何健堃, 賈 梅, 陳 輝
(上海理工大學(xué) 理學(xué)院, 上海 200093)
分數(shù)階微積分理論在物理、 化學(xué)和工程技術(shù)等領(lǐng)域應(yīng)用廣泛, 目前已受到廣泛關(guān)注[1-3]. 關(guān)于分數(shù)階微分方程邊值問題的研究已取得了很多成果[4-16]. Su等[7]研究了非齊次邊界條件分數(shù)階微分方程兩點邊值問題:
正解的存在性和不存在性, 其中: 1<δ<2;J=(0,1]; 擾動參數(shù)a≥0,b≥0.
本文考慮分數(shù)階微分方程關(guān)于含擾動參數(shù)的三點邊值問題:
(1)
1)f(·,u)對u∈+是可測的;
2)f(t,·)對幾乎處處t∈[0,1]是連續(xù)的;
3) 對每個r>0, 存在φr∈L1[0,1],φr(t)≥0, 使得|u|>≤r,t∈[0,1]時, 滿足|f(t,tα-2u)|>≤φr(t).
文獻[7]研究了非齊次邊界條件下兩點邊值問題正解的存在性與不存在性, 通過假設(shè)非線性項f(t,u)是關(guān)于u的單調(diào)遞增函數(shù), 利用上下解方法、 Schauder不動點定理和不動點指數(shù)理論, 獲得了該問題正解存在與不存在的充分條件. 由于非局部邊值問題應(yīng)用廣泛, 因此本文考慮在邊界條件中含有分數(shù)階導(dǎo)數(shù)的三點邊值問題正解的存在性與不存在性, 利用范數(shù)形式的錐拉伸與錐壓縮不動點定理, 證明該問題在參數(shù)滿足不同范圍時正解的存在性與不存在性. 通過對擾動參數(shù)的控制, 得到了該問題正解存在性與不存在性的結(jié)果. 本文結(jié)果是在非線性項滿足超線性與次線性條件下得出的, 因此不需要非線性項f(t,u)關(guān)于u單調(diào)遞增的限制.
定義1[2]函數(shù)u: (0,∞)→的α階Riemann-Liouville分數(shù)階積分定義為
對任意的α>0, 右端積分在(0,∞)上逐點可積.
定義2[2]函數(shù)u: (0,∞)→的α階Riemann-Liouville分數(shù)階導(dǎo)數(shù)定義為
對任意的α>0, 右端積分在(0,∞)上逐點可積,n為大于或等于[α]的最小整數(shù).
于[0,1]中幾乎處處成立, 其中ci∈(i=1,2,…,n)為任意常數(shù),n為大于或等于[α]的最小整數(shù).
引理2記ρ=(1-λξα-β-1)-1, 對任意的y∈L1[0,1], 則邊值問題
(2)
的唯一解可表示為
(3)
其中:
(6)
其中ci∈(i=1,2). 根據(jù)邊界條件得c2=a, 則
(7)
因此, 將c1的值代入式(7), 則邊值問題(2)的解為
其中G(t,s)和K(ξ,s)分別由式(4)和式(5)定義.
反之, 如果式(3)成立, 則易得u為邊值問題(2)的解. 證畢.
引理3記H(t,s)=t2-αG(t,s), 則分別由式(4),(5)定義的函數(shù)G(t,s),K(ξ,s)和函數(shù)H(t,s)滿足如下性質(zhì):
1) 對任意的t,s∈[0,1],G(t,s)是連續(xù)函數(shù), 且G(t,s)≥0;
3) 對任意的t,s∈[0,1],H(t,s)是連續(xù)函數(shù), 且H(t,s)≥0;
4) 對任意的t,s∈[0,1], 有
證明: 1) 由G(t,s)的表達式易知對任意的t,s∈[0,1],G(t,s)是連續(xù)函數(shù), 且對任意的0≤t≤s≤1, 有G(t,s)≥0; 另一方面, 當(dāng)0≤s≤t≤1, 有
因此, 結(jié)論1)成立.
因此, 結(jié)論2)成立.
3) 由結(jié)論1)易知結(jié)論3)成立.
當(dāng)0≤s≤t≤1時, 有
當(dāng)0≤t≤s≤1時, 有
引理4(α-β-1)(λξα-β-2-1)+(α-1)ρ-1≥0.
證明: 如果λξα-β-2-1≥0, 即λ≥ξ2-α+β, 則不等式顯然成立. 如果λξα-β-2-1<0, 即0≤λ<ξ2-α+β, 則有
當(dāng)α-β-1-(α-1)ξ≥0時, 不等式顯然成立; 當(dāng)α-β-1-(α-1)ξ<0時, 有
λξα-β-2(α-β-1-(α-1)ξ)+β≥α-β-1-(α-1)ξ+β=(α-1)(1-ξ)≥0.
證畢.
定義P={u∈E:u(t)≥0,t∈(0,1]}, 顯然P是E中的錐. 定義算子T:P→E, 則
令P0={u∈E:t2-αu(t)≥βt‖u‖,t∈(0,1]}, 則P0?P為E的一個錐.
引理5算子T:P→P0是全連續(xù)算子.
證明: 由引理3和引理4, 顯然當(dāng)u∈P時, 對任意的t∈(0,1], 有Tu(t)≥0, 且
另一方面, 由引理3, 有
則t2-αTu(t)≥βt‖Tu‖, 即T:P→P0.
令{un}?P,u0∈P, 且‖un-u0‖→0, 當(dāng)n→+∞時, 存在常數(shù)l>0, 使得‖un‖≤l, ‖u0‖≤l. 則對任意的t∈[0,1], 有|t2-αun(t)|>≤l, |t2-αu0(t)|>≤l. 由f滿足L1-Carathéodory條件可知, 對幾乎處處s∈[0,1], 有
設(shè)Ω?P有界, 存在一個常數(shù)l>0, 使得對任意的u∈Ω, 有‖u‖≤l, 因此, 對任意的u∈Ω, 存在φl∈L1[0,1], 使得
|f(s,u(s))|>=|f(s,tα-2t2-αu(s))|>≤φl(s),s∈[0,1],
因此T(Ω)一致有界.
此外, 對任意的t,s∈[0,1], 因為G(t,s)是連續(xù)函數(shù), 則其為一致連續(xù)函數(shù), 因此對任意的ε>0, 存在常數(shù)
使得對所有的t1,t2,s∈[0,1], 當(dāng)|t1-t2|><δ時, 有
從而
因此T(Ω)是等度連續(xù)的. 由Arzela-Ascoli定理可知,T(Ω)為相對列緊集. 從而T:P→P0是全連續(xù)的. 證畢.
由引理2, 易得:
引理6邊值問題(1)存在一個正解當(dāng)且僅當(dāng)算子T在P中存在一個不動點. 此外, 若u是邊值問題(1)的一個正解, 則u∈P0.
1) ‖Tu‖≤‖u‖,u∈P∩?Ω1; ‖Tu‖≥‖u‖,u∈P∩?Ω2;
2) ‖Tu‖≥‖u‖,u∈P∩?Ω1; ‖Tu‖≤‖u‖,u∈P∩?Ω2.
為方便, 記
定理1若f0
證明: 首先, 由于f0 故對任意的u∈?Ω1, ‖Tu‖≤‖u‖. 根據(jù)引理3可得 故對任意的u∈?Ω2, ‖Tu‖≥‖u‖. 定理2若f∞ f(t,tα-2u)≤φR1(t)+(M1-ε)u. 令 Ω3={u∈P0: ‖u‖ 且max{a0,b0}≤M1r3. 則對任意的u∈?Ω3, 有‖u‖=r3, 并且 故對任意的u∈?Ω1, ‖Tu‖≤‖u‖. 定理3若f∞>M2, 則存在a1,b1>0, 使得當(dāng)a>a1,b>b1時, 邊值問題(1)無正解. 令 因此 由式(5)和引理3可得 從而 即‖u‖>R. 即‖u‖>‖u‖+R, 矛盾, 假設(shè)不成立. 故存在正常數(shù)a1,b1, 使得當(dāng)a>a1,b>b1時, 邊值問題(1)無正解. 證畢. 例1考慮邊值問題: (8) 可得以下結(jié)論: 1) 如果參數(shù)a∈[0,0.000 833 361 6),b∈[0,0.000 833 361 6), 則邊值問題(8)至少存在一個正解. 2) 如果參數(shù)a∈[1.134×107,+∞),b∈[1.134×107,+∞), 則邊值問題(8)不存在正解. 這里邊值問題(1)中 α=5/3,β=1/2,ξ=4/5,λ=1,f(t,u)=t2/3u2arctantu+t1/2(1+sint)u3/2. 則存在φr(t)=r2arctant2/3r+(1+sint)r3/2, 使得對所有的u≤r及t∈(0,1), 有|f(t,t-1/3u)|>≤φr(t), 易見f滿足L1-Carathéodory條件. 通過簡單計算可得: M1=0.027 778 72,M2=264.884 7,f0=0 1) 令r1=0.03, 選取max{a0,b0} 2) 令R=3.14×106, 當(dāng)u∈[3.925×105,+∞),t∈(0,1)時, 有f(t,t-1/3u)>M2u. 選取min{a1,b1}>4Γ(α)R=1.134×107. 由定理3可知, 當(dāng)a,b∈[1.134×107,+∞)時, 邊值問題(8)不存在正解. 例2考慮邊值問題: (9) 這里邊值問題(1)中α=3/2,β=1/3,ξ=3/5,λ=1,f(t,u)=etq/2uq, 0 [1] 白占兵. 分數(shù)階微分方程邊值問題理論及應(yīng)用 [M]. 北京: 中國科學(xué)技術(shù)出版社, 2013. (BAI Zhanbing. Theory and Application of Fractional Differential Equation Boundary Value Problems [M]. Beijing: China Science and Technology Press, 2013.) [2] Podlubny I. Fractional Differential Equations [M]. San Diego, CA: Academic Press, 1999. [3] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations: North-Holland Mathematics Studies, Vol.204 [M]. Amsterdam: Elsevier, 2006. [4] 劉帥, 賈梅, 秦小娜. 帶積分邊值條件的分數(shù)階微分方程解的存在性和唯一性 [J]. 上海理工大學(xué)學(xué)報, 2014, 36(5): 409-415. (LIU Shuai, JIA Mei, QIN Xiaona, et al. Existence and Uniqueness of Solutions of the Fractional Differential Equation with Integral Boundary Value Conditions [J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5): 409-415.) [5] 竇麗霞, 劉錫平, 金京福, 等. 分數(shù)階積分微分方程多點邊值問題解的存在性和唯一性 [J]. 上海理工大學(xué)學(xué)報, 2011, 33(5): 51-55. (DOU Lixia, LIU Xiping, JIN Jingfu, et al. Existence and Uniqueness of Solutions of Multi-point Boundary Value Problems for Integro-Differential Equation of Fractional Order [J]. Journal of University of Shanghai for Science and Technology, 2011, 33(5): 51-55.) [6] 李曉晨, 劉錫平, 李燕, 等. 無窮區(qū)間上含參數(shù)分數(shù)階微分方程積分邊值問題正解的存在性 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2017, 55(1): 13-21. (LI Xiaochen, LIU Xiping, LI Yan, et al. Existence of Positive Solutions for Integral Boundary Value Problems of Fractional Differential Equations with Parameters in Infinite Interval [J]. Journal of Jilin University (Science Edition), 2017, 55(1): 13-21.) [7] SU Xiaofeng, JIA Mei, LI Mengmeng. The Existence and Nonexistence of Positive Solutions for Fractional Differential Equations with Nonhomogeneous Boundary Conditions [J/OL]. Advances in Difference Equations, 2016-01-28. https://doi.org/10.1186/s13662-016-0750-5. [8] WANG Xiao, LIU Xiping, DENG Xuejing. Existence and Nonexistence of Positive Solutions for Fractional Integral Boundary Value Problem with Two Disturbance Parameters [J/OL]. Boundary Value Problems, 2015-10-12. doi: 10.1186/s13661-015-0450-1. [9] JIA Mei, LIU Xiping. The Existence of Positive Solutions for Fractional Differential Equations with Integral and Disturbance Parameter in Boundary Conditions [J/OL]. Abstract and Applied Analysis, 2014-03-24. http://dx.doi.org/10.1155/2014/131548. [10] Li C F, Luo X N, ZHOU Yong. Existence of Positive Solutions of the Boundary Value Problem for Nonlinear Fractional Differential Equations [J]. Computers and Mathematics with Applications, 2010, 59(3): 1363-1375. [11] Nyamoradi N, Baleanu D, Agarwal R P. Existence and Uniqueness of Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions [J/OL]. Advances in Difference Equations, 2013-09-08. https://doi.org/10.1186/1687-1847-2013-266. [12] LI Bingxian, SUN Shurong, HAN Zhenlai. Positive Solutions for Singular Fractional Differential Equations with Three-Point Boundary Conditions [J]. Journal of Applied Mathematics and Computing, 2016, 52(1/2): 477-488. [13] ZHANG Xingqiu. Positive Solutions for a Class of Singular Fractional Differential Equation with Infinite-Point Boundary Value Conditions [J]. Applied Mathematics Letters, 2015, 39: 22-27. [14] LI Bingxian, SUN Shurong, ZHAO Ping, et al. Existence and Multiplicity of Positive Solutions for a Class of Fractional Differential Equations with Three-Point Boundary Value Conditions [J/OL]. Advances in Difference Equations, 2015-12-24. doi: 10.1186/s13662-015-0714-1. [15] ZHOU Wenxue, CHU Yandong, B?leanu D. Uniqueness and Existence of Positive Solutions for a Multi-point Boundary Value Problem of Singular Fractional Differential Equations [J/OL]. Advances in Difference Equations, 2013-04-19. https://doi.org/10.1186/1687-1847-2013-114. [16] LIU Xiping, JIA Mei, GE Weigao. The Method of Lower and Upper Solutions for Mixed Fractional Four-Point Boundary Value Problem withp-Laplacian Operator [J]. Applied Mathematics Letters, 2017, 65: 56-62. [17] 郭大鈞, 孫經(jīng)先, 劉兆理. 非線性常微分方程泛函方法 [M]. 2版. 濟南: 山東科學(xué)技術(shù)出版社, 2006. (GUO Dajun, SUN Jingxian, LIU Zhaoli. Funtional Methods for Nonlinear Ordinary Differential Equations [M]. 2nd ed. Jinan: Shangdong Science and Technology Press, 2006.)3 應(yīng)用實例
M2,f∞=0