顏丙新,張東興,2,崔 濤,和賢桃,丁友強,楊 麗
?
排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計
顏丙新1,張東興1,2,崔 濤1,和賢桃1,丁友強1,楊 麗1※
(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 農(nóng)業(yè)部土壤-機器-植物系統(tǒng)技術(shù)重點實驗室,北京 100083)
針對傳統(tǒng)氣吸式排種器工作時排種盤與負(fù)壓腔室的密封墊之間相對轉(zhuǎn)動,易導(dǎo)致密封墊磨損,從而造成排種器密閉性下降、風(fēng)壓需求增加、作業(yè)精度降低等問題,設(shè)計了一種排種盤和負(fù)壓腔室同步旋轉(zhuǎn)的氣吸式排種器,將排種盤與負(fù)壓腔室固定連接,作業(yè)時同步旋轉(zhuǎn),使排種盤和密封墊之間不產(chǎn)生相對運動,達(dá)到無摩擦、低氣壓損失、高排種精度的效果?;跈C械擾種和重力輔助充種原理,將該排種器排種盤設(shè)計為帶直線凸起的環(huán)形錐臺,分析確定了排種器工作區(qū)域,計算了排種盤的關(guān)鍵結(jié)構(gòu)參數(shù)。以含水率為12.8%,千粒質(zhì)量為351 g的鄭單958未分級種子為試驗對象,借助中國農(nóng)業(yè)大學(xué)自主研發(fā)的排種器性能檢測儀對該排種器作業(yè)效果進(jìn)行了室內(nèi)試驗,結(jié)果表明:作業(yè)速度10 km/h以下,所研制的排種器在負(fù)壓值–3.5~–5.5 kPa時,粒距合格指數(shù)均能達(dá)到91.6%,漏播指數(shù)均小于5.2%,重播指數(shù)均小于5.4%,各項指標(biāo)優(yōu)于國標(biāo)要求,能實現(xiàn)有效排種。與Kverneland排種器的對比試驗表明,要達(dá)到相同合格指數(shù),設(shè)計的盤室同步氣吸式精量排種器所需負(fù)壓值更低。
機械化;種子;設(shè)計;氣吸式;排種器;機械擾種;重力輔助
機械化精密播種是目前玉米的主要播種方式,精量排種器是實現(xiàn)玉米機械化精密播種的關(guān)鍵核心部件[1-5]。氣吸式排種器是主要的精量排種器之一,因其對種子適應(yīng)性強、損傷小、適宜高速作業(yè)、播種精度高等優(yōu)點,在實際生產(chǎn)中應(yīng)用最為廣泛[6- 7]。因此國內(nèi)外學(xué)者對氣吸式排種器進(jìn)行了大量研究,楊麗等[8]針對氣吸式排種器播種玉米時漏播率高、地頭漏播嚴(yán)重的問題,設(shè)計了一種采用機械托種盤輔助附種的氣吸式精量排種器,利用托種盤窩眼對種子的托附和夾持作業(yè),實現(xiàn)對氣吸式排種器的輔助充種;趙佳樂等[9]設(shè)計了一種偏置雙圓盤氣吸式排種器,通過分析排種器取種、排種等作業(yè)原理,優(yōu)化設(shè)計了關(guān)鍵工作部件。Karayel D等[10]通過試驗發(fā)現(xiàn)了氣吸式排種器對不同種子的最佳工作壓力,并建立了風(fēng)壓值與種子不同物理特性間的數(shù)學(xué)模型。Onal I等[11]通過空氣動力學(xué)分析發(fā)現(xiàn)26孔的排種盤最適宜氣吸式排種器播種玉米。
傳統(tǒng)氣吸式排種器為達(dá)到良好的排種效果,通過增加排種盤與密封墊之間的接觸力來保證其負(fù)壓腔室的密封性,這就加劇了排種盤與密封墊之間的摩擦,易導(dǎo)致密封墊的磨損[12],從而造成排種器風(fēng)壓需求增加、作業(yè)精度降低等問題。目前該問題的解決多通過改善密封墊抗噪性能實現(xiàn)。
Kverneland公司研制了一種排種盤和負(fù)壓腔室同步旋轉(zhuǎn)的氣吸式排種器[13],排種盤與負(fù)壓腔室之間無相對轉(zhuǎn)動,避免了密封墊磨損老化的問題,但對風(fēng)壓需求較傳統(tǒng)排種器更高,能耗更大。
本文針對上述問題,在Kverneland氣吸排種器基礎(chǔ)上進(jìn)一步改進(jìn),將排種盤與負(fù)壓腔室固定連接,作業(yè)時同步旋轉(zhuǎn),使排種盤和負(fù)壓腔室的密封墊之間不產(chǎn)生相對運動,無摩擦,以期解決密封墊易磨損需更換的問題,提高排種器使用壽命;同時設(shè)計了環(huán)狀錐臺型排種盤,該排種盤型孔均布于錐臺側(cè)面,其充種區(qū)設(shè)置在錐臺第一象限內(nèi),可借助重力輔助充種,減小工作風(fēng)壓需求,降低能耗。
排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器結(jié)構(gòu)如圖1所示,主要由種群調(diào)節(jié)板1、儲種箱2、空氣室后壁面3、排種盤4、清種刀5、空氣室前壁面6、前殼體7、卸種板8、進(jìn)氣管9、軸承10、鏈輪11、后殼體12等組成。該排種器空氣室后壁面、排種盤和空氣室前壁面三者固定連接,組成負(fù)壓腔室,并通過空氣室后壁面與鏈輪固定,型孔均布于環(huán)狀錐形圓臺排種盤側(cè)面,進(jìn)氣管固定于后殼體并與負(fù)壓腔室連通。其中排種盤是排種器核心工作部件,其側(cè)面與前殼體和后殼體形成圓環(huán)型空間,是主要工作區(qū)間。按不同功能和作業(yè)順序工作區(qū)間可分為充種區(qū)I、清種區(qū)II、攜種區(qū)III、卸種區(qū)IV和過渡區(qū)V,如圖2所示。
1. 種群調(diào)節(jié)板 2. 儲種箱 3. 空氣室后壁面 4. 排種盤 5. 清種刀 6. 空氣室前壁面 7. 前殼體 8. 卸種板 9. 進(jìn)氣管 10. 軸承 11. 鏈輪 12. 后殼體
Ⅰ. 充種區(qū)Ⅱ. 清種區(qū)Ⅲ. 攜種區(qū)Ⅳ. 卸種區(qū)Ⅴ. 過渡區(qū)
Ⅰ. Filling zone Ⅱ.Clearing zone III.Carrying zone Ⅳ.Unloading zone Ⅴ. Transition zone
注:α(=1,2,3,4,5)為對應(yīng)工作區(qū)間的角度范圍。
Note:α(=1,2,3,4,5) is the angle range of corresponding workspace.
圖2 排種器工作區(qū)域劃分
Fig.2 Partition of seed-metering device working area
排種器工作過程分為輔助充種、碰撞清種、單粒攜種、阻氣卸種和無種過渡5個過程。作業(yè)時,儲種箱內(nèi)的種子落入位于排種盤側(cè)面上方的充種區(qū),一?;蚨嗔7N子在重力的作用下填充到型孔處或分散在型孔周邊,來自風(fēng)機的負(fù)壓氣流經(jīng)過進(jìn)氣管通過負(fù)壓腔室將負(fù)壓傳遞到型孔處,使種子被吸附在型孔上,完成充種。鏈輪帶動負(fù)壓腔室繞進(jìn)氣管轉(zhuǎn)動,種子隨排種盤到達(dá)清種區(qū)。在清種區(qū),沿排種盤側(cè)面圓周方向安裝有鋸齒形圓弧清種刀,型孔處種子經(jīng)過清種刀時受到間隔碰撞干擾,吸附力不占優(yōu)勢的種子離開型孔,在重力作用下沿圓弧和錐角母線方向,落回充種區(qū),吸附力占優(yōu)勢的種子被保留下來,保證排種單粒性。隨后,單粒種子在持續(xù)負(fù)壓氣流的作用下通過攜種區(qū),到達(dá)卸種區(qū)。卸種區(qū)的卸種板從負(fù)壓腔室內(nèi)側(cè)封閉型孔,阻斷氣流,種子失去吸附力,在重力作用下被釋放,完成投種。排種盤繼續(xù)旋轉(zhuǎn)經(jīng)過過渡區(qū),返回充種區(qū),進(jìn)入下一個工作循環(huán)。
為降低充種風(fēng)壓,達(dá)到重力輔助充種的目的,在充種區(qū),種群應(yīng)位于型孔上方,從而使種子重力產(chǎn)生指向型孔的分量。為此將充種區(qū)設(shè)置在排種盤水平中線上方右側(cè)第一象限的區(qū)域Ⅰ,如圖2所示,與水平面夾角1?(0°~45°)。
充填在型孔區(qū)域的種子,隨排種盤轉(zhuǎn)動至清種區(qū),為使不占優(yōu)勢的種子受到清種刀碰撞后,在重力作用下順利落回充種區(qū)而不被帶到攜種區(qū),需保證圓周方向排種盤對種子的拖帶作用力小于重力沿回落方向的分力。為此對種子在排種盤上的滑落狀況進(jìn)行受力分析,如圖3所示。
注:G為種子重力,N;g為種子重心與排種盤中心的連線與水平方向的夾角,(°);Ff為種子所受摩擦阻力,N;Fcf為種子所受離心力,N;Fp為種子所受吸附力,N;FN為排種盤對種子的支持力,N;Rh為型孔所在圓周半徑,m。
多余種子落回充種區(qū)有3種運動狀態(tài):滑動、滾動、滑動兼滾動。種子在排種盤上的滑動摩擦力大于其滾動摩擦力,若滿足純滑動狀態(tài)下順利回落的種子,即可保證其他2種狀態(tài)下也順利回落。故以滑動狀態(tài)的種子回落為例進(jìn)行受力分析。
多余種子脫離型孔后不受吸附力作用,在回落過程中,種子徑向受力平衡,此時種子的受力情況如下。
種子順利落回而不被拖帶的條件為
式中為種子重力,N;為種子重心與排種盤中心的連線與水平方向的夾角,(°);F為種子所受摩擦阻力,N;F為F最大值,N;F為種子所受離心力,N;F為種子所受吸附力,N;為玉米種子與排種盤的靜摩擦系數(shù),取0.482。
當(dāng)F=0時,F=sin,此時計算得種子重力分量與摩擦力相等時的角度=70°,所以清種區(qū)域Ⅱ的范圍為2∈(45°~70°)。
在卸種區(qū),卸種板從型孔內(nèi)側(cè)阻斷氣流,斷絕氣流對種子的吸附,種子在重力作用下離開排種器,落入種溝。種子落地瞬間,與地表接觸碰撞造成彈跳,導(dǎo)致株距的變異,觸地時的速度越大,彈跳越嚴(yán)重,株距變異系數(shù)越大[14-15]。減小接觸速度能有效降低株距變異系數(shù)[16]。
如圖4種子運動分析示意圖所示,在排種盤型孔所在平面內(nèi),建立平面直角坐標(biāo)系,坐標(biāo)原點與種子離開排種盤時的位置處在同一豎直直線上。
注:VC為種子觸地速度,m·s–1;VCX為種子觸地速度的水平分量,m·s–1;VCY為種子觸地速度的豎直分量,m·s–1;Vh為型孔線速度,m·s–1;VX為種子離開排種盤瞬間水平分速度,m·s–1;VY為種子離開排種盤瞬間豎直分速度,m·s–1;Vf為播種機前進(jìn)速度,m·s–1;d為種子脫離排種盤瞬間,排種盤中心與種子連線與水平面夾角,(°);t為種子離開排種盤到觸地所用時間,s;h為種子離開排種盤時距離地表的高度,m;g為重力加速度,m·s–2。
氣吸式排種器采用高位投種,種子脫離排種器,經(jīng)過導(dǎo)種管,落入種床過程中,種子受到的空氣阻力較小,在此忽略不計。種子從離開排種盤到接觸種床過程,相對于地表的運動軌跡可表示為
種子接觸種床時的速度為
式中V為種子離開排種盤后的速度,m/s;V為種子離開排種盤后速度的水平分量,m/s;V為種子離開排種盤后速度的豎直分量,m/s;V為播種機前進(jìn)速度,m/s;V為型孔所在圓周線速度,m/s;為種子脫離排種盤瞬間,排種盤中心與種子連線與水平面夾角,(°);為為種子離開排種盤到觸地所用時間,s;為重力加速度,m/s2。
將式(7)和式(8)代入式(6)整理得
播種機前進(jìn)速度和排種器型孔所在圓周線速度可表示如下:
式中R為型孔所在圓周半徑,m;n為排種盤轉(zhuǎn)速, r/min;為型孔數(shù);為理論株距,m。
所以有
式中為通過輔助角公式變換得到的輔助角,(°)。
由式(12)可知,種子落地速度由①、②、③ 3項決定。①項受型孔所在圓周線速度即排種盤轉(zhuǎn)速影響(株距和型孔數(shù)確定的情況下,排種盤轉(zhuǎn)速與作業(yè)速度成正比);②項受種子在空中運動的時間影響,該時間與排種盤轉(zhuǎn)速和落種高度有關(guān);①、②項提到的因素對③項均有影響,另外③項受角影響。其中,排種盤轉(zhuǎn)速由實際工作狀況確定,落種高度與排種器安裝位置有關(guān),只有為排種器結(jié)構(gòu)確定。③項為0時,角度對觸地速度V的貢獻(xiàn)值最大,此時
可知,最優(yōu)角度與排種盤轉(zhuǎn)速、落種高度及運動時間有關(guān)。
隨著排種器作業(yè)速度和安裝位置高度等因素的變化,值存在差異,無法確定唯一的最優(yōu)值。為保證種子在阻斷氣流期間有充足時間脫離型孔而不被重新吸附,設(shè)定氣流阻斷區(qū)間長度為30°;并借鑒應(yīng)用范圍較廣、作業(yè)性能優(yōu)良的美國Precision Planting vSet氣吸式排種器[17](該排種器卸種點位置通過實際測量獲得)卸種點位置角度作為新設(shè)計排種器卸種區(qū)起始點角度,初步設(shè)定卸種區(qū)Ⅳ范圍為4∈(205°~235°)。
攜種區(qū)Ⅲ位于清種區(qū)結(jié)束點和卸種區(qū)開始點之間,3∈(70°~205°)。卸種區(qū)結(jié)束點和充種區(qū)開始點之間為過渡區(qū)Ⅴ,該區(qū)域沒有種子參與,范圍為5∈(235°~360°)。
排種盤是將種子從種群分離的關(guān)鍵部件,對于充分充種、有效清種和順利投種有重要意義。排種盤如圖5所示,排種盤呈環(huán)狀錐形圓臺狀,型孔均布在圓臺側(cè)面,為充種區(qū)種群提供承托,有助于實現(xiàn)重力輔助充種,錐形側(cè)面為清理后的種子提供母線方向加速度,改變回落路徑,防止回落種子與來種干涉。型孔外側(cè)均布有異形突起,其在排種盤經(jīng)過種群時,撓動種群,增加種子的活躍度,提高充種性能。異形凸起結(jié)構(gòu)將在下文通過仿真試驗確定。
1. 錐形圓臺盤2. 型孔3. 異型凸起
1. Plate with circular truncated cone 2. Seed cell 3. Shaped bluge
注:為排種盤錐角,(°)。
Note:is cone angle of metering plate, (°).
圖5 排種盤示意圖
Fig.5 Structure of metering plate
傳統(tǒng)氣吸式排種器均為垂直圓盤式,被清理的種子依靠重力直接落回充種區(qū),等待下次填充。此環(huán)狀錐形圓臺排種盤,種子被清理后,需經(jīng)過圓臺側(cè)面回落至充種區(qū)。為使所清種子不干擾下一粒來種,在母線方向增加傾角,用于為種子提供沿母線方向的加速度,如圖5所示。傾角過大會造成重力分量對充種的輔助作用減小,傾角過小又不足以提供沿母線方向的加速度。因此在測量種子與排種盤之間摩擦角為25.5°,并綜合考慮輔助充種和順利清種,選取傾角=64°。
排種盤型孔數(shù)根據(jù)式(10),并結(jié)合設(shè)計需求進(jìn)行計算。其中根據(jù)農(nóng)業(yè)機械設(shè)計手冊:排種盤吸孔處的線速度一般不應(yīng)大于0.35 m/s,即V≤0.35 m/s,排種器最高作業(yè)速度設(shè)計為16 km/h,即V≤16 km/h,理論株距設(shè)計為=25 cm。計算得型孔數(shù)最少為24.2個。結(jié)合參考文獻(xiàn)[11]試驗結(jié)論,本設(shè)計中型孔數(shù)取26個。
當(dāng)型孔完成填充,排種盤吸附種子后做勻速圓周運動,這個過程種子受力平衡,如圖3所示。
排種盤切向
排種盤法向
式中為排種盤角速度,rad/s;為型孔處壓力,Pa;為型孔面積,m2。
聯(lián)立整理式(14)、(15)得吸附種子的最小理論 壓力:
考慮吸種可靠性系數(shù)1=1.8~2,外界條件系數(shù)2=1.6~2,式(16)演化為:
式中為種子質(zhì)量,kg;為型孔半徑,m。
由式(17)可知,型孔半徑越小,所需風(fēng)壓越大;轉(zhuǎn)速越快,所需風(fēng)壓越大。所以選取大孔徑來降低風(fēng)壓需求。型孔直徑=(0.64~0.66),其中為種子平均寬度,因鄭單958種子平均寬度為8.3 mm,故確定型孔直徑為5.4 mm。
充種區(qū)不同位置的種子在任意時刻受力不同,位于種群底部,靠近型孔的種子受流場作用力較大[18],更易被吸附,處在種群最外邊緣,接近清種區(qū)的種子,受其他種子作用力最小,最易被吸附,自此向種群內(nèi)側(cè),種子被吸附的機會逐漸降低。減小種群內(nèi)相互作用力,提高種群內(nèi)種子的活躍度,有助于提高充種概率[19-20]。祁兵等利用氣流對種群進(jìn)行擾動,增加種群空間膨脹狀態(tài),提高充種性能[21];李耀明等將機械振動引入播種試驗臺,減小種子間摩擦,提高吸種率[22-23];史嵩等通過仿真和試驗發(fā)現(xiàn)較大的種群擾動強度會在瞬間降低種子內(nèi)摩擦阻力,使種子更容易被氣流壓力壓附在型孔上[2]。本排種器根據(jù)擾動充種原理,在排種盤周向均勻布置擾種機構(gòu)。設(shè)計的3種擾種機構(gòu)分別是:圓形凸臺、直線條狀凸臺和斜線條狀凸臺。凸臺高度取0.6 mm,圓形凸臺直徑取10 mm,條狀凸臺寬度取8 mm。
3.3.1 擾種效果仿真
為探明3種擾種機構(gòu)的作業(yè)效果,以種群內(nèi)各時刻種子動能平均值為指標(biāo)(動能平均值越大說明種群擾動強度越大,充種性能越好)進(jìn)行仿真試驗,試驗采用的4種排種盤形式如圖6所示,P1盤為無凸起排種盤作為對照組,P2盤在型孔周圍增加圓形凸臺,P3盤在型孔周圍沿側(cè)面母線方向添加直線條狀凸臺,P4盤在型孔周圍與側(cè)面母線成45°夾角添加斜線條狀凸臺。
注:P1盤為無凸起排種盤作為對照組;P2盤在型孔周圍增加圓形凸臺;P3盤在型孔周圍沿側(cè)面母線方向添加直線條狀凸臺;P4盤在型孔周圍與側(cè)面母線成45°夾角添加斜線條狀凸臺。
將排種盤角速度在其工作速度范圍內(nèi)分為6個梯度,分別是1.57、2.11、2.66、3.2、3.75、4.29 rad/s,對應(yīng)排種器作業(yè)速度分別為6、8、10、12、14、16 km/h。在各速度梯度下進(jìn)行仿真試驗,并獲取各個速度下種子的平均動能。
采用EDEM軟件進(jìn)行仿真,排種盤材料為有機玻璃,選用Hertz-Mindin(no slip)模型[24]。主要仿真參數(shù)如表1和表2[25]。
表1 玉米種子和排種盤物理特性
表2 玉米種子和玉米種子、玉米種子和排種盤碰撞參數(shù)
仿真用玉米籽粒采用8球面填充,仿真顆粒數(shù)量設(shè)置為50,時間步長設(shè)置為1′10–5s,總時間設(shè)置為6 s。
3.3.2 仿真結(jié)果分析
種群擾動會在瞬間降低種子間內(nèi)摩擦阻力[26],從而使種子更容易被負(fù)壓氣流吸附在型孔上。種子的平均動能反應(yīng)了種群被擾動的強度。提取各時間步下種子顆粒的平均動能,仿真數(shù)據(jù)從3 s開始,6 s結(jié)束。用種子在不同時間步下的平均動能之和表示種群的總動能,并繪制4種排種盤在不同轉(zhuǎn)速下總動能變化趨勢圖,如圖7所示。相同轉(zhuǎn)速下,各排種盤總動能均滿足如下順序:P3>P4>P2>P1。
圖7 顆??倓幽芘c排種器轉(zhuǎn)速關(guān)系
以轉(zhuǎn)速3.2 rad/s為例對不同排種盤下種子平均動能隨仿真時間步長變化情況進(jìn)行考察,如圖8所示。從仿真結(jié)果可知,不同的擾種機構(gòu)作用下充種區(qū)種子平均動能存在很大差異。顆粒平均動能,受P1盤影響最小,除第4 s左右的異常突變外,無明顯波動;受P3盤影響最顯著,波動強度最劇烈,受P4盤影響次之。平均動能波動趨勢與總動能變化趨勢一致,順序為P3>P4>P2>P1。較高的動能反應(yīng)較高的擾種強度,所以選擇在型孔周圍沿側(cè)面母線方向添加直線條狀凸臺的P3盤作為本文的擾種方案。
圖8 排種盤在轉(zhuǎn)速為3.2 rad·s–1時顆粒平均動能隨時間步長變化情況
試驗用排種器分別為自主研發(fā)的氣吸式玉米精量排種器(簡稱P排種器)和Kverneland氣吸式排種器(簡稱K排種器)。排種檢測裝置選用中國農(nóng)業(yè)大學(xué)自主研發(fā)的排種器性能檢測儀,如圖9所示。試驗時,排種器安裝在排種器性能檢測儀的安裝架上,通過檢測儀配套的電機驅(qū)動排種盤轉(zhuǎn)動,通過檢測儀風(fēng)機為排種器提供負(fù)壓,導(dǎo)種管安裝于排種器投種口下方,用于檢測排種器性能的傳感器安裝在導(dǎo)種管中間。作業(yè)時,當(dāng)種子經(jīng)過導(dǎo)種管時,觸發(fā)傳感器,檢測儀通過記錄相鄰種子見的時間間隔并同時將其轉(zhuǎn)換為實際株距的方法,計算和判斷排種情況,并將計算的重播指數(shù),漏播指數(shù)和合格指數(shù)直接輸出到顯示器上。該檢測儀對氣吸式排種器的檢測結(jié)果與美國Precision Planting 研發(fā)的MeterMax檢測儀相比合格指數(shù)誤差不超過0.7%[27]。
1.排種器性能檢測儀 2. 導(dǎo)種管 3. K排種器 4. P排種器
1. Seed meter’s performance detection 2. Seeds tube 3. Metering device K 4. Metering device P
注:Kverneland氣吸式排種器簡寫為K;排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器簡寫為P。下同。
Note:Kverneland vacuum seed-metering device is abbreviated to meter K;Pneumatic maize precision seed-metering device with a synchronous rotating seed plate and vacuum chamber is abbreviated to meter P. Same as below.
圖9 排種器試驗現(xiàn)場
Fig.9 Metering device testing site
試驗用種子選用鄭單958型未分級種子,其千粒質(zhì)量為351 g,含水率為12.8%。
根據(jù)GB/T 6973-2005《單粒(精密)播種機試驗方法》的規(guī)定,各性能指標(biāo)計算公式如式(18)所示。
氣吸式排種器作業(yè)效果受作業(yè)速度和工作風(fēng)壓等工作參數(shù)影響[28-32]。為考察P排種器的工作性能,對比P、K兩排種器的作業(yè)效果,本文以作業(yè)速度和工作風(fēng)壓為試驗因素,以粒距合格指數(shù)、漏播指數(shù)和重播指數(shù)為試驗指標(biāo),進(jìn)行雙因素試驗。排種器工作風(fēng)壓分為3、3.5、4、4.5、5和5.5 kPa共6個梯度。排種器前進(jìn)速度分為4、6、8、10、12 km/h共5個梯度。設(shè)置理論株距為25 cm。其他條件保持一致。
4.3 試驗結(jié)果分析
該試驗為雙因素等重復(fù)試驗,每個排種器進(jìn)行30組試驗,每組重復(fù)3次,取平均值作為試驗結(jié)果記錄分析。
4.3.1 P排種器試驗結(jié)果分析
表3為P排種器在不同作業(yè)速度和風(fēng)壓值下的試驗結(jié)果。整體上看,除負(fù)壓值–3 kPa下,作業(yè)速度為12 km/h時排種器粒距合格指數(shù)為77.5%,低于國家合格標(biāo)準(zhǔn)外,P排種器在其他試驗條件下粒距合格指數(shù)均在85%以上。相同風(fēng)壓條件下,隨速度的增加,漏播指數(shù)有所增加,在4~8 km/h之間,漏播指數(shù)增加幅度較小,從數(shù)值上看,均小于3.4%;當(dāng)速度達(dá)到10 km/h時,漏播指數(shù)增加幅度增大,這種變化隨著負(fù)壓值的增加而減小。在各試驗條件下,重播指數(shù)在1.7%~5.4%之間,變化穩(wěn)定。試驗結(jié)果表明,作業(yè)速度在4~10 km/h內(nèi),P排種器在負(fù)壓值–3.5~–5.5 kPa條件下,盤室同步氣吸式精量排種器粒距合格指數(shù)均能達(dá)到91.6%以上,漏播指數(shù)均小于5.2%,重播指數(shù)均小于5.4%。各項指標(biāo)均優(yōu)于國標(biāo)要求。
表3 P排種器在不同作業(yè)速度和風(fēng)壓值下的試驗結(jié)果
注:為合格指數(shù);為重播指數(shù);為漏播指數(shù)。
Note:is thequalified index;is the multiple index;is the missing index.
4.3.2 P、K排種器對比結(jié)果分析
P、K兩排種器在不同風(fēng)壓和作業(yè)速度下的合格指數(shù)如表4所示。作業(yè)速度在10 km/h以下,P排種器在負(fù)壓值–3.5 kPa時合格指數(shù)均能達(dá)到90%;而K排種器,負(fù)壓值–5.5 kPa條件下,10 km/h的合格指數(shù)仍未達(dá)到90%。
相同作業(yè)速度下,達(dá)到相同的合格指數(shù),P排種器較K排種器所需風(fēng)壓更低。相同速度下,K排種器作業(yè)效果隨負(fù)壓值增加得到改善,兩排種器合格指數(shù)差值隨著負(fù)壓值的增加總體呈減小趨勢。
相同風(fēng)壓下, K排種器粒距合格指數(shù)隨速度變化范圍大,P排種器變化范圍小。以相同風(fēng)壓下不同速度合格指數(shù)標(biāo)準(zhǔn)差考察這一變化,如表5所示。K排種器合格指數(shù)隨速度變化的標(biāo)準(zhǔn)差均大于P排種器。說明P排種器合格指數(shù)受速度影響較K排種器小,適應(yīng)速度范圍更廣,作業(yè)更穩(wěn)定。
在結(jié)構(gòu)上,K排種器為垂直圓盤排種器,型孔位于排種盤正面,充種過程需要克服種群作用力和種子的重力;而P排種器排種盤型孔周向布置,充種區(qū)位于型孔上方,重力分量指向型孔,實現(xiàn)了重力輔助充種;同時P排種盤沿側(cè)面母線方向添加直線條狀凸臺,作為擾種結(jié)構(gòu),作業(yè)時擾動種群,減小了種群間的作用力,降低了充種的阻力。故所需作業(yè)風(fēng)壓低于K排種盤。上述試驗結(jié)構(gòu)表明,通過排種器結(jié)構(gòu)的變化實現(xiàn)重力輔助充種和機械擾種對降低氣吸式排種器的風(fēng)壓需求有借鑒意義。
表4 P、K排種器合格指數(shù)對比
注:D為K排種器合格指數(shù)與P排種器合格指數(shù)之差。
Note:Dis the difference value of qualified index between meter K and P.
表5 不同風(fēng)壓下合格指數(shù)標(biāo)準(zhǔn)差
1)設(shè)計了一款排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計,闡述了其基本結(jié)構(gòu)和工作原理,對其排種盤關(guān)鍵參數(shù)進(jìn)行了設(shè)計,對排種盤擾種機構(gòu)進(jìn)行了仿真選型,該排種器從結(jié)構(gòu)上避免了排種盤與密封墊相對運動造成的磨損,其重力輔助充種降低了風(fēng)壓需求,改善了充種效果。
2)以含水率為12.8%,千粒質(zhì)量為351 g的鄭單958未分級種子為試驗對象,借助中國農(nóng)業(yè)大學(xué)自主研發(fā)的排種器性能檢測儀對該排種器作業(yè)效果進(jìn)行了室內(nèi)試驗,以作業(yè)速度和工作風(fēng)壓為試驗因素,以粒距合格指數(shù)、漏播指數(shù)和重播指數(shù)為試驗指標(biāo),進(jìn)行了雙因素等重復(fù)試驗,試驗表明:在作業(yè)速度4~10 km/h,負(fù)壓值–3.5~–5.5 kPa條件下,盤室同步氣吸式精量排種器粒距合格指數(shù)均能達(dá)到91.6%以上,漏播指數(shù)均小于5.2%,重播指數(shù)均小于5.4%。滿足國標(biāo)要求,能實現(xiàn)有效排種。
3)與Kverneland排種器對比試驗表明:–3~–5 kPa條件下,相同作業(yè)速度時,達(dá)到相同的合格指數(shù),P排種器較K排種器所需風(fēng)壓更低,說明重力輔助充種在一定程度降低了排種器風(fēng)壓需求。相同風(fēng)壓下,K排種器粒距合格指數(shù)隨速度變化范圍大,P排種器變化范圍小,說明P排種器粒距合格指數(shù)受速度影響較K排種器小,適應(yīng)速度范圍更廣,作業(yè)更穩(wěn)定。
[1] 劉佳,崔濤,張東興,等. 機械氣力組合式玉米精密排種器[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(2):43-47. Liu Jia, Cui Tao, Zhang Dongxing, et al. Mechanical-pneumaticcombined corn precision seed-metering device [J]. Transactions of The Chinese Society of Agricultural Machinery, 2012, 43(2): 43-47. (in Chinese with English abstract)
[2] 史嵩,張東興,楊麗,等. 基于EDEM軟件的氣壓組合孔式排種器充種性能模擬與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(3):62-69. Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic- combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(3): 62-69. (in Chinese with English abstract)
[3] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(5):10-18. Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)
[4] 王延耀,李建東,王東偉,等. 氣吸式精密排種器正交試驗優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(增刊):54-58. Wang Yanyao, Li Jiandong, Wang Dongwei, et al. Orthogonal experiment optimization on air-suction precision seed-meteringdevice[J]. Transactions of The Chinese Society of Agricultural Machinery, 2012, 43(Supp.): 54-58. (in Chinese with English abstract)
[5] Yang Li, He Xiantao, Cui Tao, et al. Development of mechatronic driving system for seed meters equipped on conventional precision corn planter[J]. International Journal ofAgricultural and Biological Engineering, 2015, 8(4): 1-9.
[6] Yang Li,Yan Bingxin,Cui Tao, et al. Global overview of research progress and development of precision maize planters[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1): 9-26.
[7] 楊麗,顏丙新,張東興,等. 玉米精密播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(11):38-48. Yang Li, Yan Bingxin, Zhang Dongxing, et al. Research progress on precision planting technology of maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 38-48. (in Chinese with English abstract)
[8] 楊麗,史嵩,崔濤,等. 氣吸與機械輔助附種結(jié)合式玉米精量排種器[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(增刊):48-53. Yang Li, Shi Song, Cui Tao, et al. Air-suction corn precision metering device with mechanical supporting plate to assist carrying seed[J]. Transactions of The Chinese Society of Agricultural Machinery, 2012, 43(Supp.): 48-53. (in Chinese with English abstract)
[9] 趙佳樂,賈洪雷,姜鑫銘,等. 大豆播種機偏置雙圓盤氣吸式排種器[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(8):78-83. Zhao Jiale, Jia Honglei, Jiang Xinming, et al. Suction type offset double disc seed metering device of soybean seeder[J].Transactions of The Chinese Society of Agricultural Machinery, 2013, 44(8): 78-83. (in Chinese with English abstract)
[10] Karayel D, Barut Z B, ?zmerzi A. Mathematical modelling of vacuum pressure on a precision seeder[J]. Biosystems Engineering, 2004, 87(4): 437-444.
[11] Onal I, Degirmencioglu A, Yazgi A. An evaluation of seed spacing accuracy of a vacuum type precision metering unit based on theoretical considerations and experiments[J]. Turkish Journal of Agriculture and Forestry, 2012, 36(2): 133-144.
[12] 耿端陽,李玉環(huán),孟祥鵬,等. 玉米伸縮指夾式排種器設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(5):38-45. Geng Duanyang, Li Yuhuan, Meng Pengxiang, et al. Design and test on telescopic clip finger type of metering device [J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(5): 38-45. (in Chinese with English abstract)
[13] 格蘭OPTIMA重載型精量點播機 [EB/OL]. [2017-10-13]. https://www.kverneland.cn/node_81064/node_81065/node_81066/Optima.
[14] 嚴(yán)榮俊. 精密播種機導(dǎo)種管結(jié)構(gòu)設(shè)計與試驗研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2012. Yan Rongjun. The Structural Design and Test on Delivery Tube of Corn Precision Planter[D]. Beijing: China Agricultural University,2012. (in Chinese with English abstract)
[15] Maleki M R, Jafari J F, Raufat M H, et al. Evaluation of seed distribution uniformity of a multi-flight auger as a grain drill metering device[J]. Biosystems Engineering,2006, 94(4): 535-543.
[16] Liu Q W, He X T, Yang L, et al. Effect of travel speed on seed spacing uniformity of corn seed meter[J]. International Journal Agricultural & Biological Engineering, 2017,10(4): 98-106.
[17] 95% OEM sigulation results sound good until you’ve seen 99%. [EB/OL]. [2017-10-13]. http://www.precisionplanting. com/#products/vset/.
[18] 龔智強. 氣吸振動盤式精密排種裝置理論與試驗研究[D]. 鎮(zhèn)江:江蘇大學(xué),2013. Gong Zhiqiang. Theoretical and Experimental Study on Vacuum-vibration Tray Precision Seeding Device[D]. Zhenjiang: Jiangsu University, 2013. (in Chinese with English abstract)
[19] 史嵩. 氣壓組合孔式玉米精量排種器設(shè)計與試驗研究[D].北京:中國農(nóng)業(yè)大學(xué),2015. Shi song.Design and Experimental Research of the tic Maize Precision Seed-metering Device with Combined Holes [D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[20] 雷小龍,廖宜濤,李兆東,等. 油菜小麥兼用氣送式集排器攪種裝置設(shè)計及充種性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(18):26-34. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract)
[21] 祁兵,張東興,崔濤. 中央集排氣送式玉米精量排種器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18): 8-15. Qi Bing, Zhang Dongxing, Cui Tao. Design and experimental of centralized pneumatic seed metering device for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 8-15. (in Chinese with English abstract)
[22] 李耀明,趙湛,陳進(jìn),等. 氣吸振動式排種器種盤內(nèi)種群運動的離散元分析[J]. 農(nóng)業(yè)機械學(xué)報, 2009,40(3):56-59. Li Yaoming, Zhao Zhan, Chen Jin, et al. Discrete element method simulation of seeds motion in vibrated bed of precision vacuum seeder[J]. Transactions of The Chinese Society of Agricultural Machinery, 2009, 40(3): 56-59. (in Chinese with English abstract)
[23] 陳進(jìn),李耀明. 氣吸振動式播種試驗臺內(nèi)種子運動規(guī)律的研究[J]. 農(nóng)業(yè)機械學(xué)報,2002,33(1):47-50. Chen Jin, Li Yaoming. Study on seeds movement law in sowing test stand with suction and vibration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 33(1): 47-50. (in Chinese with English abstract)
[24] 雷小龍,廖宜濤,張聞宇,等.油麥兼用氣送式集排器輸種管道氣固兩相流仿真與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(3):57-67. Lei Xiaolong, Liao Yitao, Zhang Wenyu, et al. Simulation and experiment of gas-solid flow in seed conveying tube for rapeseed and wheat[J]. Transactions of The Chinese Society of Agricultural Machinery, 2017, 48(3): 57-67. (in Chinese with English abstract)
[25] 王云霞,梁志杰,張東興,等. 基于離散元的玉米種子顆粒模型種間接觸參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(22):36-42. Wang Yunxia, Liang Zhijie, Zhang Dongxing,et. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 36-42. (in Chinese with English abstract)
[26] 賴慶輝,高筱鈞,張智泓. 三七氣吸滾筒式排種器充種性能模擬與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(5):27-37. Lai Qinghui,Gao Xiaojun,Zhang Zhihong. Simulation and experimental of seed-filling performance of pneumatic cylinder seed-metering device for panaxnotoginseng[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(5): 27-37. (in Chinese with English abstract)
[27] 和賢桃,郝永亮,趙東岳,等. 玉米精量排種器排種質(zhì)量自動檢測儀設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報. 2016,47(10):19-27. He Xiantao,HaoYongliang,Zhao Dongyue,et al. Design and experimental of testing instrument for maize precision seed meter’s performance detection[J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(10): 19-27. (in Chinese with English abstract)
[28] 龐昌樂,鄂卓茂,蘇聰英,等. 氣吸式雙層滾筒水稻播種器設(shè)計與試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2000,16(5):52-55. Pang Changle, E Zhuomao, Su Congying, et al. Design and experimental study on air-suction two-layer cylinder rice seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 52-55. (in Chinese with English abstract)
[29] 劉文忠,趙滿全,王文明,等. 氣吸式排種裝置排種性能理論分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(9):133-138. Liu Wenzhong, Zhao Manquan, Wang Wenming, et al. Theoretical analysis and experiments of metering performance of the pneumatic seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 133-138. (in Chinese with English abstract)
[30] 陳學(xué)庚,鐘陸明. 氣吸式排種器帶式導(dǎo)種裝置的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22):8-15. Chen Xuegeng, Zhong Luming. Design and test on belt-type seed delivery of air-suction metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 8-15. (in Chinese with English abstract)
[31] Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean[J]. Soil and Tillage Research, 2009, 104(1): 121-125.
[32] Yasir Hassan Satti Mohammed. Design and Test of a Pneumatic Precision Metering Device for Wheat[D]. Wuhan: Huazhong Agricultural University,2011.
顏丙新,張東興,崔 濤,和賢桃,丁友強,楊 麗.排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(23):15-23. doi:10.11975/j.issn.1002-6819.2017.23.003 http://www.tcsae.org
Yan Bingxin, Zhang Dongxing, Cui Tao, He Xiantao, Ding Youqiang, Yang Li.Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 15-23. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.003 http://www.tcsae.org
Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber
Yan Bingxin1, Zhang Dongxing1,2, Cui Tao1, He Xiantao1, Ding Youqiang1, Yang Li1※
(1.100083,; 2.100083,)
Aiming at the problems of airtightness reduction, vacuum pressure demand increase and planting precision decline, which are caused by the friction between seed plate and sealing gasket of vacuum chamber in traditional vacuum precision seed-metering device, a new type of vacuum precision seed-metering device with synchronously rotating seed plate and vacuum chamber was designed in this study. Different from the traditional vacuum seed-metering device with relatively rotating seed plate and vacuum chamber, in the new seed-metering device, the seed plate and the vacuum chamber were fixed together so that they rotated synchronously during the process of operation with no friction between each other, resulting in no pressure loss and high planting accuracy. A circular frustum plate with rectangular embossment was designed based on mechanical disturbance and gravity-assisted filling principle. Different from traditional metering plates, the cells of the newly designed plate were distributed on a tapered profile, instead of on a sub face. Working area was divided into five zones: filling zone, clearing zone, carrying zone, unloading zone and transition zone, based on the working principle and force analysis. The force of filling process and clearing process, the trajectory and speed of seeds were also analyzed. And the parameters of each metering-device working zone was analyzed and determined. Specially, the filling zone was in the first quadrant,the angle ranged from 0°to 45° (horizontal direction of first quadrant is set to 0°, and the angle circulated counterclockwise). The component force of seeds gravity to the holes in this area reduced the pressure requirements for filling process. The scope of the other four zones were 45° to 70°, 70° to 205°, 205° to 235°and 235°to 360°, respectively. The main structural parameters of the plate were defined based on mechanics and kinematics analysis. Plate was found to be 26 holes with the diameter of 5.4 mm. A 64°angle between radial direction and cone bus was determined for the falling back of extra seeds in clearing zone. Four kinds of plates with different disturbance structures were designed, and the disturbance structures helped to improve the activeness of seeds. The influence of four different mechanical disturbance structures on seed kinetic energy was simulated by EDEM (higher kinetic energy refers to higher seeds activity, and higher seed activity refers to easier filling process). Average particle kinetic energy changing with time step of the four different plates was recorded. Simulation results showed that the plate with rectangular embossment along the direction of generating line brought the highest kinetic energy and the plate with no disturbance structure indicated the minimum kinetic energy. To measure the performance of this newly designed seed-metering device, a two-factor contrast test was carried out in different velocity and pressure. The operation effects were examined by a testing instrument for maize (Zea mays) precision seed meter’s performance detection developed by China Agricultural University. Qualified index, missing index and multiple index were recorded. Experiment results showed that the qualified index of seed spacing exceeded 91.6%, the missing index below 5.2% and the multiple index below 5.4% for the newly designed metering device, when the operation velocity was under 10 km/h and the negative pressure value ranged from -3.5 to -5.5 kPa. The results above could completely meet the requirement of the technical specifications of quality evaluation for drills in China. To achieve the same qualified index, the pressure demand of the newly designed metering device was lower compared with the Kverneland metering device. The standard deviation of qualified index within various velocities under same pressure was calculated. The result showed that the standard deviation of qualified index qualified index of Kverneland metering device was greater than the newly designed one, indicating that the newly designed one had a wider range of velocity adaptation and more stable working status. The gravity helped to reduce the air pressure requirements for vacuum precision seed meters.
mechanization; seeds; design; pneumatic; seed-metering device; mechanical disturbance; gravity-assisted
10.11975/j.issn.1002-6819.2017.23.003
S223.2+3
A
1002-6819(2017)-23-0015-09
2017 -05-17
2017 -08-31
玉米免耕精播和深松(中耕)追肥關(guān)鍵技術(shù)集成研究與示范(2013BAD08B01-3);國家自然科學(xué)基金資助項目(51375483;51575515)
顏丙新,博士生,主要從事農(nóng)業(yè)機械裝備設(shè)計與理論研究。 Email:ybx0122@126.com
楊 麗,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備智能化和玉米全程機械化研究。Email:yl_hb68@126.com