顏兵,劉輝,游俊浩,李方
572000海南 三亞,中國人民解放軍總醫(yī)院海南分院 腫瘤科
結(jié)直腸癌在我國有很高的發(fā)病率和死亡率,僅2015年我國估計新發(fā)病例37萬余例,死亡19萬余例[1]。得益于對腫瘤免疫的深入研究[2-4]和相關(guān)藥物療效獲得臨床試驗證實[5-9],免疫治療成為近幾年抗腫瘤研究熱點。T調(diào)節(jié)淋巴細(xì)胞(T regulatory cells,Treg)是免疫治療的關(guān)鍵[10-12]。然而目前Treg在某些腫瘤,特別是結(jié)腸癌中的作用和預(yù)后意義尚結(jié)論不一,值得進一步開展相關(guān)探索。本文擬就Treg在結(jié)直腸癌發(fā)生,發(fā)展中的作用及預(yù)后意義進行綜述。
Treg是一群異質(zhì)性很強的CD4+T淋巴細(xì)胞亞群,既往一般認(rèn)為CD4+CD25+為其表面標(biāo)記,然而隨著叉頭蛋白3(forkhead box protein 3,F(xiàn)OXP3)在Treg發(fā)生、發(fā)展和功能等方面的關(guān)鍵作用被發(fā)現(xiàn),目前所謂的Treg一般認(rèn)為其表面標(biāo)記為CD4+CD25+FOXP3+。即便如此,近年來發(fā)現(xiàn)Treg還可根據(jù)其不同表面標(biāo)記,如細(xì)胞毒T細(xì)胞相關(guān)抗原- 4(cytotoxic T-lymphocyte-associated antigen- 4, CTLA- 4;也稱為CD152)、淋巴細(xì)胞活化基因-3(lymphocyte-activation gene-3,LAG-3)、激素性腫瘤壞死因子受體(glucocorticoid-induced TNF receptor,GITR)和CD127等分為多個亞群[10]。
既往研究認(rèn)為Treg在腫瘤發(fā)生發(fā)展中的主要作用是調(diào)控效應(yīng)T細(xì)胞功能,其機制主要包括通過直接接觸抑制或分泌某些細(xì)胞因子等[2]。然而Treg在結(jié)直腸癌中卻具有兩面性,這種兩面性可能受多因素的影響,其中包括Treg本身在結(jié)直腸癌發(fā)生發(fā)展過程中所扮演的角色不甚明確(如在疾病發(fā)展過程中的功能、分布、數(shù)量改變),也包括外界因素(如治療)的干擾。對于前者,Pastille等[13]研究發(fā)現(xiàn),在腸炎相關(guān)的結(jié)腸癌患者外周血中,某些激活表型的Treg數(shù)量明顯增加,在動物模型中暫時去除這些細(xì)胞可以導(dǎo)致腫瘤細(xì)胞增殖和轉(zhuǎn)移受抑制,支持Treg在結(jié)腸癌中的作用為促進腫瘤發(fā)展;然而Wang等[14]研究發(fā)現(xiàn)結(jié)腸腫瘤組織內(nèi)的Treg可以通過抑制產(chǎn)IL-17T細(xì)胞這一途徑抑制癌細(xì)胞轉(zhuǎn)移,似乎Treg對人體抗腫瘤有益。此外,有研究發(fā)現(xiàn)在結(jié)腸癌發(fā)展的不同階段,Treg的作用似乎也不完全一致,如Hua等[15]研究發(fā)現(xiàn)在早期結(jié)腸腺瘤中,Treg在微環(huán)境中聚集可以通過抑制促炎信號等途徑阻止腫瘤惡性轉(zhuǎn)化;然而當(dāng)腫瘤徹底轉(zhuǎn)化為惡性后,癌細(xì)胞可能促使Treg作用和功能發(fā)生轉(zhuǎn)化,從而起到協(xié)助其發(fā)展、抑制免疫等作用[3]。
對于外界因素如化療藥物對Treg作用的干擾,目前在其他腫瘤中發(fā)現(xiàn)如吉西他濱、多西他賽等藥物可能具有一定作用[16-17]。在結(jié)直腸癌中,化療藥物對Treg的影響似乎也存在正反兩方面作用,如Correale等[18]發(fā)現(xiàn)高Treg浸潤預(yù)示結(jié)腸癌患者對FOLFOX方案治療有著良好的反應(yīng),不論是疾病進展生存時間還是總生存時間均優(yōu)于低Treg浸潤患者;然而Maeda等[19]通過檢測27例接受化療的轉(zhuǎn)移性結(jié)直腸癌患者的外周血發(fā)現(xiàn),Treg數(shù)量高的患者在接受FOLFOX或FOLFIRI方案治療后僅7天,Treg細(xì)胞的含量會明顯減少,推斷化療可能通過抑制Treg增加人體抗腫瘤免疫。
事實上,在探討Treg的兩面性問題時還有一個不可回避的因素,即:在腫瘤發(fā)展、治療過程中其在瘤內(nèi)和瘤周、腫瘤引流淋巴結(jié)、患者外周血中的分布情況。一般認(rèn)為,類似于Treg這樣的腫瘤浸潤淋巴細(xì)胞在多數(shù)腫瘤中和不良預(yù)后相關(guān)[20],近期有Meta分析[21]在宮頸癌、腎癌、黑色素瘤和乳腺癌中證實了這一點,但Treg在結(jié)直腸癌中與預(yù)后的相關(guān)性存在多種情況。
部分研究提示Treg增高直接或間接預(yù)示結(jié)直腸癌患者良好預(yù)后,但這部分研究大都集中于早、中期患者。如Matera等[22]對30例早期結(jié)直腸癌患者前哨淋巴結(jié)標(biāo)本分析發(fā)現(xiàn),高Treg數(shù)量和腫瘤早期浸潤相關(guān)(T2和T3),且和預(yù)后良好明顯正相關(guān),高Treg數(shù)量意味著癌細(xì)胞無法轉(zhuǎn)移至下一站淋巴結(jié),似乎提示Treg具有抑制轉(zhuǎn)移的作用; Vlad等[23]對42例II期(13例)和III期(29例)患者腫瘤標(biāo)本進行研究,通過相關(guān)性分析發(fā)現(xiàn)高Treg浸潤僅和分期早相關(guān),而在多因素分析中高Treg浸潤仍提示良好的預(yù)后;M?rkl等[24]通過對136例早期(I、II期)結(jié)腸癌患者標(biāo)本分析發(fā)現(xiàn),Treg浸潤在瘤內(nèi)高于侵襲邊緣,侵襲邊緣高Treg數(shù)值提示更好的預(yù)后。除上述小樣本研究外,尚有部分大樣本研究得出與此較為一致的結(jié)論,如Salama等[25]對967例II期和III期結(jié)直腸癌腫瘤和瘤周正常粘膜分析后發(fā)現(xiàn),高Treg浸潤同樣僅和早期浸潤和早分期相關(guān),對于不同部位Treg浸潤對患者預(yù)后的意義分析發(fā)現(xiàn),瘤內(nèi)和瘤周相反(在瘤內(nèi)提示良好預(yù)后,在瘤周提示預(yù)后差);Hanke等[26]對820例II期結(jié)直腸癌患者標(biāo)本分析發(fā)現(xiàn),瘤內(nèi)Treg高浸潤提示良好預(yù)后。
對于晚期結(jié)直腸癌中Treg對預(yù)后的影響,有部分研究結(jié)果和其他實體瘤中的結(jié)論一致,即Treg高浸潤提示預(yù)后不良,但這部分研究樣本數(shù)量較少,且直接結(jié)論較少。如Katz等[27]對188例發(fā)生肝轉(zhuǎn)移的結(jié)直腸癌患者術(shù)后標(biāo)本進行研究,發(fā)現(xiàn)腫瘤組織中單獨Treg增高或降低在單因素或多因素分析中均無預(yù)后判斷意義,但如同時納入CD4+T和CD8+T等參數(shù),發(fā)現(xiàn)不論是Treg/CD4+T數(shù)值還是Treg/CD8+T數(shù)值,增高均預(yù)示更低的5年生存率,間接提示Treg的作用仍可能為抑制免疫。
除此之外,尚有部分研究得出Treg浸潤和結(jié)直腸癌患者預(yù)后無相關(guān)或無相關(guān)性的論斷。如Loddenkemper等[28]通過對40例結(jié)直腸癌患者標(biāo)本進行分析發(fā)現(xiàn),腫瘤基質(zhì)Treg浸潤數(shù)量高,同樣在早期患者中Treg浸潤數(shù)量高于轉(zhuǎn)移患者(晚期),但Treg高浸潤和低浸潤的病例預(yù)后無差異。同時也有部分研究因未能進行長期隨訪,尚未得出是否和預(yù)后相關(guān)的明確結(jié)論,如Napolitano等[29]對13例直腸癌患者研究發(fā)現(xiàn),經(jīng)過術(shù)前放療后行手術(shù)的患者,其Treg數(shù)值會降低。
有研究表明外周血Treg檢測對結(jié)直腸癌患者預(yù)后判斷也具有重要意義。這部分研究首先表現(xiàn)在Treg數(shù)量在患者和健康者之間的差別,如Betts等[30]對62例結(jié)直腸癌患者外周血樣本與健康人對照研究發(fā)現(xiàn),Treg在腫瘤患者中明顯升高,術(shù)后Treg數(shù)量可恢復(fù)正常;Liu等[31]相關(guān)研究得出類似結(jié)論。
和Treg在瘤內(nèi)/瘤周、引流淋巴結(jié)中結(jié)論相類似,外周血Treg對患者預(yù)后的影響結(jié)論也不完全一致。如Ling等[32]對190例結(jié)直腸癌患者外周血中Treg數(shù)量研究發(fā)現(xiàn),Treg數(shù)值高明顯見于晚期患者,提示和預(yù)后差相關(guān),有意思的是該研究同時提示外周血高Treg似乎和腫瘤基質(zhì)高Treg相一致;而Shen等[33]對35例結(jié)直腸癌患者研究發(fā)現(xiàn),外周血高Treg數(shù)量和腫瘤淋巴轉(zhuǎn)移及臨床分期無關(guān),從該研究尚不能肯定外周血Treg對預(yù)后的直接意義。目前對于外周血Treg含量和腫瘤浸潤淋巴結(jié)、引流淋巴結(jié)及腫瘤組織(瘤內(nèi)/瘤周)Treg表達相關(guān)性的定量研究較少,外周血Treg是否能代表腫瘤組織中Treg,進而對患者預(yù)后判斷提供參考仍值得進一步研究。
近年來,針對免疫檢查點程序性死亡受體/配體-1(programmed death/ligand-1,PD-1/PDL-1;也稱為CD279)和CTLA- 4的藥物相繼獲得FDA批準(zhǔn),使得免疫治療從理論走向現(xiàn)實[34]。而值得注意的是,PD-1和CTLA- 4主要表達在Treg[34],尤其是CTLA- 4[35]。目前對結(jié)直腸癌中PD-1/PDL-1或CTLA- 4陽性Treg也開展了相關(guān)研究,如Wu等[36]對49例結(jié)直腸癌患者腫瘤浸潤T細(xì)胞的研究發(fā)現(xiàn),PD-1陽性表達的CD8細(xì)胞在腫瘤組織中遠(yuǎn)高于外周血;Gasser等[37]對81例不同分期結(jié)直腸癌患者研究發(fā)現(xiàn),PD-1在早期患者中高表達,而在中晚期患者中表達較低。和前述論述一致,目前同樣有研究發(fā)現(xiàn)治療因素會對結(jié)直腸癌患者體內(nèi)這些具有特定標(biāo)記的Treg產(chǎn)生影響進而對預(yù)后產(chǎn)生影響,如前述Napolitano等[29]研究發(fā)現(xiàn),術(shù)前行放療的直腸癌患者體內(nèi)PD-1陽性Treg在第5周下降至最低,然而若患者放療后Treg數(shù)值升高,往往提示療效差;Formica等[38]對31例轉(zhuǎn)移性結(jié)直腸癌患者使用3周期FOLFIRI+貝伐珠單抗治療后發(fā)現(xiàn)PD-1陽性細(xì)胞經(jīng)歷2周期治療后在外周血中的比例無明顯改變,但第3周期開始前PD-1陽性細(xì)胞數(shù)量和患者無病生存期顯著相關(guān),總體上,目前對于以上述靶點為著眼點,探索免疫治療在結(jié)直腸癌中變化規(guī)律的研究尚缺乏大樣本研究。
通過檢索發(fā)現(xiàn)目前針對PD-1/PDL-1、CTLA- 4的藥物在結(jié)直腸癌中的部分臨床研究如下(表1),可喜的是已有初步報道提示免疫治療在結(jié)腸癌中有一定療效[39-40],未來臨床試驗的陸續(xù)完成將更一步證實這些結(jié)果。
表1 單獨或聯(lián)合靶向PD-1/PDL-1、CTLA- 4的藥物在結(jié)直癌中的臨床研究[41]
Treg在腫瘤免疫治療中存在十分重要的價值,是未來腫瘤免疫治療重要的靶點。目前Treg在結(jié)直腸中的具體作用以及其對患者預(yù)后的影響尚結(jié)論不一,這不利于臨床決策,未來這方面的研究仍值得深入開展。
作者聲明:本文第一作者對于研究和撰寫的論文出現(xiàn)的不端行為承擔(dān)相應(yīng)責(zé)任;
利益沖突:本文全部作者均認(rèn)同文章無相關(guān)利益沖突;
學(xué)術(shù)不端:本文在初審、返修及出版前均通過中國知網(wǎng)(CNKI)科技期刊學(xué)術(shù)不端文獻檢測系統(tǒng)學(xué)術(shù)不端檢測;
同行評議:經(jīng)同行專家雙盲外審,達到刊發(fā)要求。
[參考文獻]
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] Byun DJ, Wolchok JD, Rosenberg LM, et al. Cancer immunotherapy-immune checkpoint blockade and associated endocrinopathies[J]. Nat Rev Endocrinol, 2017,13(4): 195-207.
[3] 羅鋒, 王力. 抗腫瘤血管生成, 腫瘤免疫治療與腫瘤微環(huán)境的研究進展[J]. 腫瘤預(yù)防與治療, 2016, 29(6): 297-302.
[4] Sharpe AH. Introduction to checkpoint inhibitors and cancer immunotherapy[J]. Immunol Rev, 2017, 276(1): 5-8.
[5] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(2): 123-135.
[6] Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial[J]. Lancet Oncol, 2015, 16(3): 257-265.
[7] Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027): 1540-1550.
[8] Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(21): 2018-2028.
[9] Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial[J]. Lancet Oncol, 2016, 17(7): 883-895.
[10] Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy[J]. Cell Res, 2017, 27(1): 109-118.
[11] Schabowsky RH, Madireddi S, Sharma R, et al. Targeting CD4+CD25+FoxP3+regulatory T-cells for the augmentation of cancer immunotherapy[J]. Curr Opin Investig Drugs, 2007, 8(12): 1002-1008.
[12] Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer, 2009, 100(11): 1697-1703.
[13] Pastille E, Bardini K, Fleissner D, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer[J]. Cancer Res, 2014, 74(16): 4258-4269.
[14] Wang Q, Feng M, Yu T, et al. Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells[J]. Cell Immunol, 2014, 287(2): 100-105.
[15] Hua W, Yuan A, Zheng W, et al. Accumulation of FoxP3+ T regulatory cells in the tumor microenvironment of human colorectal adenomas[J]. Pathol Res Pract, 2016, 212(2): 106-112.
[16] Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation: the future of cancer immunotherapy? [J]. Br J Cancer, 2009, 100(11): 1697-1703.
[17] Li JY, Duan XF, Wang LP, et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer[J]. J Immunol Res, 2014, 2014: 286170.
[18] Correale P, Rotundo MS, Del Vecchio MT, et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy[J]. J Immunother, 2010, 33(4): 435- 441.
[19] Maeda K, Hazama S, Tokuno K, et al. Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity[J]. Anticancer Res, 2011, 31(12): 4569-4574.
[20] Tanchot C, Terme M, Pere H, et al. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance[J]. Cancer Microenviron, 2013, 6(2): 147-157.
[21] Shang B, Liu Y, Jiang SJ, et al. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis[J]. Sci Rep, 2015, 5: 15179.
[22] Matera L, Sandrucci S, Mussa A, et al. Low Foxp3 expression in negative sentinel lymph nodes is associated with node metastases in colorectal cancer[J]. Gut, 2010, 59(3): 419-420.
[23] Vlad C, Kubelac P, Fetica B, et al. The prognostic value of FOXP3+ T regulatory cells in colorectal cancer[J]. J Buon, 2015, 20(1): 114-119
[24] M?rkl B, Paul B, Schaller T, et al. The role of lymph node size and FOXP3+ regulatory T cells in node-negative colon cancer[J]. J Clin Pathol, 2017, 70(5): 443-447.
[25] Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+T regulatory cells show strong prognostic significance in colorectal cancer[J]. J Clin Oncol, 2009, 27(2): 186-192.
[26] Hanke T, Melling N, Simon R, et al. High intratumoral FOXP3(+) T regulatory cell (Tregs) density is an independent good prognosticator in nodal negative colorectal cancer[J]. Int J Clin Exp Pathol, 2015, 8(7): 8227-8235.
[27] Katz SC, Bamboat ZM, Maker AV, et al. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases[J]. Ann Surg Oncol, 2013, 20(3): 946-955.
[28] Loddenkemper C, Schernus M, Noutsias M, et al. In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer[J]. J Transl Med, 2006, 4(1): 52- 59.
[29] Napolitano M, D'Alterio C, Cardone E, et al. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients[J]. Oncotarget, 2015, 6(10): 8261-8270.
[30] Betts G, Jones E, Junaid S, et al. Suppression of tumour-specific CD4(+) T cells by regulatory T cells is associated with progression of human colorectal cancer[J]. Gut, 2012, 61(8): 1163-1171
[31] Liu Z, Huang Q, Liu G, et al. Presence of FOXP3(+)Treg cells is correlated with colorectal cancer progression[J]. Int J Clin Exp Med, 2014, 7(7): 1781-1785.
[32] Ling KL, Pratap SE, Bates GJ, et al. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients[J]. Cancer Immun, 2007, 7(1): 7.
[33] Shen Y, Wang Q, Qi Y, et al. Peripheral Foxp3+ regulatory T cells and natural killer group 2, member D expression levels in natural killer cells of patients with colorectal cancer[J]. Mol Med Rep, 2014, 10(2): 977-982.
[34] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264.
[35] Finotello F, Trajanoski Z. New strategies for cancer immunotherapy: targeting regulatory T cells[J]. Genome Med, 2017, 9(1): 10.
[36] Wu X, Zhang H, Xing Q, et al. PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients[J]. Br J Cancer, 2014, 111(7): 1391-1399.
[37] Gasser M, Grimm M, Nichiporuk E, et al. PD-1/PD-L1 expression in colorectal cancer and its implications for apoptosis and tumor immune evasion[J]. Cancer Res, 2006, 66(8): 1118.
[38] Formica V, Cereda V, di Bari MG, et al Peripheral CD45RO, PD-1, and TLR4 expression in metastatic colorectal cancer patients treated with bevacizumab, fluorouracil, and irinotecan (FOLFIRI-B) [J]. Med Oncol, 2013, 30(4): 743.
[39] Overman MJ, Lonardi S, Leone F, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: Update from CheckMate 142[J]. J Clin Oncol, 2017, 35(4): 519.
[40] Leal AD, Paludo J, Finnes HD, et al. Response to pembrolizumab in patients with mismatch repair deficient (dMMR) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2017, 35(4): 714.
[41] 美國臨床試驗數(shù)據(jù)庫[EB/OL]. https://clinicaltrials.gov//2017-4-22