肖碧環(huán),吳嚴(yán),高興華
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院,遼寧 沈陽(yáng)110001)
白藜蘆醇(Resveratrol,RES),即 3,4,5-三羥基-1,2-二苯乙烯,包括亞甲基橋分開(kāi)的2個(gè)苯環(huán),其分子式為C14H12O3,相對(duì)分子質(zhì)量228.25,為一種非黃酮類天然的多酚復(fù)合物,外觀呈無(wú)色針狀晶體,易溶于有機(jī)溶劑,難溶于水,多種植物中含有,葡萄中含量豐富。RES的生物利用度比較低,其血漿代謝物仍具有活性。最初是作為一種植物抗毒素,1997年發(fā)現(xiàn)RES作為強(qiáng)效的化療藥物,抑制腫瘤的發(fā)生、發(fā)展,此外還具有抗炎、免疫調(diào)節(jié)、保護(hù)心臟、抗氧化、抗老化的特性[1-2]。目前被廣泛地應(yīng)用于人類的保健生活之中。
RES可在炎癥抑制方面發(fā)揮作用,從而減少疾病的發(fā)病風(fēng)險(xiǎn)。本文對(duì)RES抗炎作用通路及機(jī)制研究予以綜述。
RES發(fā)揮抗炎作用的共同點(diǎn)在于,可以抑制基因轉(zhuǎn)錄過(guò)程中的因子,如絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)、激活子蛋白-1(Activator protein 1,AP-1)和 NF-κB[3]。炎癥信號(hào)通路涉及核轉(zhuǎn)錄因子kappa B(Nuclear transcription factor kappa B,NF-κB)及下游的炎癥因子等[4]。
研究表明RES可直接抑制很多組織的炎癥因子,如腫瘤壞死因子(TNF)-α、白細(xì)胞介素(IL)-1、IL-6、單核細(xì)胞趨化蛋白-1(MCP-1)、干擾素(IFN)-α、IFN-β等的釋放[5-7],并可促進(jìn)抗炎及抗自身免疫的因子如IL-10的釋放[8-9]。而RES直接抑制炎癥是通過(guò)作用于多個(gè)直接的靶點(diǎn),包括環(huán)氧酶(Cyclooxygen-ase,COX),過(guò)氧化物酶體增殖物激活受體(Peroxisome proliferator-activated receptor,PPAR),內(nèi)皮型一氧化氮合酶(Endothelial nitric oxide synthase,eNOS)和去乙?;?1(Sirtuin 1,SIRT1)[2,10]實(shí)現(xiàn)的。
哺乳動(dòng)物Sir2家族或者叫Sirtuins是一群高度保守的誘發(fā)煙酰胺腺嘌呤二核苷酸(NAD)-依賴的組蛋白去乙酰化酶活性的蛋白質(zhì),家族共同擁有一個(gè)高度保守的中央?yún)^(qū)域,即催化核心,靶向物質(zhì)為組蛋白和非組蛋白底物,包括酶、轉(zhuǎn)錄調(diào)節(jié)因子、腫瘤抑制基因、細(xì)胞信號(hào)蛋白和DNA修復(fù)蛋白。Sirtuins在與皮膚結(jié)構(gòu)及功能相關(guān)的多個(gè)細(xì)胞通路中發(fā)揮作用,包括光老化、炎癥、腫瘤、皮膚感染[11]。一些證據(jù)確實(shí)表明Sirtuins在NAD+、煙酰胺腺嘌呤二核苷酸和/或煙酰胺的濃度發(fā)生變化時(shí)通過(guò)代謝途徑發(fā)揮作用。7種人Sirtuins被識(shí)別,命名為SIRT1-7,在人表皮及真皮細(xì)胞均有表達(dá)[12]。SIRT1基因的mRNA主要定位于細(xì)胞核,而蛋白則因細(xì)胞類型、細(xì)胞狀態(tài)和分子間相互作用的不同位置不同,可存在于細(xì)胞核和/或細(xì)胞質(zhì)內(nèi)。
SIRT1從細(xì)胞生存到凋亡信號(hào)的一系列細(xì)胞過(guò)程中發(fā)揮作用,與多種疾病的發(fā)病相關(guān),是細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)的關(guān)鍵節(jié)點(diǎn),受到多種應(yīng)激因素和物質(zhì)的調(diào)節(jié),對(duì)SIRT1的基因調(diào)控和藥物干預(yù)有望成為臨床干預(yù)的藥物靶點(diǎn)。SIRT1在皮膚病的研究日益受到人們的重視。2種皮膚損傷的關(guān)鍵因素紫外線及H2O2均可下調(diào)皮膚角質(zhì)形成細(xì)胞中SIRT1的表達(dá)[13]。RES通過(guò)SIRT1,特異性的使組蛋白末端的賴氨酸去乙酰化誘導(dǎo)轉(zhuǎn)錄沉默。SIRT1也可使非組蛋白去乙?;?,如p53、核接受器核心抑制器(SM-RT/NCOR)、過(guò)氧化物酶體增殖物激活受體γ輔助激活因子-1α(PPARγcoactivator-1α,PGC-1α)[14]。以往有研究表明,p53蛋白對(duì)白癜風(fēng)白斑病灶周圍的角質(zhì)形成細(xì)胞凋亡和死亡起到關(guān)鍵的作用,而激活的p38和NF-κB誘導(dǎo)p53聚集[15]。而RES可激活紫外線刺激的角質(zhì)形成細(xì)胞中SIRT1表達(dá),導(dǎo)致p53介導(dǎo)的凋亡下降[13,16]。最近的研究表明,SIRT1促進(jìn)保護(hù)分子的表達(dá),如含錳超氧化物歧化酶,硫氧還蛋白-1(Trx1)和B-cell lymphoma-extra large(Bcl-xL),同時(shí)也下調(diào)促凋亡效應(yīng)表達(dá)[如Bcl-2相關(guān) X 蛋白(Bcl-2 Associated X Protein,Bax)等][17]。實(shí)際上,SIRT1調(diào)節(jié)外源性應(yīng)激包括氧化損傷情況下的細(xì)胞死亡的臨界值、與p53相互作用、通過(guò)去乙?;疜u70抑制Bax誘導(dǎo)的凋亡、調(diào)節(jié)其他與細(xì)胞死亡和細(xì)胞抗氧化活性相關(guān)聯(lián)的靶點(diǎn)[15,18]。SIRT1通過(guò)對(duì)抗NF-κB介導(dǎo)的巨噬細(xì)胞合成炎癥細(xì)胞因子而抑制固有免疫應(yīng)答[19]。此外,SIRT1基因消耗也可以抑制固有免疫應(yīng)答及狼瘡樣自身免疫綜合征的進(jìn)展[20]。SIRT1去乙酰化NF-κB的p65亞基的Lys310,減少NF-κB轉(zhuǎn)錄誘導(dǎo)的凋亡[21]。RES可以利用Sirtuin樣活性和激活SIRT1表達(dá),直接或間接達(dá)到抑制炎癥的作用[22]。
RES可進(jìn)一步增加AMP活化蛋白激酶α(AMP-activated protein kinasea,AMPKα) 磷酸化及SIRT1的量,從而抑制NF-κB通路的過(guò)度激活。如果將AMPKα或者SIRT1抑制,會(huì)明顯降低RES對(duì)NF-κB通路過(guò)度激活的改善作用。RES可通過(guò)MAPK通路起調(diào)節(jié)作用。MAPK家族包含細(xì)胞外調(diào)節(jié)蛋白激酶(Extracellular regulated protein kinases,ERK)、p38、c-jun氨基末端激酶(c-jun N-terminal kinases,JNK)等多個(gè)成員,不同成員生物學(xué)作用不同。有研究證明抗氧化劑通過(guò)RAS/ERK激酶(MEK)/ERK-SIRT1這一通路發(fā)揮抗凋亡作用,Ras是整個(gè)通路的激活蛋白,MEK是用于激活ERK,SIRT1是ERK下游的分子。通過(guò)特異的抑制劑,發(fā)現(xiàn)JNK和p38激酶促進(jìn)細(xì)胞凋亡,而ERK發(fā)揮抗細(xì)胞凋亡作用。在白癜風(fēng)白斑病灶周圍皮膚的角質(zhì)形成細(xì)胞中發(fā)現(xiàn)JNK和p38活化,RES可通過(guò)減少磷酸化而起到控制作用[23]。研究發(fā)現(xiàn)siRNA介導(dǎo)的角質(zhì)形成細(xì)胞SIRT1敲除促進(jìn)紫外線誘導(dǎo)的JNK活化,并且這種效應(yīng)可通過(guò)RES逆轉(zhuǎn),提示SIRT1保護(hù)細(xì)胞對(duì)抗紫外線誘導(dǎo)的JNK活化[13]。
NF-κB是負(fù)責(zé)參與炎癥反應(yīng)的許多基因的表達(dá)的核心轉(zhuǎn)錄因子。一些與腫瘤發(fā)生、轉(zhuǎn)移和炎癥相關(guān)的基因受NF-κB調(diào)控。不同的炎癥因子可能通過(guò)一些重疊和不重疊的步驟激活NF-κB。因此RES對(duì)這個(gè)通路的研究最多。NF-κB激活后可防止接觸細(xì)胞因子,如TNF后導(dǎo)致的激活的T細(xì)胞死亡[24]。通過(guò)抑制NF-κB和AP-1轉(zhuǎn)錄因子的激活,可使T細(xì)胞介導(dǎo)的免疫應(yīng)答妥協(xié),NF-κB和AP-1轉(zhuǎn)錄因子與可促進(jìn)T細(xì)胞增殖的IL-2的產(chǎn)生有關(guān)[20,25]。RES 可以利用 Sirtuin 樣活性,使 NF-κB 去乙?;?,抑制NF-κB激活,而達(dá)到抑制炎癥的作用[22]。也有研究報(bào)道RES通過(guò)抑制IκBα激酶達(dá)到阻止NF-κB遷移進(jìn)細(xì)胞核[26]。RES確實(shí)是一種抑制TNF誘導(dǎo)的NF-κB激活的強(qiáng)效劑,非細(xì)胞特異性,在正常細(xì)胞和腫瘤細(xì)胞都有這種抑制作用。除了TNF,RES也阻斷各種各樣的其它炎癥劑誘導(dǎo)的NF-κB活化。大多數(shù)NF-κB活化抑制劑,如姜黃素和水飛薊素,通過(guò)抑制IκBα磷酸化、降解而發(fā)揮作用[27-28]。但是,RES并不阻止IκBα磷酸化或降解。RES對(duì)NF-κB蛋白與DNA結(jié)合無(wú)影響,可阻斷TNF誘導(dǎo)的NF-κB P65亞單位易位(抑制P65磷酸化)及報(bào)告基因轉(zhuǎn)錄。RES可抑制TNF誘導(dǎo)的細(xì)胞毒和Caspase的激活,但NF-κB的激活已被證明具有抗凋亡的作用,因此RES抑制細(xì)胞凋亡可能是矛盾的。然而,NF-κB激活不阻止所有物質(zhì)誘導(dǎo)的細(xì)胞凋亡[29]。提示TNF誘導(dǎo)的細(xì)胞凋亡和NF-κB的活化機(jī)制非常相似。
RES可抑制TNF誘導(dǎo)的細(xì)胞毒及凋亡蛋白酶。Caspase是一個(gè)在細(xì)胞凋亡過(guò)程中起重要作用的蛋白酶家族。Caspase依賴的誘導(dǎo)凋亡的途徑依賴于Caspase-3的激活。Caspase-3的激活是經(jīng)典的細(xì)胞凋亡途徑的生物化學(xué)基礎(chǔ),也是細(xì)胞凋亡過(guò)程中的一個(gè)關(guān)鍵酶,在細(xì)胞核凋亡過(guò)程中也起到了關(guān)鍵作用,包括染色質(zhì)固縮、DNA片段化等。目前,Bax和Caspase-3已成為細(xì)胞凋亡研究的熱點(diǎn)。在實(shí)驗(yàn)中,RES抑制了DNA片段化、Bax和裂解Caspase-3的表達(dá),說(shuō)明RES在一定程度上抑制了細(xì)胞凋亡的發(fā)生。RES提高直接與Bax相互作用的Bcl-2,發(fā)揮抗凋亡作用[30]。
RES主要通過(guò)上述機(jī)制發(fā)揮抗炎作用,在皮膚組織參與保護(hù)性防御反應(yīng)。但是目前的研究數(shù)據(jù)有限,待更多的深入研究。
[1] Orihuela-Campos RC,Tamaki N,Mukai R,et al.Biological impacts of resveratrol,quercetin,and N-acetylcysteine on oxidative stress in humangingivalfibroblasts[J].JClinBiochemNutr,2015,56:220-227.
[2] Baur JA,Sinclair DA.Therapeutic potential of resveratrol:the in vivo evidence[J].Nat Rev Drug Discov,2006,5:493-506.
[3] Manna SK,Mukhopadhyay A,Aggarwal BB.Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B,activator protein-1,and apoptosis:potential role of reactive oxygen intermediates and lipid peroxidation[J].J Immunol,2000,164:6 509-6 519.
[4] Gruben N,Shiri-Sverdlov R,Koonen DP,et al.Nonalcoholic fatty liver disease:A main driver of insulin resistance or a dangerous liaison?[J].Biochim Biophys Acta,2014,1 842:2 329-2 343.
[5] Yen GC,Chen YC,Chang WT,et al.Effects of polyphenolic compounds on tumor necrosis factor-alpha (TNF-alpha)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes[J].J Agric Food Chem,2011,59:546-551.
[6] Ji G,Wang Y,Deng Y,et al.Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy[J].Lipids Health Dis,2015,14:134.
[7] Liu Z,Jiang C,Zhang J,et al.Resveratrol inhibits inflammation and ameliorates insulin resistant endothelial dysfunction via regulation of AMP-activated protein kinase and sirtuin 1 activities[J].J Diabetes,2016,8:324-335.
[8] Inoue H,Kishimoto A,Ushikoshi-Nakayama R,et al.Resveratrol improves salivary dysfunction in a non-obese diabetic(NOD)mouse model of Sj?gren's syndrome[J].J Clin Biochem Nutr,2016,59:107-112.
[9] Sabat R,Grütz G,Warszawska K,et al.Biology of interleukin-10[J].Cytokine Growth Factor Rev,2010,21:331-344.
[10]Nakata R,Takahashi S,Inoue H.Recent advances in the study on resveratrol[J].Biol Pharm Bull,2012,35:273-279.
[11]Serravallo M,Jagdeo J,Glick SA,et al.Sirtuins in dermatology:applications for future research and therapeutics[J].Arch Dermatol Res,2013,305:269-282.
[12]Benavente CA,Schnell SA,Jacobson EL,et al.Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin[J].PloS one,2012,7:e42 276.
[13]Cao C,Lu S,Kivlin R,et al.SIRT1 confers protection against UVB-and H2O2-induced cell death via modulation of p53 and JNK in culturedskinkeratinocytes[J].JCellMolMed,2009,13:3632-3643.
[14]Guarente L.Franklin H.Epstein Lecture:Sirtuins,aging,and medicine[J].N Engl J Med,2011,364:2 235-2 244.
[15]Becatti M,Prignano F,Fiorillo C,et al.The involvement of Smac/DIABLO,p53,NF-kB,and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin:Protective effects of curcuminandcapsaicin[J].AntioxidRedoxSignal,2010,13:1309-1321.
[16]Chen ML,Li J,Xiao WR,et al.Protective effect of resveratrol against oxidative damage of UVA irradiated HaCaT cells[J].Zhong Nan Da Xue Xue Bao Yi Xue Ban,2006,31:635-639.
[17]Hsu CP,Zhai P,Yamamoto T,et al.Silent information regulator 1 protects the heart from ischemia/reperfusion[J].Circulation,2010,122:2 170-2 182.
[18]Cohen HY,Miller C,Bitterman KJ,et al.Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase[J].Science,2004,305:390-392.
[19]Schug TT,Xu Q,Gao H,et al.Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress[J].Mol Cell Biol,2010,30:4 712-4 721.
[20]Zhang J,Lee SM,Shannon S,et al.The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice[J].J Clin Invest,2009,119:3 048-3 058.
[21]Yeung F,Hoberg JE,Ramsey CS,et al.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J].EMBO J,2004,23:2 369-2 380.
[22]Howitz KT,Bitterman KJ,Cohen HY,et al.Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan[J].Nature 2003,425:191-196.
[23]Becatti M,Fiorillo C,Barygina V,et al.SIRT1 regulates MAPK pathways in vitiligo skin:insight into the molecular pathways of cell survival[J].J Cell Mol Med,2014,18:514-529.
[24]Hayashi T,Faustman D.NOD mice are defective in proteasome production and activation of NF-kappaB[J].Mol Cell Biol,1999,19:8 646-8 659.
[25]Chen J,Zhou Y,Mueller-Steiner S,et al.SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling[J].J Biol Chem,2005,280:40 364-40 374.
[26]Holmes-McNary M,Baldwin AS Jr.Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase[J].Cancer Res,2000,60:3 477-3 483.
[27]Singh S,Aggarwal BB.Activation of transcription factor NF-kappa B is suppressed by curcumin(diferuloylmethane)[corrected][J].J Biol Chem,1995,270:24 995-25 000.
[28]Jobin C,Bradham CA,Russo MP,et al.Curcumin blocks cytokinemediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity[J].J Immunol,1999,163:3 474-3 483.
[29]Manna SK,Zhang HJ,Yan T,et al.Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1[J].J Biol Chem,1998,273:13 245-13 254.
[30]Pan S,Li S,Hu Y,et al.Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia[J].Oncotarget,2016,7:79 247-79 261.