W,JHUNG S H.Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material,iron terephthalate(MOF-235)[J].J Hazard Mater,2011,185:507-511.
[6] MAHANTA D,MADRAS G,RADHAKRISHNAN S. Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics[J].J. Phys. Chem. B,2008,112:10153-10157.
[7] 李小娟,何長發(fā),黃斌,等.金屬有機骨架材料吸附去除環(huán)境污染物的進(jìn)展[J].化工進(jìn)展,2016,35(2):586-594.
LI X J,HE C F,HUANG B,et al.Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J].Chemical Industry and Engineering Progress,2016,35(2):586-594.
[8] 朱晨明,王保登,張中正,等.金屬-有機骨架復(fù)合材料的制備及其二氧化碳吸附性能[J].化工進(jìn)展,2016,35(9):2875-2884.
ZHU C M,WANG B D,ZHANG Z Z,et al.Preparation and CO2adsorption performance of metal-organic framework composites[J]. Chemical Industry and Engineering Progress,2016,35(9):2875-2884.
[9] 牛照棟,關(guān)清卿,陳秋玲,等.膦酸類金屬-有機骨架材料對CO2的吸附性能研究進(jìn)展[J].化工進(jìn)展,2017,36(5):1782-1790.
NIU Z D,GUAN Q Q,CHEN Q L,et al.Progress of application for CO2adsorption with phosphonate metal-organic frameworks[J]. Chemical Industry and Engineering Progress,2017,36(5):1782-1790.
[10] GALLO M,GLOSSMAN-MITNIK D.Fuel gas storage and separations by metal-organic frameworks:simulated adsorption isotherms for H2and CH4and their equimolar mixture[J].J. Phys. Chem. C,2009,113:6634-6642.
[11] 劉艷鳳,張?zhí)煊溃瑓俏浔?,等.水處理提高M(jìn)OF-199催化苯羥基化反應(yīng)性能[J].化工進(jìn)展,2016,35(4):1113-1120.
LIU Y Y,ZHANG T Y,WU W B,et al. Enhanced catalytic properties of MOF-199 with water treatment in the direct hydroxylation of benzene[J].Chemical Industry and Engineering Progress,2016,35(4):1113-1120.
[12] 劉麗麗,臺夕市,劉美芳,等.Au/MOF-5催化劑在三組分偶聯(lián)反應(yīng)中的催化性能[J].化工學(xué)報,2015,66(5):1738-1747.
LIU L L,TAI X S,LIU M F,et al.Supported Au/MOF-5:a highly active catalyst for three-component coupling reactions[J].CIESC Journal,2015,66(5):1738-1747.
[13] LI Z,PETERS A W,BERNALES V,et al. Metal-organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature[J].ACS Cent. Sci.,2017,3:31-38.
[14] HERMANNSD?RFERJ,F(xiàn)RIEDRICH M,MIYAJIMA N,et al.Ni/Pd@MIL-101:synergistic catalysis with cavity-conform Ni/Pd nanoparticles[J]. Angew. Chem. Int. Ed.,2012,51:11473-11477.
[15] JUAN-ALCA?IZENRIQUE J,RAMOS-FERNANDEZ E V,LAFONT U,et al.Building MOF bottles around phosphotungstic acid ships:one-pot synthesis of bi-functional polyoxometalate-MIL- 101 catalysts[J].Journal of Catalysis,2010,269:229-241.
[16] CHEN B L,EDDAOUDI M,HYDE S T.Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science,2001,291(5506):1021-1023.
[17] KLIMAKOW M,KLOBES P,THU?NEMANN A F,et al.Mechanochemical synthesis of metal-organic frameworks:a fast and facile approach toward quantitative yields and high specific surface areas[J].Chemistry of Materials,2010,22:5216-5221.
[18] 劉慶,楊吉民,靳黎娜,等.添加劑輔助的溶劑熱合成多孔配位聚合物MOF-14及其形貌和尺寸調(diào)控[J].科學(xué)通報,2016,61(16):1774-1780.
LIU Q,YANG J M,JIN L N ,et al.Additive-assisted solvothermal synthesis and properties of porous coordination polymer MOF-14 crystals with controlled morphology and size[J].Chinese Science Bulletin,2016,61(16):1774-1780.
[19] LIU Q,YANG J M,JIN L N,et al.Controlled synthesis of porous coordination-polymer microcrystals with definite morphologies and sizes under mild conditions[J].Chemistry,2014,20:14783-14789.
[20] YANG Q Y,ZHONG C L.Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks[J].J. Phys. Chem. B,2006,110:17776-17783.
[21] KARRA J R,GRABICKA B E,HUANG Y G,et al.Adsorption study of CO2,CH4,N2,and H2O on an interwoven copper carboxylate metal-organic framework(MOF-14)[J].J. Colloid Interface Sci.,2013,392:331-336.
[22] ZHAO X Q,XIN C L,YIN Y C,et al.Metal organic framework as an adsorbent for desulphurization[J]. Adsorption Science & Technology,2012,30:483-490.
[23] YAO Q,SUN J,LI K,et al.A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation[J]. Dalton Trans.,2012,41:3953-3955.
[24] FAN G,MA Z,HUANG Z.Size effect on thermodynamic parameters for the peanut-like CaMoO4micro/nano reaction systems[J]. Journal of Thermal Analysis and Calorimetry,2013,116:485-489.
[25] FAN G,HUANG Z,JIANG J,et al.Standard molar enthalpy of formation of the ZnO nanosheets[J].Journal of Thermal Analysis and Calorimetry,2011,110:1471-1474.
[26] YOON M Y,SRIRAMBALAJI R,KIM K.Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J].Chem. Rev.,2012,112:1196-1231.
[27] AHMAD R,KUMAR R.Adsorptive removal of Congo Red dye from aqueous solution using bael shell carbon[J].Applied Surface Science,2010,257:1628-1633.
[28] ZHU T,CHEN J S,LOU X W.Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area[J].The Journal of Physical Chemistry C,2012,116:6873-6878.
[29] SHEN C,SHEN Y,WEN Y,et al.Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(Ⅲ) hydrogel[J]. Water Res.,2011,45:5200-5210.
[30] CHANG J S,CHOU C,LIN Y C.Kinetic characteristics of bacterial azo-dye decolorization by pseudomonas luteola[J].Wat. Res.,2001,35:2841-2850.
[31] MA S,NIU Y,ZHAO X,et al.A metal-organic polyhedron based on dibenzothiophene ligand:gas adsorption and reductive properties[J].Inorganic Chemistry Communications,2016,70:10-13.
[32] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(?OH/?O?) in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17:513-886.
[33] HWANG S,HULING S G,KO S.Fenton-like degradation of MTBE:effects of iron counter anion and radical scavengers[J]. Chemosphere,2010,78:563-568.
[34] PEREIRA M C,OLIVEIRA L C A,MURAD E.Iron oxide catalysts: Fenton and fentonlike reactions—A review[J].Clay Minerals,2012,47:285-302.
[35] SCHWARZ H A,DODSON R W.Equilibrium between hydroxyl radicals and thallium(Ⅱ) and the oxidation potential of hydroxyl(AQ) [J]. The Journal of Physical Chemistry,1984,88:3643-3647.
[36] XING X,DENG D,LI Y,et al.Macro-/nanoporous Al-doped ZnOself-sustained decomposition of metal-organic complexes for application in degradation of Congo Red[J].Ceramics International,2016,42:18914-18924.
[37] ERDEMO?LU S,AKSU S K,SAYLKAN F,et al.Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2and identification of degradation products by LC-MS[J].Journal of Hazardous Materials,2008,155:469-476.
[38] 任南琪,郭婉茜,楊珊珊,等.染料廢水處理技術(shù)研究進(jìn)展[J].化工學(xué)報,2013,64(11):84-94.
REN N Q,GUO W Q,YANG S S,et al. A review on treatment methods of dye wastewater[J].CIESC Journal,2013,64(11):84-94.
[39] LI D F,GUO Y H,HU C W,et al.Preparation,characterization and photocatalytic property of the PW110397-/TiO2composite film towards AZO-dye degradation[J].Journal of Molecular Catalysis A:Chemical,2004,207:183-193.
Application and mechanism of azo dye wastewater treatment using Cu3(BTB)2and H2O2
XU Yanhui1,2,YIN Xianhong1,QIU Jiangyuan1,HUANG Zaiyin1,2,TAN Chunping3,HU Yuping1,2
(1School of Chemistry and Chemical Engineering,Guangxi University for Nationalities,Nanning 530006,Guangxi,China;2Guangxi Key Laboratory of Chemistry and Engineering of Forest Products,Nanning 530006,Guangxi,China;3Nanning University,Nanning 530200,Guangxi,China)
The mesoporous materials Cu3(BTB)2(BTB=4,4',4"-benzenetri benzoate)was synthesized, and then characterized by scanning electron microscopy(SEM),nitrogen adsorption measurements(BET), Fourier transform infrared spectrometer(FTIR),and X-ray powder diffraction(XRD). The results show that the Cu3(BTB)2particles were spherical,with a SBETof 1293m2/g, and an average particle size of 10μm. In the treatment of Congo red dye wastewater by using Cu3(BTB)2alone, the removal rate was 10.29%, whereas treated by Cu3(BTB)2and hydrogen peroxide(H2O2)together,the rate was increased to 91.65%. The mechanism was studied by means of UV-Vis spectroscopy,high performance liquid chromatography,microcalorimetry and free radical trapping agent. When Cu3(BTB)2interacted with H2O2,the UV absorption peak at 342nm shifted to the right,the peak intensity of HPLC was reduced by about 500mV,and the exothermic standard molar reaction enthalpy was 2068.74kJ/mol . When we added opropanol(IPA)or chloroform(CF)to capture the ·OH or ·O2–radical into the reaction solution,the is removal rate was decreased. The results showed that Cu3(BTB)2porous material could adsorb the CR dye,while H2O2could produce the ·OH and ·O2–free-radical to break the CR molecular bond through the Fenton-like reaction,and the OH radicals played a dominant role.
metal-organic framework(MOF);Cu3(BTB)2;hydroen peroxide(H2O2)adsorption;degradation;enthalpy;radical
O64
A
1000–6613(2017)12–4700–08
10.16085/j.issn.1000-6613.2017-0455
2017-03-20;
2017-05-26。
國家自然科學(xué)基金(21267003)、廣西高??蒲许椖浚?01203YB061)、廣西民族大學(xué)2016年研究生科研創(chuàng)新 計劃(gxun-chxps201678)及廣西民族大學(xué)引進(jìn)人才科研啟動項目(2013QD016)。
徐言慧(1992—),女,碩士研究生。
胡玉平,博士,副教授,研究方向為環(huán)境化學(xué)與新材料。E-mail:huyuping@gxun.edu.cn。