王昕鈺 石毅瓊 李蘭蘭 任建功
【摘要】近年來腦源性神經營養(yǎng)因子(BDNF)的抗糖尿病作用得到更多研究的驗證,BDNF一方面影響食物攝入從而進一步抑制食欲,同時對胰島素的敏感性的改善及阻止糖尿病發(fā)展有著很好的作用。炎癥反應在胰島素抵抗和2型糖尿病中起關鍵作用,亞臨床炎癥狀態(tài)被認為是2型糖尿病發(fā)生發(fā)展的一個危險因素,研究證明BDNF與全身性或局限性炎癥反應呈相關關系。
【關鍵詞】腦源性神經營養(yǎng)因子;糖尿病;炎癥反應
【中圖分類號】R749.4 【文獻標識碼】A 【文章編號】ISSN.2095-6681.2018.36..03
【Abstract】Nowadays increasing of researchs have proved antidiabetic effect of brain-derived neurotrophic factor. On the one hand, BDNF affect food intake in order to suppress appetite, at the same time BDNF play a important role to improve insulin sensitivity and prevent diabetes development. Inflammation plays a key role in insulin resistance and T2DM, subclinical inflammation state is considered to be a risk factor for type 2 diabetes,and more studies have shown that BDNF and its relationship between systemic or localized inflammation diseases.
【Key words】Brain-derived neurotrophic factor;Diabetes mellitus;Inflammation
遺傳性因素和環(huán)境因素都對2型糖尿?。╰ype 2 diabetes mellitus,T2DM)的發(fā)生和發(fā)展有著重要的影響,相關研究也發(fā)現(xiàn)2型糖尿病與炎癥反應有著密切的聯(lián)系。腦源性神經營養(yǎng)因子(Brain-derived neurotrophic factor,BDNF)是一種在神經系統(tǒng)中有著重要作用的神經營養(yǎng)因子,除與血糖血脂等代謝等相關,許多文獻報道了血清BDNF與全身性或局限性炎癥反應的相關性。現(xiàn)對BDNF的抗糖尿病作用及其與炎癥反應的相關性予以綜述。
1 BDNF及其受體
腦源性神經營養(yǎng)因子(BDNF)是神經營養(yǎng)素家族中的一員,對神經元的生長分化、增殖修復及形態(tài)可塑性起著重要的作用[1],同時調節(jié)著中樞及周圍神經系統(tǒng)突觸的活躍性[2]。BDNF的細胞表面受體有P75神經生長因子受體和絡氨酸激酶受體B(TrkB),其中BDNF和TrkB受體都由下丘腦和海馬回神經核團產生和分泌,參與血糖和能量代謝穩(wěn)態(tài)調節(jié)中[3-5]。而BDNF mRNA的表達受到黑色素皮質激素受體(melanocortine receptor 4,MC4-R)及其下游傳導的影響,BDNF可刺激MC4-R從而減少食物的攝入和增加能量消耗[6-7]。
2 BDNF與2型糖尿病
2.1 BDNF與血糖代謝
BDNF與血糖水平的調節(jié)有著密切的關系。Ono等間斷予以db/db小鼠注射BDNF,可有效降低血糖水平和糖化血紅蛋白水平并提高胰腺分泌功能[8]。相似的研究發(fā)現(xiàn)TrkB受體也存在于小鼠的胰島細胞中,BDNF可通過此種受體抑制胰島a細胞分泌胰高血糖素進而降低血糖水平[9]。
另有研究發(fā)現(xiàn)BDNF可以迅速的增強肝內的胰島素信號傳導使糖尿病小鼠的血糖下降。Meek等[10]利用示蹤技術發(fā)現(xiàn)大腦腦室中的BDNF可通過減少胰高血糖素的分泌并進一步抑制肝葡萄糖輸出,同時不影響組織對葡萄糖的利用以達到降糖的目的。更多的研究表明不論是糖尿病動物模型或是糖尿病患者的血清BDNF水平都與胰島素抵抗、血糖水平降低、脂質代謝減弱呈正相關[11]。
另一項實驗發(fā)現(xiàn)糖尿病模型小鼠的下丘腦腹正中核(ventromedial hypothalamus,VMH)中葡萄糖轉運蛋白-2(glucose transporter-2,GLUT2)mRNA 的表達同BDNF同步下降,而且葡萄糖利用的減少則可導致VMH中BDNF mRNA表達的下降[12]。以上實驗說明,BDNF通過中樞代謝途徑及外周胰島血糖素代謝途徑來調節(jié)糖代謝,血糖水平的波動也反向對BDNF的表達有影響。
2.2 BDNF與2型糖尿病
BDNF與糖尿病之間的聯(lián)系已引起了很多的關注,在糖尿病小鼠模型實驗中BDNF可降低血糖和HbA1c水平,并與胰島素敏感性呈正相關[13]。Krabbe等[14]發(fā)現(xiàn)2型糖尿病組相對u于對照組,樣本中血清BDNF水平明顯下降,而高血糖水平對BDNF的分泌有著負性影響,說明BDNF濃度的下降與受損的糖代謝相關。另一實驗發(fā)現(xiàn)2型糖尿病患者的血清BDNF濃度相較于對照組明顯降低,并通過數據分析得出BDNF可作為2型糖尿病的獨立危險因素,當血清BDNF濃度高于23.0 ng/mL時可提示2型糖尿病的發(fā)生,敏感性可達到89%且特異性也可達到60.9%[11]。近期研究證實予以肥胖的糖尿病動物模型BDNF注射,可使動物模型出現(xiàn)低血糖反應,這進一步指出了BDNF的抗糖尿病作用。在此實驗回歸分析中,BDNF被認為與2型糖尿病獨立相關,當血清BDNF濃度高于137 pg/mL時,可同糖化血紅蛋白一樣對2型糖尿病的發(fā)生具有預測價值,敏感性達到71.79%,而特異性可達到68%[15]。關于BDNF抗糖尿病的作用機制多有爭論,其中一項研究則認為在動物模型中,BDNF通過抑制過氧化物酶體增殖物激活性受體(peroxisome proliferator-activated receptor,PPAR-α)和纖維母細胞生長因子21(fibroblast growth factor 21,F(xiàn)gf-21)可降低胰島素抵抗和調節(jié)血脂異常,從而產生抗糖尿病和降脂作用[16]。
2.3 BDNF與能量代謝
BDNF同樣影響著糖尿病患者的飲食行為和能量代謝平衡[5]。German等[17]發(fā)現(xiàn)予以鏈脲佐菌素誘發(fā)的胰島素缺乏性糖尿?。╥nsulin-deficient diabetes,uDM)小鼠模型瘦素注射,可以減少uDM的胰島素抵抗的發(fā)展,并且進一步加速肝臟內糖異生途徑使血糖降低,這說明瘦素缺乏與胰島素缺乏具有相似性。Kernie等[18]的研究發(fā)現(xiàn)BDNF缺乏的小鼠在發(fā)育早期就出現(xiàn)了攝食過量和肥胖。而Maekawa等[12]進一步證實,在T2DM大鼠模型中,由于葡萄糖利用受阻,可進一步導致下丘腦腹正中核的低BDNF表達,引起高瘦素血癥和內臟脂肪量增加。Nakagawa等[19]的研究報道,與注射生理鹽水的對照組相比,重復予以飲食誘導肥胖的小鼠模型BDNF注射可改善瘦素抵抗造成的血糖及血脂代謝異常,并減少小鼠的食物攝入和體重增加。以上研究說明BDNF同瘦素等相似,在脂質及能量代謝中發(fā)揮著重要作用,這對預防和管控2型糖尿病具有積極意義。
3 BDNF與2型糖尿病的炎癥反應
炎癥改變在胰島素抵抗和2型糖尿病中起關鍵作用,長期炎癥狀態(tài)被認為是2型糖尿病發(fā)生發(fā)展的一個危險因素[3]。有研究認為在胰島素信號通路中,脂肪組織以白介素-6(interleukin-6,IL-6),腫瘤壞死因子(tumor necrosis factor-α,TNF-α)及C反應蛋白(C-reactive protein,CRP)為作用靶點從而導致了胰島素抵抗及2型糖尿病發(fā)生發(fā)展[20]。IL-6與血糖和胰島素濃度變化相一致[21],雖然IL-6在胰島素抵抗中的作用一直具有爭議,但IL-6水平的升高一貫被認為是2型糖尿病發(fā)展的危險因素,其對血糖穩(wěn)態(tài)、肥胖的發(fā)展和胰島β-cell的功能都有影響[22]。TNF-α可通過阻斷胰島素信號聯(lián)級通路中的IRS 1蛋白質酪氨酸磷酸化誘導胰島素抵抗,并降低胰島β-cell的胰島素產生[23]。CRP的升高被認為使新發(fā)糖尿病的獨立危險因素[24],相關文獻報道在T2DM患者中,血清BDNF水平與白細胞數量呈正相關,而與超敏C反應蛋白(high-sensitivity C-reactive protein,hs-CRP)呈負相關[11]。
綜上所述,BDNF可增加能量消耗、改善全身血糖平衡并提高胰島素敏感性,對預防和治療2型糖尿病有一定的作用,不同的研究都報道了BDNF的抗糖尿病作用。除此之外,慢性炎癥狀態(tài)、免疫狀態(tài)的增強等都被認為可能與BDNF的表達有關,由此可見,BDNF可作為未來針對2型糖尿病治療的新靶點。
參考文獻
[1] Leibrock J,Lottspeich F,Hohn A,et al.Molecular-cloning an expression of brain-derived neurotrophic factor[J].Nature,1989,341(6238):149-152.
[2] Solev IN,Balabanyan VY,Volchek IA,et al.Involvement of BDNF and NGF in the mechanism of neuroprotective effect ofhuman recombinant erythropoietin nanoforms[J]. Bull Exp Biol Med.2013,155(2):242-24.
[3] Eyileten C,Kaplon-Cieslicka A,Mirowska-Guzel D,et al.Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus [J].Journal of Diabetes Research.2017:e2823671.
[4] K. Bartkowska, K.Turlejski,and R.L.Djavadian.Neurotrophins and their receptors in early development of the mammalian nervous system[J].Acta Neurobiologiae Experimentalis (Wars),2010,70:454-467.
[5] Noble E.E.,Billington C.J.,Kotz C.M.,and Wang,C.The lighter side of BDNF[J].Am. J.Physiol.Regul.Integr.Comp.Physiol.2011:1053-1069.
[6] Xu B,Goulding EH,Zang K,et al.Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor[J].Nat.Neurosci.2003,6:736-742.
[7] Nicholson JR,Peter JC,Lecourt AC,et al.Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function[J].J Neuroendocrinol,2007,19(12):974-82.
[8] M. Ono,Y.Itakura,T.Nonomura,et al.Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice[J].Metabolism,2000,49:129-133.
[9] O.Hanyu,K.Yamatani,T.Ikarashi,et al.Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells:its contribution to glucose metabolism[J].Diabetes,Obesity and Metabolism,2003,5:27-37.
[10] Meek TH,Wisse BE,Thaler JP,et al.BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production[J].Diabetes,2013,62:1512-1518.
[11] Li.N.Lang,and Z.F.Cheng, et al.Serum levels of brain-derived neurotrophicfactor are associated with diabetes risk,complications,and obesity:a cohort study from Chinesepatients with type 2 diabetes[J].Molecular Neurobiology,2016,53(8):5492-5499.
[12] F.Maekawa,K.Fujiwara,M.Toriya et al,Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto-Kakizaki rats[J].Frontiers in Synaptic Neuroscience,2013,5:7.
[13] Karczewska-Kupczewska M,Stra czkowski M,Adamska A, et al. Decreased secrum brain-derived neurotrophic factor concentration in young nonobese subjects with low insulin sensitivity[J].Clinical Biochemistry,2011,44(10/11):817-820.
[14] K.S.Krabbe,A.R.Nielsen, R.Krogh-Madsen et al. Brainderived neurotrophic factor (BDNF) and type 2 diabetes[J].Diabetologia,2007,50:431-438.
[15] Boyuk B, Degirmencioglu S,Atalay H et al, Relationship between levels of brain-derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus[J].Journal of Diabetes Research,2014,2014:978143.
[16] S.Teillon,G.A.Calderon,and M.Rios,et al.Diminished diet induced hyperglycemia and dyslipidemia and enhanced expression of PPAR and FGF21 in mice with hepatic ablation of brain-derived neurotropic factor[J].Journal of Endocrinology,2010,205(1):37-47.
[17] German JP,Wisse BE,Thaler JP,et al.Leptin deficiency causes insulinresistance induced by uncontrolled diabetes[J].Diabetes 2010;59:1626-1634.
[18] Kernie SG,Liebl DJ,Parada LF.BDNF regulates eating behavior and locomotor activity in mice[J].EMBO J,2000,19:1290-1300.
[19] T.Nakagawa,Y.Ogawa,K.Ebihara et al.Anti-obesity andanti-diabetic effects of brain-derived neurotrophic factor inrodent models of leptin resistance[J].International Journal of Obesity and Related Metabolic Disorders,2003,27(5)557-565.
[20] Phosat C,Panprathip P,Chumpathat N, et al. Elevated C-reactive protein,interleukin 6,tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: a cross-sectional study[J].BMC Endocr Disord.2017,17(1):44.
[21] Popko K,Gorska E,Stelmaszczyk-Emmel A,et al. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects[J]. Eur J Med Res.2010,15:120-2.
[22] Banerjee M,Saxena M.Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus[J].World J Diabetes.2014,5:493-504.
[23] Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases[J]. Eur Heart J. 2008,29:2959-71.
[24] Doi Y,Kiyohara Y,Kubo M,et al.Elevated C-reactive protein is a predictor of the development of diabetes in a general Japanese population:The Hisayama Study[J].Diabetes Care.2005,28(10):2497-500.
本文編輯:劉欣悅