楊宋華
摘 要: 現(xiàn)有運(yùn)動(dòng)損傷評(píng)估方法不能同時(shí)進(jìn)行橫縱向損傷風(fēng)險(xiǎn)評(píng)估,也不能明確判斷損傷部位是單一性損傷還是復(fù)合性損傷。為了解決此問(wèn)題,設(shè)計(jì)基于大數(shù)據(jù)網(wǎng)絡(luò)的運(yùn)動(dòng)損傷評(píng)估模型。通過(guò)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的搭建、深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)的獲得、大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)關(guān)系的構(gòu)建,完成大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境的搭建。通過(guò)運(yùn)動(dòng)損傷風(fēng)險(xiǎn)源的確定、損傷風(fēng)險(xiǎn)因素識(shí)別、基于損傷風(fēng)險(xiǎn)因素的運(yùn)動(dòng)損傷評(píng)估,完成基于大數(shù)據(jù)網(wǎng)絡(luò)運(yùn)動(dòng)損傷評(píng)估模型的搭建。設(shè)計(jì)對(duì)比實(shí)驗(yàn)結(jié)果表明,新型運(yùn)動(dòng)損傷評(píng)估模型與傳統(tǒng)方法相比,能夠同時(shí)進(jìn)行橫縱向損傷風(fēng)險(xiǎn)評(píng)估,也可以在短時(shí)間內(nèi)判斷特定部位的運(yùn)動(dòng)損傷屬性。
關(guān)鍵詞: 大數(shù)據(jù)網(wǎng)絡(luò); 運(yùn)動(dòng)損傷; 評(píng)估模型; 拓?fù)浣Y(jié)構(gòu); 深度神經(jīng)網(wǎng)絡(luò); 風(fēng)險(xiǎn)源; 風(fēng)險(xiǎn)因素
中圖分類(lèi)號(hào): TN915?34; TP183 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)06?0154?04
Abstract: The existing sports injury evaluation methods can neither simultaneously conduct horizontal and longitudinal injury risk estimation, nor can they clearly judge whether the injury part belongs to single injury or compound injury. To solve this problem, a sports injury evaluation model based on big data network is designed. The establishment of big data network environment is accomplished by establishing network topological structure, obtaining deep neural network data, and constructing the relationship between big data and deep neural network. The establishment of big data network based sports injury evaluation model is accomplished by determining the risk sources of sports injury, recognizing injury risk factors, and estimating the sports injury based on injury risk factors. The comparison experiment was designed, and the results show that the new sports injury evaluation model can simultaneously conduct horizontal and longitudinal injury risk estimation, and can also judge the sports injury property of specific parts within a short time in comparison to the traditional methods.
Keywords: big data network; sports injury; evaluation model; topological structure; deep neural network; risk source; risk factor
0 引 言
運(yùn)動(dòng)損傷評(píng)估模型,是一種通過(guò)預(yù)測(cè)、評(píng)估運(yùn)動(dòng)損傷風(fēng)險(xiǎn),進(jìn)而完成特定部位運(yùn)動(dòng)損傷屬性確定的物理方法。傳統(tǒng)情況下,采用風(fēng)險(xiǎn)識(shí)別相關(guān)理論,完成訊上風(fēng)險(xiǎn)管理,并在此基礎(chǔ)上通過(guò)大量的數(shù)字運(yùn)算,認(rèn)清特定部位的風(fēng)險(xiǎn)因素,進(jìn)而把握因運(yùn)動(dòng)造成損傷的嚴(yán)重程度。但隨著科學(xué)技術(shù)的不斷進(jìn)步,人們對(duì)于運(yùn)動(dòng)損傷評(píng)估準(zhǔn)確性的要求,也越來(lái)越高,為了更好適應(yīng)這種發(fā)展現(xiàn)狀,新型評(píng)估模型的出現(xiàn)成為了一種必然趨勢(shì)[1?2]。大數(shù)據(jù)網(wǎng)絡(luò)是一種通過(guò)云計(jì)算手段,網(wǎng)絡(luò)互聯(lián)網(wǎng)信息的捕捉手法,通常被用于廣域網(wǎng)、局域網(wǎng)的構(gòu)建等方面。引入大數(shù)據(jù)網(wǎng)絡(luò)的相關(guān)概念,建立新型基于大數(shù)據(jù)網(wǎng)絡(luò)的運(yùn)動(dòng)損傷評(píng)估模型,通過(guò)完善拓?fù)浣Y(jié)構(gòu)、結(jié)合大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)等方法,搭建模型運(yùn)行所需的大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境[3]。在已完成搭建的環(huán)境下,可以通過(guò)完成風(fēng)險(xiǎn)源確定、風(fēng)險(xiǎn)因素識(shí)別等方式,完成運(yùn)動(dòng)損傷的風(fēng)險(xiǎn)評(píng)估,通過(guò)不確定性條件對(duì)模型的實(shí)現(xiàn)進(jìn)行約束,使其能夠達(dá)到一個(gè)良好的運(yùn)行狀態(tài)。新型運(yùn)動(dòng)損傷評(píng)估模型,在橫縱向損傷風(fēng)險(xiǎn)評(píng)估的實(shí)時(shí)性、判斷特定部位運(yùn)動(dòng)損傷屬性準(zhǔn)確性等方面,也都具備更強(qiáng)的實(shí)用性?xún)r(jià)值。
1 大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境的構(gòu)建
1.1 網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的搭建
大數(shù)據(jù)環(huán)境的網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),包含三種連接神經(jīng)元。其中第一種連接神經(jīng)元,負(fù)責(zé)傳遞定點(diǎn)損傷部位與中樞神經(jīng)系統(tǒng)間的交流信息,該神經(jīng)元與其他2種神經(jīng)元之間,保持反饋連接狀態(tài)。第二種連接神經(jīng)元,負(fù)責(zé)傳遞中樞神經(jīng)系統(tǒng)與反應(yīng)損傷部位間的交流信息,該神經(jīng)元也可被稱(chēng)為中間神經(jīng)元,起到承上啟下的作用[4?5]。第三種連接神經(jīng)元,負(fù)責(zé)傳遞定點(diǎn)損傷部位與反應(yīng)損傷部位間的交流信息,是一種外圍神經(jīng)元,既可承接上述兩種神經(jīng)元傳遞而來(lái)的信息,也可直接連通起始環(huán)節(jié)與終端環(huán)節(jié)。
1.2 深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)的獲得
大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境下,深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù),可以解決運(yùn)動(dòng)損傷數(shù)據(jù)的識(shí)別、評(píng)估問(wèn)題。當(dāng)一個(gè)運(yùn)動(dòng)損傷數(shù)據(jù)被標(biāo)記時(shí),會(huì)自動(dòng)生成一個(gè)與之相對(duì)應(yīng)的深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù),且該數(shù)據(jù)是惟一的。當(dāng)多個(gè)運(yùn)動(dòng)損傷數(shù)據(jù)被標(biāo)記時(shí),對(duì)自動(dòng)生成多個(gè)深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù),且每個(gè)深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù),都會(huì)自動(dòng)與其相對(duì)應(yīng)的運(yùn)動(dòng)損傷數(shù)據(jù)連接[6]。深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)、運(yùn)動(dòng)損傷數(shù)據(jù)二者間始終保持惟一的對(duì)應(yīng)關(guān)系,因此,無(wú)論同時(shí)生成多少個(gè)深度神經(jīng)網(wǎng)絡(luò)數(shù)據(jù),也不會(huì)發(fā)生對(duì)應(yīng)混亂現(xiàn)象。endprint
1.3 大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)關(guān)系的構(gòu)建
大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)間的關(guān)系,是在大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境下,描述運(yùn)動(dòng)損傷評(píng)估模型的重要指標(biāo)。為了便于分析,可認(rèn)為大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)間的關(guān)系,是一種由輸入端向輸出端作評(píng)估延遲線的連接方式[7?8]。當(dāng)輸入端的運(yùn)動(dòng)損傷數(shù)據(jù)包含特定序列時(shí),輸出端顯示的評(píng)估數(shù)值為1,否則輸出0,且評(píng)估延遲線的長(zhǎng)度有限,但運(yùn)動(dòng)損傷數(shù)據(jù)、評(píng)估數(shù)值二者間的延遲不確定。所以,大數(shù)據(jù)與深度神經(jīng)網(wǎng)絡(luò)間的關(guān)系,依然屬于一種不確定的無(wú)意識(shí)序列形式。
2 基于大數(shù)據(jù)網(wǎng)絡(luò)運(yùn)動(dòng)損傷評(píng)估模型的構(gòu)建
2.1 運(yùn)動(dòng)損傷風(fēng)險(xiǎn)源的確定
運(yùn)動(dòng)損傷風(fēng)險(xiǎn)源,是確定損傷風(fēng)險(xiǎn)因素的依據(jù)。單純的從一個(gè)視角分析運(yùn)動(dòng)損傷風(fēng)險(xiǎn),其評(píng)估結(jié)果可能顯得過(guò)于片面,為了有效避免此類(lèi)現(xiàn)象發(fā)生,在對(duì)運(yùn)動(dòng)損傷進(jìn)行評(píng)估之前,必須首先完成損傷風(fēng)險(xiǎn)源的確定[9?10]。以體操項(xiàng)目為例,其風(fēng)險(xiǎn)源包括規(guī)則導(dǎo)向、器械要求、動(dòng)作類(lèi)型、動(dòng)作組別、動(dòng)作難度5大類(lèi),而該項(xiàng)目可按男女組別分為10項(xiàng)小分類(lèi),每個(gè)分項(xiàng)與損傷風(fēng)險(xiǎn)源間的關(guān)系可用圖1表示。
2.2 運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素識(shí)別
上述過(guò)程完成運(yùn)動(dòng)損傷風(fēng)險(xiǎn)源的確定。運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素識(shí)別是根據(jù)已確定的風(fēng)險(xiǎn)源,應(yīng)用特定算法推算出運(yùn)動(dòng)損傷的風(fēng)險(xiǎn)等級(jí),進(jìn)而達(dá)到判斷損傷嚴(yán)重程度的目的。設(shè)已確定的風(fēng)險(xiǎn)源表示為[s],則在該項(xiàng)風(fēng)險(xiǎn)源下,運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素的識(shí)別,可用如下公式表示:
[η(s)=12n=0n[ξs(l)n]] (1)
式中:[n]代表不確定變量,可隨著[s]數(shù)值的改變而改變;[ξ]代表完成運(yùn)動(dòng)損傷風(fēng)險(xiǎn)識(shí)別的特定算法;[l]代表在[s]風(fēng)險(xiǎn)源下,識(shí)別運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素產(chǎn)生的特定參數(shù)。
2.3 基于損傷風(fēng)險(xiǎn)因素的運(yùn)動(dòng)損傷評(píng)估
通過(guò)式(1)的計(jì)算,可得到一個(gè)確定的運(yùn)動(dòng)損傷因素識(shí)別結(jié)果,為方便后續(xù)損傷評(píng)估的進(jìn)行,規(guī)定運(yùn)動(dòng)損傷因素識(shí)別結(jié)果為損傷評(píng)估數(shù)據(jù)來(lái)源。通常情況下,數(shù)據(jù)來(lái)源可以分為單精度、多精度和混合精度三種。其中單精度的數(shù)據(jù)來(lái)源,不需經(jīng)過(guò)任何處理,可根據(jù)具體數(shù)值結(jié)果,直接進(jìn)行運(yùn)動(dòng)損傷預(yù)評(píng)估[11]。多精度的數(shù)據(jù)來(lái)源,首先要完成精度降低處理,將所有數(shù)據(jù)均簡(jiǎn)化成單精度數(shù)據(jù)后,方可進(jìn)行運(yùn)動(dòng)損傷預(yù)評(píng)估?;旌暇鹊臄?shù)據(jù)來(lái)源,首先要進(jìn)行區(qū)分操作,將其中單精度數(shù)據(jù)來(lái)源、多精度數(shù)據(jù)來(lái)源歸為兩類(lèi),再分別對(duì)兩種數(shù)據(jù)來(lái)源,分別進(jìn)行上述操作。根據(jù)運(yùn)動(dòng)損傷預(yù)評(píng)估結(jié)果,可確定完成整體評(píng)估的方法。
3 實(shí)驗(yàn)結(jié)果與分析
上述過(guò)程,完成基于大數(shù)據(jù)網(wǎng)絡(luò)運(yùn)動(dòng)損傷評(píng)估模型的搭建。為了驗(yàn)證該模型的實(shí)用性?xún)r(jià)值,以2臺(tái)配置相同的計(jì)算機(jī)作為實(shí)驗(yàn)對(duì)象,其中1臺(tái)作為實(shí)驗(yàn)組,搭載新型損傷評(píng)估模型,另1臺(tái)作為對(duì)照組,搭載傳統(tǒng)損傷評(píng)估模型。
3.1 實(shí)驗(yàn)參數(shù)設(shè)置
表1中參數(shù)依次代表?yè)p傷參數(shù)、評(píng)估準(zhǔn)確性、網(wǎng)絡(luò)安全系數(shù)、運(yùn)動(dòng)損傷等級(jí)、橫向損傷判斷準(zhǔn)確性、縱向損傷判斷準(zhǔn)確性。其中網(wǎng)絡(luò)安全系數(shù)為Ⅲ級(jí),代表運(yùn)動(dòng)損傷評(píng)估模型使用的大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境,始終保持安全狀態(tài)。為了保證實(shí)驗(yàn)的公平性,實(shí)驗(yàn)組與對(duì)照組的實(shí)驗(yàn)參數(shù),始終保持一致。
3.2 橫縱向損傷風(fēng)險(xiǎn)評(píng)估情況對(duì)比
橫縱向運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估,若可以同時(shí)進(jìn)行,則橫向與縱向的運(yùn)動(dòng)損傷評(píng)估準(zhǔn)確度相差較小,且始終保持相同的上升或下降趨勢(shì);若橫縱向運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估,不能同時(shí)進(jìn)行,則橫向與縱向的運(yùn)動(dòng)損傷評(píng)估準(zhǔn)確度相差較大,且始終保持相反的上升或下降趨勢(shì)。應(yīng)用特殊的檢測(cè)方法,分別記錄實(shí)驗(yàn)組與對(duì)照組,橫縱向運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估準(zhǔn)確度如下。對(duì)比圖2、圖3可知,實(shí)驗(yàn)組橫向損傷風(fēng)險(xiǎn)評(píng)估準(zhǔn)確度的最大值為94.67%,縱向損傷風(fēng)險(xiǎn)評(píng)估準(zhǔn)確度的最大值為93.51%,二者始終保持相同的變化趨勢(shì),且相差較小。對(duì)照組橫向損傷風(fēng)險(xiǎn)評(píng)估準(zhǔn)確度的最大值為96.22%,縱向損傷風(fēng)險(xiǎn)評(píng)估準(zhǔn)確度的最大值為85.38%,二者的變化趨勢(shì)沒(méi)有始終保持一致,且相差也較大。所以,可證明應(yīng)用大數(shù)據(jù)網(wǎng)絡(luò)運(yùn)動(dòng)損傷評(píng)估模型,確實(shí)可以同時(shí)進(jìn)行橫縱向損傷風(fēng)險(xiǎn)評(píng)估,而傳統(tǒng)模型不可以。
3.3 運(yùn)動(dòng)損傷屬性判斷情況對(duì)比
若損傷部位發(fā)生單一性損傷,則屬性判斷結(jié)果為豎線,豎線越長(zhǎng)代表?yè)p傷越嚴(yán)重;若損傷部位發(fā)生復(fù)合性損傷,則屬性判斷結(jié)果為橫線,橫線越長(zhǎng)代表?yè)p傷越嚴(yán)重。
由圖4可知,實(shí)驗(yàn)組可根據(jù)判斷結(jié)果清楚分析出特定部位發(fā)生的損傷為單一性還是復(fù)合性,且單一性損傷程度的最大值為38.75%,復(fù)合性損傷程度的最大值為40.02%。對(duì)照組所有分析結(jié)果均具有一定角度,不能清楚分析出特定部位發(fā)生的損傷為單一性還是復(fù)合性,其結(jié)果也不具備一定的說(shuō)服力。所以,可證明應(yīng)用大數(shù)據(jù)網(wǎng)絡(luò)運(yùn)動(dòng)損傷評(píng)估模型,確實(shí)可以判斷特定部位的運(yùn)動(dòng)損傷屬性,而傳統(tǒng)模型不可以。
4 結(jié) 語(yǔ)
基于大數(shù)據(jù)網(wǎng)絡(luò)的運(yùn)動(dòng)損傷評(píng)估模型,以大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境作為應(yīng)用背景,在提升運(yùn)行穩(wěn)定性的同時(shí),可以同時(shí)進(jìn)行橫縱向損傷風(fēng)險(xiǎn)評(píng)估,并判斷特定部位的運(yùn)動(dòng)損傷屬性。
參考文獻(xiàn)
[1] 高曉嶙,徐輝,黃鵬,等.應(yīng)用功能性動(dòng)作測(cè)試評(píng)估我國(guó)橄欖球運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)的研究[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2017,36(5):410?415.
GAO Xiaolin, XU Hui, HUANG Peng, et al. Assessing sports injury risks of Chinese rugby athletes using functional movement screen [J]. Chinese journal of sports medicine, 2017, 36(5): 410?415.endprint
[2] 張銳,高守東.身體功能訓(xùn)練對(duì)網(wǎng)球?qū)m?xiàng)學(xué)生功能動(dòng)作篩查(FMS)和運(yùn)動(dòng)損傷率的影響[J].安徽體育科技,2016,37(2):78?81.
ZHANG Rui, GAO Shoudong. Effect of body function training on students′ professional tennis function screening and sports injury rate [J]. Journal of Anhui sports science, 2016, 37(2): 78?81.
[3] 邢聰,吳瑛,項(xiàng)賢林.美國(guó)運(yùn)動(dòng)損傷前沿研究熱點(diǎn)與內(nèi)容分析:基于科學(xué)知識(shí)圖譜的可視化研究[J].體育科學(xué),2016,36(9):66?72.
XING Cong, WU Ying, XIANG Xianlin. Analysis on the latest hotspot and content about America sports injury?based on visualization research of scientific knowledge map [J]. China sport science, 2016, 36(9): 66?72.
[4] 劉少華,崔巖,董欣榮,等.左卡尼丁對(duì)抗大鼠力竭運(yùn)動(dòng)損傷及保護(hù)腎臟的作用與機(jī)制[J].濱州醫(yī)學(xué)院學(xué)報(bào),2016,39(3):176?179.
LIU Shaohua, CUI Yan, DONG Xinrong, et al. Effects of L?carnitine on resistant sport fatigue and attenuate exercise?induced renal injury [J]. Journal of Binzhou Medical University, 39(3): 176?179.
[5] 張丹妮,陳樂(lè)琴,張一民.中老年人健身?yè)p傷風(fēng)險(xiǎn)發(fā)生的體質(zhì)因素探析[J].南京體育學(xué)院學(xué)報(bào)(自然科學(xué)版),2016,15(1):50?55.
ZHANG Danni, CHEN Leqin, ZHANG Yimin. Exploration on physical factors of middle?aged and elderly fitness sports injury risk [J]. Journal of Nanjing Institute of Physical Education (Natural science), 2016, 15(1): 50?55.
[6] 琚安康,郭淵博,朱泰銘.基于開(kāi)源工具集的大數(shù)據(jù)網(wǎng)絡(luò)安全態(tài)勢(shì)感知及預(yù)警架構(gòu)[J].計(jì)算機(jī)科學(xué),2017,44(5):125?131.
JU Ankang, GUO Yuanbo, ZHU Taiming. Framework for big data network security situational awareness and threat warning based on open source toolset [J]. Computer science, 2017, 44(5): 125?131.
[7] 江勇,周漢香,李朝前.大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境下的科技期刊作者隊(duì)伍建設(shè)[J].湖北工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017,30(4):96?99.
JIANG Yong, ZHOU Hanxiang, LI Chaoqian. Construction of scientific journals′ author team under big data network environment [J]. Journal of Hubei Industrial Polytechnic, 2017, 30(4): 96?99.
[8] 張思,劉清堂,雷詩(shī)捷,等.網(wǎng)絡(luò)學(xué)習(xí)空間中學(xué)習(xí)者學(xué)習(xí)投入的研究:網(wǎng)絡(luò)學(xué)習(xí)行為的大數(shù)據(jù)分析[J].中國(guó)電化教育,2017,21(4):24?30.
ZHANG Si, LIU Qingtang, LEI Shijie, et al. Study of learners′ engagement in online learning space?big data analytics of e?learning behavior [J]. China educational technology, 2017(4): 24?30.
[9] 王春雨,黃維肖,袁義厘,等.失禁性皮炎皮膚損傷評(píng)估量表的漢化及信度、效度評(píng)價(jià)[J].中國(guó)護(hù)理管理,2016,16(3):337?340.
WANG Chunyu, HUANG Weixiao, YUAN Yili, et al. Reliability and validity of the Chinese version of the incontinence?associated dermatitis and its severity instrument [J]. Chinese nursing management, 2016, 16(3): 337?340.
[10] 鮑玉冬,楊闖,趙彥玲,等.基于碰撞變形能的機(jī)械采收藍(lán)莓果實(shí)碰撞損傷評(píng)估[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):283?292.
BAO Yudong, YANG Chuang, ZHAO Yanling, et al. Collision injury assessment of mechanical harvesting blueberry fruit based on collision deformation energy [J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(16): 283?292.
[11] KUMAR A, BARO O, HARINARAYAN N H. Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values [J]. Natural hazards, 2016, 81(1): 543?572.endprint