張守慧, 謝玲玲, 祝潤卿, 汪志林
(武漢理工大學 a.交通學院, b.高性能船舶技術教育部重點實驗室, 湖北 武漢 430063)
艾亞(Ayre)通過分析大量船模和實船試驗結果,繪制出用于阻力估算的曲線圖表,其適用范圍較廣,一般對中、低速商船比較適用,也可用于正常尺度的海洋拖船,但對于近代高速商船和大型豐滿船型的阻力估算偏差較大[1]。與海船相比,內(nèi)河航運附加值低且內(nèi)河船舶設計費用少,在設計階段能夠進行船模水池試驗的船舶很少[2];而且,艾亞法是基于海船資料回歸得出的估算方法,當其應用于內(nèi)河船時需要進行一定的修正,而修正量的大小通常憑船舶設計工作者的經(jīng)驗估算[3]。目前對西江干線現(xiàn)有的所有船舶進行實船試驗是不可能的[4],故在無法對西江現(xiàn)有的每一條船舶進行船模水池試驗或實船試驗的情況下,如何快速準確地進行航速預報是船舶能效評估的關鍵。為了預報船舶的航速,須尋找一種有效的方法進行船舶阻力性能估算。
表1給出5艘西江船舶的船模和實船主尺度及相關參數(shù),采用表1所示的5艘船模試驗阻力數(shù)據(jù)(共45組,見表2)對艾亞法進行修正。這5艘船舶的船長、型寬以及吃水相同,且均為雙槳船,不同的是方形系數(shù)以及艏艉形狀,船模與實船的縮尺比均為9.285 7。
表1 西江船模主尺度及參數(shù)
表2 西江船模試驗有效功率數(shù)據(jù)
續(xù)表2 西江船模試驗有效功率數(shù)據(jù)
將以上45組西江船模試驗數(shù)據(jù)作為回歸分析的原始數(shù)據(jù),對艾亞法進行修正。
艾亞法阻力估算在計算過程[5]中根據(jù)CB,B/T,xc,Lwl與標準船型的差異進行4個步驟的修正[6]。在此4個步驟的修正中,xc和Lwl產(chǎn)生的修正量較小,對結果影響不大,幾乎可以忽略,故本文采用只對CB和B/T的差異進行修正的方法,使修正后的艾亞法更適用于西江干線船舶的阻力估算[7]。
當采用只改進CB和B/T的修正方法時,艾亞法計算過程中的系數(shù)C2的計算公式為
C2=CD·(1+D1)·(1+D2)
(1)
式中:D1為方形系數(shù)CB的修正;D2為寬度吃水比B/T的修正。
當CB>CBC(CBC為標準方形系數(shù))時,應按式(2)計算修正值Δ1。
(2)
當CB Δ1=C0×KBC (3) 式中:KBC為C0所增加的百分數(shù)。 由式(2)和式(3)的形式,D1可表示為 (4) 當設計船的B/T不等于2.0時,系數(shù)C1需另加一個修正值Δ2。Δ2可表示為 (5) 由式(5)的形式,D2可表示為 (6) 于是,式(1)可化為 (7) 式(4)~式(7)中:k1、k2、k3和k4均為待定系數(shù)。 表3 回歸分析的初始數(shù)據(jù) 續(xù)表3 回歸分析的初始數(shù)據(jù) 將式(7)展開并整理為以k1,k2,k3和k4作為未知數(shù)的顯式形式,其表達式為 (8) li·k1k3+mi·k1k4+ni·k2k3+oi·k2k4+ pi·k1+qi·k2+ri·k3+si·k4+ti=0 (9) 令f(i)=lik1k3+mik1k4+nik2k3+oik2k4+pik1+qik2+rik3+sik4+ti,則該回歸分析問題可以轉化為一個求式(10)的最小值問題。式(10)的數(shù)學意義是:為了讓表3中45組數(shù)據(jù)均能較好地滿足式(7)中的方程,可以求取一組k1,k2,k3和k4的值,使得式(7)中左邊式子值的平方和更接近于零。 (10) 采用MATLAB優(yōu)化工具箱中的ga求解器[9],求式(10)中f的最小值。對ga求解器作如下設置:變量個數(shù)nvar=4,種群數(shù)量Population Size=1 000,精英個體數(shù)量EliteCount=100,交叉率Crossover Fraction=0.75,進化代數(shù)Generation=1 000,停止代數(shù)Stall Gen Limit=1 000,其他參數(shù)均為默認。經(jīng)ga求解器計算,函數(shù)f的最小值為0.315 372,此時變量值為:k1=-0.147,k2=-0.199,k3=1.347,k4=-4.192,其優(yōu)化結果如圖1所示。 圖1 ga求解器求解結果 將系數(shù)k1,k2,k3和k4通過上述回歸分析法求出后,艾亞法船舶的有效功率PE按式(11)計算。 (11) 式(11)計算的有效功率PE與試驗數(shù)據(jù)結果的比較如表4所示。從表4中可以看出,除了有1組回歸的有效功率絕對誤差大于10%外,其他44組的絕對誤差均小于10%,其中有25組的絕對誤差小于5%,全體計算值絕對誤差的平均值為4.58%,能夠滿足工程應用要求。 表4 回歸分析的結果 續(xù)表4 回歸分析的結果 本文以“穗港2002”實船測試為例,對上文所述的航速預報方法的適用性進行驗證。 “穗港2002”船于2015年建造并投入營運,是航行于珠江水域的2 000 噸級內(nèi)河多用途貨船,其船體主要參數(shù)如表5所示。 表5 “穗港2002”船體主要參數(shù) 續(xù)表5 “穗港2002”船體主要參數(shù) 以名義轉速為952 r/min的工況為例,對“穗港2002”船進行航速預報。先假定9組航速,即Vs=8.0 km/h,9.5 km/h,11.0 km/h,12.5 km/h,14.0 km/h,15.5 km/h,17.0 km/h,18.5 km/h和20.0 km/h,根據(jù)艾亞法標準船型的系數(shù)C0值圖譜,插值得到相應的C0值,再計算出有效功率PE。據(jù)計算結果可繪制出PE和PTE隨Vs的變化曲線,如圖2所示。 圖2 PE和PTE對Vs的曲線 圖2中,推進功率PTE曲線與有效功率PE曲線的交點所對應的航速為“穗港2002”船在主機名義轉速為952 r/min、雙機輸出功率為336.5 kW的情況下所能達到的最大航速Vmax=14.73 km/h。同理,將“穗港2002”船在其他3種工況下的航速按上述同樣的方法求出后,其航速結果匯總結果如表6所示。 由表6可知,采用本文所述的方法對“穗港2002”船進行航速預報,預報得到的航速精度較高,其誤差均在5%以內(nèi),能滿足實際工程應用的要求。 表6 預報航速與實船測試結果對比 綜上所述,本文所述的航速預報方法精度較高,對西江干線的船舶具有很好的適應性。 本文首先對西江干線航道的現(xiàn)有船舶進行分類統(tǒng)計,并分析其技術特點。接著介紹艾亞法的基本思想和其估算船舶阻力的步驟,并對其適用范圍與不足進行分析,提出一種根據(jù)西江船模試驗的阻力結果對艾亞法進行修正的回歸分析方法,使修正后的艾亞法更適合用于估算西江船舶的阻力性能,并將其應用于西江船舶的航速預報。以“穗港2002”輪實船測試為例,對該航速預報方法進行驗證,驗證的結果表明:該航速預報方法精度較高,對西江干線的船舶具有良好的適用性。 [1] 盛振邦, 劉應中. 船舶原理(上)[M]. 上海:上海交通大學出版社, 2004. [2] 黃月華. 整體性治理視角下西江航運干線船閘管理體制研究[D]. 南寧:廣西大學, 2015. [3] 陳鈺, 陳慶任, 趙丙乾. 內(nèi)河船舶航速預報及能效評估軟件開發(fā)[J]. 船舶, 2016(1):100-104. [4] 黃利玲. 西江干線航道服務水平與區(qū)域物流發(fā)展協(xié)同性研究[D]. 武漢:武漢理工大學, 2010. [5] 陳可越. 船舶設計實用手冊[M]. 北京:國防工業(yè)出版社,2013. [6] 盛振邦, 劉應中. 船舶原理(下)[M]. 上海:上海交通大學出版社, 2005. [7] 李利強. 淺析西江黃金水道干線通航管理[J]. 紅水河, 2011, 30(3):75-79. [8] 程毛林. 多元非線性回歸模型的一種建立方法[J]. 統(tǒng)計教育,1997(3):23-24. [9] INOUE K,MAEDA K,MIYABE T,et al. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis[J]. Bioprocess and Biosystems Engineering, 2014, 37(9):1925-1927.2.2 修正結果分析
3 航速預報的適用性驗證
4 結 論