舒曉宏
(大連醫(yī)科大學(xué) 藥學(xué)院 藥物化學(xué)教研室,遼寧 大連 116044)
白藜蘆醇 (resveratrol),天然多酚類化合物,最初被認(rèn)為是植物在生長過程中受到外界刺激或病菌感染而產(chǎn)生的一種植物抗毒素 (phytoalexin),存在于葡萄、石榴、花生、桑椹、藍(lán)莓和藜蘆等多種植物中[1]。早在1940年,日本科學(xué)家Takaota 即從白藜蘆(Veratrum grandiflorum Loes. Fil.)的根部分離得到白藜蘆醇[2],但其為世人所熟知?jiǎng)t源于“法國悖論”,即法國人高脂肪、高熱量飲食習(xí)慣與其低心血管疾病發(fā)病率的相?,F(xiàn)象[3]。1997年Jang課題組在Science上首次報(bào)道了白藜蘆醇的腫瘤預(yù)防活性及其分子機(jī)制[4],從而引起了整個(gè)學(xué)術(shù)界的廣泛關(guān)注,并進(jìn)行了諸多有益的探索[5-10]。目前(截至2018年4月15日)Pubmed檢索到以resveratrol為主題詞的研究文獻(xiàn)有10538篇(https://www.ncbi.nlm.nih.gov/pubmed/),美國NIH政府網(wǎng)站上目前以resveratrol為研究對(duì)象的臨床試驗(yàn)137項(xiàng)(https://clinicaltrials.gov/)。盡管白藜蘆醇極低的生物利用度常常導(dǎo)致其生物活性的不確定性[11],并引起人們對(duì)其藥用價(jià)值的質(zhì)疑,但大量實(shí)驗(yàn)數(shù)據(jù)顯示白藜蘆醇具有多種有益的藥理活性[5-10],如Nature、Science上諸多關(guān)于其延緩衰老、心血管預(yù)防及抗腫瘤等方面的報(bào)道[4,6-7]。本課題組研究發(fā)現(xiàn)白藜蘆醇雖然不具備廣譜的抗腫瘤活性,但其對(duì)某些腫瘤細(xì)胞呈現(xiàn)明顯的抑制作用及治療劑量下良好的生物安全性[12-15]。因此,如何提高白藜蘆醇生物利用度進(jìn)而充分發(fā)揮其藥理活性成為學(xué)術(shù)界關(guān)注的熱點(diǎn),本文就白藜蘆醇及其生物利用度的研究現(xiàn)狀進(jìn)行述評(píng)。
藥物在體內(nèi)代謝一般要經(jīng)歷 I 相和II相 2 個(gè)時(shí)相反應(yīng),是藥物從體內(nèi)消除的主要途徑之一,多數(shù)藥物代謝后藥理活性減弱或消失(即失活),少數(shù)可被活化產(chǎn)生活性代謝產(chǎn)物而發(fā)揮藥理活性。生物利用度是研究藥物代謝的關(guān)鍵性因素之一,制劑中藥物被吸收進(jìn)入人體循環(huán)的速度與程度,是評(píng)價(jià)藥物優(yōu)劣的重要指標(biāo)。
白藜蘆醇生物利用度低、代謝迅速,Asensi 等[16]研究發(fā)現(xiàn)無論口服給藥還是靜脈注射,白藜蘆醇在動(dòng)物血漿中的達(dá)峰時(shí)間均不到 5 min。健康男性受試者口服葡萄提取物,藥代動(dòng)力學(xué)研究顯示白藜蘆醇口服吸收率高達(dá) 75%,但生物利用度不足1%[17],其主要原因是白藜蘆醇在人體內(nèi)發(fā)生了廣泛的II相代謝反應(yīng),生成葡萄糖醛酸苷和硫酸酯類結(jié)合物,導(dǎo)致血液中只能檢測(cè)到微量白藜蘆醇原型藥物[11-18]。為了提高白藜蘆醇的生物利用度,Boocock等[19]在I期臨床試驗(yàn)中給健康志愿者單劑量口服白藜蘆醇(0.5, 1, 2.5或5 g),其峰濃度 (Cmax) 分別為72.6, 117.0, 268.0和538.8 ng/mL,達(dá)峰時(shí)間 (Tmax) 依次為0.833, 0.759, 1.375和1.500 h,藥物濃度—時(shí)間曲線下面積 (AUC) 分別為223.7, 544.8, 786.5和1319 ng×h/mL,雖然增加給藥劑量能夠提高血液中白藜蘆醇的Cmax538.8 ng/mL (2.4 μmol/L),但體外實(shí)驗(yàn)顯示白藜蘆醇發(fā)揮抗腫瘤作用至少要5 μmol/L以上,上述結(jié)果提示單純依靠增加給藥劑量不足以發(fā)揮白藜蘆醇的藥理活性。因此,我們將結(jié)合白藜蘆醇的代謝特點(diǎn)進(jìn)一步探討如何提高白藜蘆醇的生物利用度。
白藜蘆醇在體內(nèi)代謝,易發(fā)生II相反應(yīng),大部分被葡萄糖醛酸化和硫酸酯化[18-20],從而影響其生物活性。有研究發(fā)現(xiàn)胡椒堿、槲皮素等與白藜蘆醇協(xié)同使用可以抑制代謝酶活性而提高白藜蘆醇的生物利用度[21-26]。已有研究顯示胡椒堿可以抑制葡萄糖醛酸轉(zhuǎn)移酶的活性而減少藥物葡萄糖醛酸化,從而提高白藜蘆醇生物利用度[21-22]。Johnson等[23]灌胃給藥C57BL/6小鼠白藜蘆醇(100 mg/kg)及白藜蘆醇 (100 mg/kg)/胡椒堿 (10 mg/kg) 混合物,采用LC/MS檢測(cè)白藜蘆醇的藥代動(dòng)力學(xué)參數(shù),結(jié)果發(fā)現(xiàn)胡椒堿可明顯改善白藜蘆醇的動(dòng)力學(xué)參數(shù),與白藜蘆醇單獨(dú)給藥相比,白藜蘆醇/胡椒堿聯(lián)合給藥可使Cmax增加至1544%,AUC增加至229%,胡椒堿能明顯抑制白藜蘆醇的葡萄糖醛酸化,從而增強(qiáng)白藜蘆醇的生物利用度。但Wightman等[27]在人體試驗(yàn)中發(fā)現(xiàn),雖然胡椒堿可以促進(jìn)白藜蘆醇對(duì)腦血流量的影響,但認(rèn)為其并沒有改變白藜蘆醇的生物利用度,甚至在靜脈血中未檢測(cè)到白藜蘆醇原型形式。Boocock等[19]在I期臨床試驗(yàn)中發(fā)現(xiàn),人體服用不同劑量的白藜蘆醇,其Cmax及AUC的Tmax均不同,志愿者單劑量口服0.5 g,白藜蘆醇Tmax為0.833 h (約50 min),而Wightman等[27]給藥劑量為0.25 g,血樣采集時(shí)間分別為服用白藜蘆醇后45, 90和120 min,文中未體現(xiàn)出研究者對(duì)白藜蘆醇代謝動(dòng)力學(xué)參數(shù)進(jìn)行系統(tǒng)測(cè)定,因而可能影響其生物利用度評(píng)估的科學(xué)性。胡椒堿與白藜蘆醇聯(lián)合用藥從而提高白藜蘆醇生物活性亦被其他學(xué)者所報(bào)道,研究發(fā)現(xiàn)胡椒堿可以增強(qiáng)白藜蘆醇的抗抑郁作用[28],以及提高白藜蘆醇對(duì)腫瘤細(xì)胞的放射敏感性[29]。此外,還有大量文獻(xiàn)報(bào)道槲皮素、姜黃素等多酚類化合物與白藜蘆醇聯(lián)合應(yīng)用亦可抑制相關(guān)代謝酶的活性,從而提高白藜蘆醇的生物利用度及藥理活性[24-26]。
前體藥物 (pro-drug),可增加藥物穩(wěn)定性和靶向性,改善藥代動(dòng)力學(xué)參數(shù),延長藥物作用時(shí)間,從而提高藥物的生物利用度。白藜蘆醇在體內(nèi)代謝迅速,易被硫酸酯化和葡萄糖醛酸化,導(dǎo)致生物利用度降低。因而,有學(xué)者將白藜蘆醇醚化或乙酰化制成前體藥物,進(jìn)入體內(nèi)代謝水解為白藜蘆醇后發(fā)揮其藥理活性[30-34]。有研究者將白藜蘆醇制備成前體藥物3,4’,5-三乙酰氧基二苯乙烯(乙?;邹继J醇),3,5,4’-位點(diǎn)由于乙?;苊饬肆蛩狨セ推咸烟侨┧峄磻?yīng),從而提高了其生物利用度。Liang等[32]給大鼠灌胃乙?;邹继J醇 (155 mg/kg) 較等摩爾濃度的白藜蘆醇 (100 mg/kg),其藥代動(dòng)力學(xué)參數(shù)發(fā)生明顯改善,其中半衰期 (t1/2) 從 (118.0 ± 20.31) min延長至 (394.7 ± 43.6) min,AUC從 (320.0 ± 42.85) mg×min/L提高至 (558.5 ± 58.9) mg×min/L。大鼠給藥天然產(chǎn)物 3,5-二甲氧基-4’-羥基二苯乙烯 (紫檀芪),雖然結(jié)構(gòu)中只有3,5-OH被醚化保護(hù),但灌胃給藥后紫檀芪較白藜蘆醇葡萄糖醛酸化率降低,紫檀芪血藥濃度及生物利用度較等摩爾濃度給藥的白藜蘆醇均有顯著提高[33]。還有研究將白藜蘆醇鍵合甲氧基團(tuán)后制備成3,5,4’-三甲氧基二苯乙烯后,其代謝穩(wěn)定性增強(qiáng),并呈現(xiàn)更強(qiáng)的抗病毒及抗癌等藥理活性[34-36]。因此前體藥物的設(shè)計(jì)將成為改善白藜蘆醇生物利用度、提高其藥理活性的有效途徑之一。
在大量的實(shí)驗(yàn)室和臨床研究中,白藜蘆醇的主要給藥方式是將其粉末直接裝入膠囊,或溶解在乙醇、丙烯甘油、玉米油等不同的介質(zhì)中[37-38]。但研究發(fā)現(xiàn)粉末狀白藜蘆醇溶解吸收性較差,而溶解性較好的介質(zhì)如乙醇、丙烯甘油等又存在明顯的溶劑作用[39]。因此,近年來關(guān)于白藜蘆醇的制劑研究引起越來越多的關(guān)注,以期改善白藜蘆醇的藥代動(dòng)力學(xué)參數(shù)及制劑安全性,提高藥物的生物利用度和靶向性。
2.3.1 增加穩(wěn)定性及結(jié)構(gòu)保護(hù)
白藜蘆醇屬于光敏性化合物,在日光及紫外線照射下易形成順式異構(gòu)體而降低活性[40]。Shi等[41]首次成功使用酵母膠囊封裝白藜蘆醇,光解作用明顯降低,氧自由基清除作用增加,且在潮濕和強(qiáng)光應(yīng)激環(huán)境下穩(wěn)定性顯著提高。同時(shí)在不含胃蛋白酶的胃酸(pH 1.2)檢測(cè)白藜蘆醇釋放的體外實(shí)驗(yàn)中,檢測(cè)到90 min內(nèi)高達(dá)90%釋放度,有效地提高了白藜蘆醇的穩(wěn)定性和生物利用度。除酵母外,Sanna等[42]采用殼聚糖 (CS) 與聚乳酸-羥基乙酸共聚物 (PLGA)為介質(zhì)制成白藜蘆醇微膠囊,并模仿胃液環(huán)境監(jiān)控白藜蘆醇的釋放度以及不同儲(chǔ)存條件下的穩(wěn)定性,檢測(cè)發(fā)現(xiàn)該微囊6個(gè)月時(shí)穩(wěn)定性依舊良好,CS/PLGA微囊可控釋并保持白藜蘆醇穩(wěn)定性。
2.3.2 提高水溶性
白藜蘆醇水溶性極低,影響了其在體內(nèi)的生物利用度。環(huán)糊精 (cyclodextrin, CD) 能有效地增加一些水溶性不好藥物的溶解度,并且環(huán)糊精是一類環(huán)狀低聚糖,主要由葡萄糖組成,具有極好的安全性且易被人體吸收,因而在制藥業(yè)上受到高度關(guān)注。文獻(xiàn)報(bào)道α-, β- 和γ-CD均可與白藜蘆醇形成1∶1包合物,能顯著提高白藜蘆醇的水溶性[43-44]。羥丙基-β-CD與白藜蘆醇形成的包合物水溶性明顯增強(qiáng),通過熒光素探針標(biāo)記評(píng)估包合物的抗氧化能力,發(fā)現(xiàn)包合物提高了熒光衰退曲線下面積 (net AUC) 至飽和水平,抗氧化能力幾乎增加了一倍[45]。白藜蘆醇的抗氧化能力依賴于白藜蘆醇與羥丙基-β-CD包合物的形成,其中環(huán)糊精作為游離白藜蘆醇劑量調(diào)控存儲(chǔ)池,保護(hù)白藜蘆醇以防止其被自由基快速氧化,從而最大限度地延長了白藜蘆醇的抗氧化活性[45]。
此外,自乳化藥物傳遞系統(tǒng) (self-emulsifying drug delivery systems,SEDDS), 對(duì)于親脂性和難溶性藥物是一個(gè)非常有希望的新型載體系統(tǒng)。Bolko等[46]將白藜蘆醇采用SEDDS系統(tǒng)乳化至微米甚至納米水平,其水溶性提高23倍。同時(shí)Singh等[47]亦發(fā)現(xiàn),SEDDS可使白藜蘆醇溶解度顯著提高,AUC亦增加3.29倍,進(jìn)而使白藜蘆醇生物利用度顯著提高。
2.3.3 靶向定位
靶向給藥系統(tǒng) (targeting drug delivery system, TDDS),是通過載體使藥物選擇性的濃集于病變的靶部位。靶向制劑一般應(yīng)具備定位、濃集、控釋及無毒可生物降解等基本要素,由于靶向制劑可以提高藥效、降低毒性,因此日益受到國內(nèi)外學(xué)者的廣泛關(guān)注。目前靶向制劑改良研究主要集中在納米材料、脂質(zhì)體、鈣和鋅-果膠粒和雙層超細(xì)纖維等。Shao等[47]通過納米沉淀的方法,以甲氧基聚乙二醇-聚己內(nèi)酯作為載體,將白藜蘆醇直接包埋于生物可降解的疏水性納米顆粒內(nèi)核,可達(dá)到給藥后前5 h釋放總藥量50%,后續(xù)達(dá)到勻速持續(xù)釋放的作用。在對(duì)角質(zhì)細(xì)胞瘤的研究中,該制劑顯示顯著的細(xì)胞膜通透性,因而相較于游離白藜蘆醇具有更顯著的抗腫瘤效果。
同樣,利用脂質(zhì)體作為白藜蘆醇的包合載體同樣得到了一定的發(fā)展,主要有靶向脂質(zhì)體、聲學(xué)活性脂質(zhì)球(acoustically active lipospheres,AALs)等材料。研究通過與靶分子或抗體的共軛結(jié)合,從而使脂質(zhì)體對(duì)表達(dá)特異受體或抗原的細(xì)胞主動(dòng)靶向結(jié)合。目前已有研究報(bào)道采用地喹氯銨聚乙二醇-二硬脂酰磷脂酰乙醇胺修飾的白藜蘆醇脂質(zhì)體,該脂質(zhì)體具有靶向線粒體的功能,且可被耐藥肺癌細(xì)胞選擇性攝取,因而可明顯減少線粒體的去極化,從而誘導(dǎo)肺癌細(xì)胞凋亡[48]。
將脂質(zhì)和納米技術(shù)相結(jié)合制成如脂核納米囊 (lipid-core nanocapsules)、固體脂質(zhì)納米粒 (solid lipid nanoparticles, SLNs) 同樣顯示獨(dú)特優(yōu)勢(shì)。Frozza等[49]通過界面聚合物沉積法制成的白藜蘆醇納米囊包封率可達(dá)99.9%,室溫下穩(wěn)定時(shí)間可達(dá)3個(gè)月。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)灌胃或腹腔注射該制劑后,均能明顯改善白藜蘆醇在大鼠肝、腎、腦中的分布,白藜蘆醇脂核納米囊顯著降低白藜蘆醇的釋放速度,且相較于游離白藜蘆醇,對(duì)胃腸道的刺激能降低6~9倍。
為避免白藜蘆醇在上胃腸消化道中體內(nèi)被迅速吸收和代謝,Das 等[50]采用鈣和鋅-果膠粒,其對(duì)白藜蘆醇具有高達(dá)98%的包合度,且該制劑在4 ℃或室溫儲(chǔ)存時(shí)間均可達(dá)6個(gè)月,顯著提高了白藜蘆醇的穩(wěn)定性。同時(shí)該制劑優(yōu)化了白藜蘆醇的結(jié)腸靶位運(yùn)送作用,在模擬胃液中鈣-果膠粒對(duì)白藜蘆醇的包封率可達(dá)97%,而在結(jié)腸模擬環(huán)境中的釋放度高于80%。由于鈣-果膠粒在體內(nèi)實(shí)驗(yàn)研究中并未顯示結(jié)腸特定性釋放,因此通過采用直徑為950 μmol/L鋅-果膠粒的優(yōu)化使白藜蘆醇的包封率提高到94%~98%,且大鼠體內(nèi)實(shí)驗(yàn)均證實(shí)該制劑良好的結(jié)腸定位效果,該制劑良好的靶向性將為結(jié)腸的臨床治療提供指導(dǎo)[51]。
白藜蘆醇的多種藥理活性已顯示出其良好的開發(fā)潛力,但由于其水溶性低、體內(nèi)代謝迅速,生物利用度低而影響了白藜蘆醇的發(fā)展應(yīng)用。本研究結(jié)合白藜蘆醇的代謝特點(diǎn),從協(xié)同給藥、前體藥物設(shè)計(jì)和制劑改良等角度對(duì)白藜蘆醇的生物利用度研究現(xiàn)狀進(jìn)行探討,以期為白藜蘆醇生物利用度的提高提供參考,進(jìn)而促進(jìn)其從基礎(chǔ)研究到臨床轉(zhuǎn)化的應(yīng)用。
[1] Burns J, Yokota T, Ashihara H, et al. Plant foods and herbal sources of resveratrol[J]. J Agric Food Chem,2002,50(11):3337-3340.
[2] Takaota MJ. The phenolic substances of white hellebore (Veratrum grandiflorum Loes. Fil.) [J]. J Faculty Sci, 1940,3:1-16.
[3] Catalgol B, Batirel S, Taga Y, et al. Resveratrol: French paradox revisited[J]. Front Pharmacol,2012,3:141.
[4] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science,1997,275(5297):218-220.
[5] Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence[J]. Nat Rev Drug Discov,2006,5(6):493-506.
[6] Baur JA, Pearson KJ, Price NL, et al.Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature,2006,444(7117):337-342.
[7] Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J]. Nature,2007, 450(7170):712-716.
[8] Park SJ, Ahmad F, Philp A, et al.Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell,2012,148(3):421-433.
[9] Mattison JA, Wang M, Bernier M, et al. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates[J]. Cell Metab,2014,20(1):183-190.
[11] Walle T, Hsieh F, DeLegge MH, et al. High absorption but very low bioavailability of oral resveratrol in humans[J]. Drug Metab Dispos, 2004,32(12):1377-1382.
[12] Yang Y, Li C, Li H, et al. Differential sensitivities of bladder cancer cell lines to resveratol are unrelated to its metabolic profile[J]. Oncotarget, 2017, 8(25):40289-40304.
[13] Sun Z, Li H, Shu XH, et al.Distinct sulfonation activities in resveratrol-sensitive and resveratrol-insensitive human glioblastoma cells[J]. FEBS J, 2012,279(13):2381-2392.
[14] Shu XH, Li H, Sun XX, et al.Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies[J]. PLoS One,2011,6(11):e27484.
[15] Shu XH, Li H, Sun Z, et al. Identification of metabolic pattern and bioactive form of resveratrol in human medulloblastoma cells[J]. Biochem Pharmacol, 2010,79(10):1516-1525.
[16] Asensi M, Medina I, Ortega A, et al.Inhibition of cancer growth by resveratrol is related to its low bioavailability[J]. Free Radic Biol Med,2002,33(3):387-398.
[17] Rotches-Ribalta M, Andres-Lacueva C, Estruch R, et al.Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets[J]. Pharmacol Res,2012,66(5):375-382.
[18] Burkon A, Somoza V. Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated diglucuronides - two novel resveratrol metabolites in human plasma[J]. Mol Nutr Food Res, 2008,52(5):549-557.
[19] Boocock DJ, Faust GE, Patel KR, et al.Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent[J]. Cancer Epidemiol Biomarkers Prev, 2007,16(6):1246-1252.
[20] 楊陽,李傳剛,舒曉宏. 白藜蘆醇代謝模式的研究進(jìn)展[J]. 中國藥學(xué)雜志,2013,48 (24):2081-2083.
[21] Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism[J]. J Pharmacol Exp Ther, 1985,232(1):258-262.
[22] Reen RK, Jamwal DS, Taneja SC, et al. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem Pharmacol[J]. 1993,46(2):229-238.
[23] Johnson JJ, Nihal M, Siddiqui IA, et al. Enhancing the bioavailability of resveratrol by combining it with piperine[J]. Mol Nutr Food Res, 2011,55(8):1169-1176.
[24] Zhao Y, Chen B, Shen J, et al. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity[J]. Oxid Med Cell Longev,2017, 2017:1459497.
[25] De Santi C, Pietrabissa A, Mosca F, et al. Glucuronidation of resveratrol, a natural product present in grape and wine, in the human liver[J]. Xenobiotica, 2000,30(11):1047-1054.
[26] De Santi C, Pietrabissa A, Spisni R, et al. Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids[J]. Xenobiotica, 2000,30(9):857-866.
[27] Wightman EL, Reay JL, Haskell CF, et al. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation[J]. Br J Nutr,2014,112(2):203-213.
[28] Huang W, Chen Z, Wang Q, et al. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system[J]. Metab Brain Dis, 2013,28(4):585-595.
[29] Tak JK, Lee JH, Park JW. Resveratrol and piperine enhance radiosensitivity of tumor cells[J]. BMB Rep,2012,45(4):242-246.
[30] Koide K, Osman S, Garner AL, et al. The Use of 3,5,4'-Tri-O-acetylresveratrol as a Potential Pro-drug for Resveratrol Protects Mice from γ-Irradiation-Induced Death[J]. ACS Med Chem Lett,2011,2(4):270-274.
[32] Liang L, Liu X, Wang Q, et al. Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3,5,4'-tri-O-acetylresveratrol in rats[J]. Phytomedicine, 2013,20(6):558-563.
[33] Kapetanovic IM, Muzzio M, Huang Z, et al. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats[J]. Cancer Chemother Pharmacol,2011,68(3):593-601.
[34] Nguyen CB, Kotturi H, Waris G, et al. (Z)-3,5,4'-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell-Cycle Progression[J]. Cancer Res, 2016,76(16):4887-4896.
[35] Aldawsari FS, Velázquez-Martínez CA. 3,4',5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency[J]. Invest New Drugs, 2015,33(3):775-786.
[36] Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene[J]. Biofactors, 2018,44(1):16-25.
[37] Santos AC, Veiga F, Ribeiro AJ. New delivery systems to improve the bioavailability of resveratrol[J]. Expert Opin Drug Deliv, 2011,8(8):973-990.
[38] Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, et al. Resveratrol bioavailability and toxicity in humans[J]. Mol Nutr Food Res,2010, 54: 7-16.
[39] Amri A, Chaumeil JC, Sfar S, et al. Administration of resveratrol: What formulation solutions to bioavailability limitations? [J]. J Control Release, 2012,158(2):182-193.
[40] Shu XH, Li H, Sun Z, et al. Identification of metabolic pattern and bioactive form of resveratrol in human medulloblastoma cells[J]. Biochem Pharmacol, 2010,79(10):1516-1525.
[41] Shi G, Rao L, Yu H, et al. Stabilization and encapsulation of photosensitive resveratrol within yeast cell[J]. Int J Pharm,2008,349(1-2): 83-93.
[42] Sanna V, Roggio AM, Pala N, et al. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol[J]. Int J Biol Macromol, 2015,72:531-536.
[43] López-Nicolás JM, García-Carmona F. Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC[J]. Food Chem,2008,109(4):868-875.
[44] Das S, Lin HS, Ho PC, et al. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol[J]. Pharm Res,2008,25(11):2593-2600.
[45] Lucas-Abellán C, Mercader-Ros MT, Zafrilla MP, et al. ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins[J]. J Agric Food Chem, 2008,56(6):2254-2259.
[46] Bolko K, Zvonar A, Ga?perlin M. Mixed lipid phase SMEDDS as an innovative approach to enhance resveratrol solubility[J]. Drug Dev Ind Pharm, 2014,40(1):102-109.
[47] Shao J, Li X, Lu X, et al. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels[J]. Colloids Surf B Biointerfaces,2009,72(1):40-47.
[48] Wang XX, Li YB, Yao HJ, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells[J]. Biomaterials,2011,32(24):5673-5687.
[49] Frozza RL, Bernardi A, Paese K, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats[J]. J Biomed Nanotechnol, 2010,6(6):694-703.
[50] Das S, Ng KY. Impact of glutaraldehyde on in vivo colon-specific release of resveratrol from biodegradable pectin-based formulation[J]. J Pharm Sci, 2010, 99(12):4903-4916.
[51] Huang ZM, He CL, Yang A, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning[J]. J Biomed Mater Res A, 2006, 77(1):169-179.