孫夢莎 顧鳴敏
阿爾茨海默病(AD)是老年人群最常見的神經(jīng)變性病,隨著人口老齡化的加劇,其發(fā)病率逐年升高。根據(jù)《2009年世界阿爾茨海默病報告》數(shù)據(jù),預(yù)計截至2030年全球阿爾茨海默病患者將達65.70×106例,截至2050年將達115.40×106例,尤其在中低收入國家的增長速度更快[1]。絕大多數(shù)患者未接受正規(guī)檢查和診斷,因此未得到治療,其中缺乏有效檢測方法是最大障礙。迄今尚未發(fā)現(xiàn)一種足夠準確的方法可以早期診斷并預(yù)測癡呆。
我國主要采用簡易智能狀態(tài)檢查量表(MMSE)進行阿爾茨海默病早期篩查,但篩查出的患者多已進展至中至重度癥狀,較短時間內(nèi)即出現(xiàn)認知功能明顯減退[2]。美國最新的阿爾茨海默病診斷標準指出,阿爾茨海默病是包括輕度認知損害(MCI)在內(nèi)的連續(xù)病程,并強調(diào)生物學(xué)標志物可以用于診斷阿爾茨海默?。??4]。病程中出現(xiàn)神經(jīng)退行性變和早期臨床癥狀即可診斷為輕度認知損害[5],由于阿爾茨海默病時期的50%病理改變在輕度認知損害時期即已發(fā)生,因此,生物學(xué)標志物可能診斷疾病并預(yù)測疾病進展[6]。
阿爾茨海默病包括病理生理學(xué)階段和臨床階段,且病理改變開始時間較臨床癥狀出現(xiàn)時間約早10年甚至更長[7]。一項針對早發(fā)型阿爾茨海默病的橫斷面研究顯示,預(yù)期臨床癥狀出現(xiàn)前25年腦脊液β?淀粉樣蛋白42(Aβ42)水平即開始下降;預(yù)期臨床癥狀出現(xiàn)前15年腦脊液tau蛋白水平升高,11C?匹茲堡復(fù)合物B(11C?PIB)PET可檢測到腦組織Aβ沉積,腦萎縮加速;預(yù)期臨床癥狀出現(xiàn)前10年出現(xiàn)腦組織葡萄糖低代謝和情景記憶障礙[8]。本文總結(jié)阿爾茨海默病早期檢測與診斷方法,主要從阿爾茨海默病基因突變分析、影像學(xué)和生物學(xué)標志物測定如外周血和腦脊液檢測等方面進行概述。
近10年來,阿爾茨海默病遺傳學(xué)和基因組學(xué)研究取得重大突破。研究顯示,常染色體顯性遺傳性家族性阿爾茨海默?。‵AD)僅占全部阿爾茨海默病的小部分,而占絕大部分的散發(fā)性阿爾茨海默病是多種易感基因共同作用的結(jié)果[9?10]。無癡呆人群也可以檢測到易感基因位點,易感基因可能在疾病早期即已發(fā)揮作用,且疾病晚期在認知損害方面具有更高的易感性。盡管對于攜帶者而言,單一易感基因的作用較小,但全基因組中多種易感等位基因累加則使個體處于高危狀態(tài)[11]。評價總遺傳風險與阿爾茨海默病前期臨床和影像學(xué)表現(xiàn)相關(guān)性的研究顯示,多基因風險評分有助于鑒別診斷和預(yù)測阿爾茨海默病患病風險人群[9]。除4種已確定的阿爾茨海默病相關(guān)基因外,近年采用全基因組相關(guān)性研究(GWAS)發(fā)現(xiàn)新的基因位點,可能成為疾病診斷的生物學(xué)標志物。
1.APP、PS?1、PS?2、ApoE 等 Aβ代謝相關(guān)基因
既往研究顯示,β?淀粉樣前體蛋白(APP)、早老素1(PS?1)、早老素 2(PS?2)基因突變可以導(dǎo)致早發(fā)性阿爾茨海默?。‥OAD),而載脂蛋白E(ApoE)基因與晚發(fā)性阿爾茨海默?。↙OAD)相關(guān)[10]。APP、PS?1、PS?2基因突變導(dǎo)致Aβ生成并沉積,ApoE基因參與脂質(zhì)運輸,影響Aβ清除,其中,ApoEε4等位基因與阿爾茨海默病密切相關(guān),其頻率在晚發(fā)性阿爾茨海默病患者中明顯升高[12]。簇集素(CLU)基因與ApoE基因相似,參與Aβ構(gòu)型轉(zhuǎn)變,抑制其沉積。α2巨球蛋白(A2M)基因通過結(jié)合Aβ以減少其沉積,其突變時減慢Aβ清除速度。既往研究顯示,A2M基因外顯子2缺失可以使阿爾茨海默病患病風險增加數(shù)倍[13]。因此,進行上述基因檢測可以早期預(yù)測阿爾茨海默病。
2.Tau、PIN1等tau蛋白相關(guān)基因 Tau蛋白是微管相關(guān)蛋白(MAP),其翻譯后修飾異常與阿爾茨海默病發(fā)病有關(guān),過磷酸化表達可以降低其與微管的親和力,導(dǎo)致神經(jīng)原纖維纏結(jié)(NFTs)形成。盡管尚未確定tau基因突變與早發(fā)性阿爾茨海默病的關(guān)系,但是確定其可以導(dǎo)致一系列晚發(fā)性阿爾茨海默?。?4]。絕大多數(shù)tau基因錯義突變可以降低tau蛋白與微管的親和力,尤其是外顯子10突變,其次是外顯子9和12突變,而外顯子13突變的影響較??;尚有一些錯義突變可以直接刺激tau蛋白形成纖維絲[15]。因此對上述基因突變進行早期檢測和干預(yù),可以減少神經(jīng)細胞和神經(jīng)膠質(zhì)細胞變性以及阿爾茨海默病的發(fā)病。此外,肽基脯氨?;樂串悩?gòu)酶(PPIase)可以特異性調(diào)節(jié)某些磷酸化蛋白構(gòu)象變化,而阿爾茨海默病患者發(fā)生PPIase蛋白氧化抑制,從而無法調(diào)節(jié)過磷酸化的tau蛋白構(gòu)象,使其恢復(fù)生物學(xué)功能[16]。研究顯示,PIN1基因多態(tài)性加速神經(jīng)退行性變和臨床病程,其中?842C>G單核苷酸多態(tài)性(SNP)參與輕度認知損害到阿爾茨海默病的轉(zhuǎn)變[16],對早期診斷阿爾茨海默病具有一定意義。
3.CR1、CD33等免疫應(yīng)激反應(yīng)相關(guān)基因 當細胞外積聚Aβ時,小膠質(zhì)細胞進行吞噬,同時觸發(fā)炎癥反應(yīng)過程,啟動自身免疫應(yīng)激反應(yīng)。補體系統(tǒng)長期激活和炎癥反應(yīng)與阿爾茨海默病的神經(jīng)病理學(xué)過程有關(guān),全基因組相關(guān)性研究顯示,補體受體1(CR1)基因多態(tài)性與晚發(fā)性阿爾茨海默病相關(guān);阿爾茨海默病患者發(fā)生小膠質(zhì)細胞TYRO蛋白酪氨酸激酶結(jié)合蛋白(TYROBP)和髓樣細胞觸發(fā)性受體2(TREM2)基因突變,突變的TREM2基因和表達上調(diào)的CD33基因可以抑制Aβ清除,從而增加阿爾茨海默病患病風險[17?18]。
4.其他阿爾茨海默病相關(guān)基因多態(tài)性 研究顯示,亦有一些基因多態(tài)性與阿爾茨海默病的患病風險相關(guān),例如,位于第12號染色體的低密度脂蛋白受體相關(guān)蛋白1(LRP1)基因是阿爾茨海默病的危險因素,可以調(diào)節(jié)ApoE相關(guān)軸突生長和APP相關(guān)神經(jīng)元代謝,增加Aβ生成和延緩Aβ清除;腫瘤壞死因子?α(TNF?α)和前列腺素內(nèi)過氧化物合成酶2(PTGS2)基因通過炎癥反應(yīng)以增加阿爾茨海默病患病風險[19?20]。Meta分析顯示,白細胞介素(IL)基因多態(tài)性與阿爾茨海默病患病風險相關(guān)[21]。
晚近出現(xiàn)很多關(guān)于阿爾茨海默病患病風險基因位點的研究報道,詳見表1,這些基因檢測對早期診斷和預(yù)測阿爾茨海默病發(fā)生與發(fā)展有一定作用。
影像學(xué)技術(shù)的發(fā)展對阿爾茨海默病的診斷與預(yù)后判斷具有重要意義。目前臨床最常用的影像學(xué)方法主要是MRI和PET。
1.MRI檢查 MRI是在外加磁場作用下激發(fā)人體內(nèi)氫原子核吸收能量而產(chǎn)生躍遷,射頻(RF)脈沖停止后由于不同內(nèi)部結(jié)構(gòu)產(chǎn)生不同衰減而發(fā)射特定頻率信號,經(jīng)儀器接收后處理繪制出內(nèi)部結(jié)構(gòu)圖像的影像學(xué)技術(shù)。MRI對軟組織具有較好的分辨力,可以檢測出阿爾茨海默病患者腦萎縮如腦室擴大、腦溝增寬等。研究顯示,輕度認知損害進展至阿爾茨海默病的過程中出現(xiàn)胼胝體萎縮,且女性輕度認知損害進展期胼胝體萎縮速度快于輕度認知損害非進展期,因此,胼胝體萎縮可能成為預(yù)測輕度認知損害進展至阿爾茨海默病的標記,尤其是女性患者[30]。神經(jīng)病理學(xué)和結(jié)構(gòu)性 MRI(sMRI)研究顯示,內(nèi)側(cè)顳葉是阿爾茨海默病最早受累腦區(qū),且輕度認知損害期即檢出海馬和內(nèi)嗅皮質(zhì)(EC)體積縮小,海馬旁回體積稍縮??;此外,外側(cè)顳葉萎縮也可能預(yù)測輕度認知損害進展至阿爾茨海默病[31]。胼胝體、杏仁體、海馬等不同部位變化和變化速度可以用來鑒別阿爾茨海默病與其他神經(jīng)變性病及其病程階段。擴散張量成像(DTI)是在MRI基礎(chǔ)上施加多方向擴散敏感梯度而獲得圖像的技術(shù),對腦白質(zhì)微結(jié)構(gòu)改變十分敏感。研究顯示,DTI可以鑒別診斷阿爾茨海默病患者、輕度認知損害患者與正常人群[32];阿爾茨海默病和輕度認知損害患者胼胝體和扣帶回部分各向異性(FA)值差異有統(tǒng)計學(xué)意義,可以作為早期診斷阿爾茨海默病和評價病程進展的指標[33]。fMRI可以檢測神經(jīng)功能連接改變,研究顯示,額葉、頂葉、扣帶回和內(nèi)側(cè)顳葉功能連接改變可以早期識別輕度認知損害[34]。
表1 阿爾茨海默病相關(guān)易感基因Table 1. Susceptibility genes associated with AD
2.PET顯像 PET顯像是利用同位素示蹤原理,顯示示蹤劑分布和變化的一項功能成像技術(shù)。近年來,PET顯像預(yù)測輕度認知損害進展至阿爾茨海默病業(yè)已成為研究熱點,主要有18F?脫氧葡萄糖(18F?FDG)PET和 Aβ?PET。(1)18F?FDG PET:阿爾茨海默病患者腦組織葡萄糖代謝變化的最早證據(jù)來自 1983 年 de Leon 等[35]的研 究,他們 采用18F?FDG PET檢測腦組織葡萄糖代謝率,并認為葡萄糖代謝率與認知功能相關(guān)。后續(xù)研究顯示,阿爾茨海默病輕中度階段顳頂葉、后扣帶回和楔前葉葡萄糖代謝降低;進展期額葉葡萄糖代謝降低;阿爾茨海默病患者腦組織葡萄糖代謝降低區(qū)域主要集中于腦橋、感覺運動皮質(zhì)(SMC)、初級視覺皮質(zhì)、基底節(jié)、丘腦和小腦,與其他類型癡呆有所不同[36]。因此提出,18F?FDG PET顯示的內(nèi)側(cè)顳葉葡萄糖低代謝是診斷輕度認知損害敏感性和特異性較高的方法[31]。但是由于既往18F?FDG PET研究缺乏標準化診斷程序,目前證據(jù)不支持其作為輕度認知損害患者的常規(guī)臨床檢測項目[37],因此,將18F?FDG PET 診斷程序標準化是前提。(2)Aβ?PET:是一項與 Aβ結(jié)合的示蹤劑成像技術(shù)。一項關(guān)于正常老年人群的生物學(xué)標志物研究顯示,Aβ沉積與腦結(jié)構(gòu)和神經(jīng)功能改變有關(guān),且與輕度認知損害或阿爾茨海默病的病理改變相一致[7]。一項11C?PIB PET 研究顯示,存在 Aβ沉積的51例輕度認知損害患者中29例(56.86%)進展至阿爾茨海默病,而無Aβ沉積的17例輕度認知損害患者中1例(5.88%)進展至阿爾茨海默病;75~89歲存在Aβ沉積的輕度認知損害患者若已出現(xiàn)情景記憶障礙,其從輕度認知損害進展至阿爾茨海默病的概率上升至80%[38]。腦組織Aβ沉積是阿爾茨海默病發(fā)病的標記,其在無癥狀階段即已對認知功能產(chǎn)生影響,先于腦組織葡萄糖代謝改變;至疾病中后期,葡萄糖代謝降低更加顯著,與進行性認知功能障礙密切相關(guān)[39]。因此,Aβ?PET 適用于阿爾茨海默病的早期診斷,而18F?FDG PET適用于病程進展的監(jiān)測。一項研究比較18F?FDG PET、11C?PIB PET與MRI在輕度認知損害進展至阿爾茨海默病的預(yù)測價值,結(jié)果顯示,MRI的預(yù)測準確度最高,為67%;且三者任意組合中MRI聯(lián)合11C?PIB PET的預(yù)測準確性最高,為76%;而11C?PIB PET的敏感性最高,18F?FDG PET 最低[40]??傊ㄟ^各種 PET顯像技術(shù)的聯(lián)合以實現(xiàn)阿爾茨海默病的早期診斷是可行的。目前,大多數(shù)PET顯像研究均針對Aβ沉積特征,示蹤劑還包括18F?Florbetaben、18F?Flutemetamol和18F?Florbetapir[41]。期待越來越多針對神經(jīng)退行性變、神經(jīng)炎癥反應(yīng)和神經(jīng)遞質(zhì)傳遞障礙的影像學(xué)研究出現(xiàn)。
阿爾茨海默病的病理改變并不局限于腦組織,其他組織中也可以觀察到相關(guān)分子病理改變。生物學(xué)標志物可以提高早期診斷的準確性,主要包括外周血、腦脊液和尿液生物學(xué)標志物(表2)。
1.Aβ和tau蛋白測定 目前的腦脊液生物學(xué)標志物有較高的準確性,如腦脊液總tau蛋白(t?tau)、磷酸化tau蛋白(p?tau)升高和Aβ42降低是早期鑒別診斷阿爾茨海默病與其他癡呆的有效生物學(xué)標志物[42]。研究顯示,阿爾茨海默病患者腦脊液檢查較Aβ?PET 更早檢出 Aβ沉積[52]。Palmqvist等[53]發(fā)現(xiàn),腦脊液Aβ水平異?;颊吣X組織Aβ沉積速度與腦脊液和Aβ?PET均異?;颊呦嘟?,是腦脊液和Aβ?PET均正常患者的3倍以上,且腦脊液和Aβ?PET均異?;颊咴诤qR結(jié)構(gòu)方面的惡化更嚴重,提示其更接近阿爾茨海默病,故腦脊液生物學(xué)標志物可以更好地早期診斷阿爾茨海默病。多項研究比較輕度認知損害進展期與穩(wěn)定期患者腦脊液tau蛋白和Aβ42表達變化,其結(jié)果顯示,輕度認知損害進展期患者腦脊液 tau 蛋白顯著升高,Aβ42顯著下降[54?55]。Olsson等[43]認為,腦脊液t?tau 蛋白、p?tau 蛋白和 Aβ42可以較好地區(qū)分阿爾茨海默病患者與正常對照者以及輕度認知損害進展期與穩(wěn)定期,血漿t?tau蛋白可以較好地區(qū)分阿爾茨海默病患者與正常對照者。阿爾茨海默病患者血小板中不同類型tau蛋白比例與正常對照者不同[56],故血小板tau蛋白水平也可能成為阿爾茨海默病早期診斷的生物學(xué)標志物。血小板APP異構(gòu)體蛋白表達變化與阿爾茨海默病相關(guān),阿爾茨海默病患者高相對分子質(zhì)量APP異構(gòu)體/低相對分子質(zhì)量APP異構(gòu)體比值下降,且下降程度與疾病嚴重程度相關(guān),有較好敏感性和特異性[44]。
表2 外周血和腦脊液生物學(xué)標志物Table 2. Peripheral blood and CSF biomarkers
2.免疫炎癥和氧化應(yīng)激相關(guān)因子測定 免疫炎癥相關(guān)因子在阿爾茨海默病發(fā)生與發(fā)展中發(fā)揮重要作用,包括白細胞介素家族、轉(zhuǎn)化生長因子(TGF)家族和腫瘤壞死因子(TNF)家族等。有研究顯示,阿爾茨海默病患者腦脊液TGF?β水平升高,而IL?6、IL?1β和 TNF?α無明顯變化[45];阿爾茨海默病患者外周血 IL?6、IL?1β、IL?12、IL?18、TGF?β和 TNF?α水平升高,而 IL?4、IL?8、IL?10、干擾素?γ(INF?γ)和 C?反應(yīng)蛋白(CRP)無明顯變化。近年有研究顯示,腦脊液免疫炎癥相關(guān)神經(jīng)顆粒素和幾丁質(zhì)酶?3樣蛋白?1(CHI3L1/YKL?40)水平升高可以反映阿爾茨海默病病程[46]。氧化應(yīng)激相關(guān)因子有助于早期診斷阿爾茨海默病,氧化、過氧化和超氧化過程可以導(dǎo)致蛋白質(zhì)、脂質(zhì)、DNA等改變,其活動度和產(chǎn)物水平在阿爾茨海默病患者、輕度認知損害患者和正常對照者中存有差異,如輕度認知損害患者和阿爾茨海默病患者超氧化物歧化酶(SOD)活性較正常對照者降低,丙二醛(MDA)水平較正常對照者升高[57]。
3.微小RNA測定 近年越來越多研究顯示,微小 RNA(miRNA)可以影響 APP、PS?1、PS?2和淀粉樣前體蛋白β位點剪切酶?1β(BACE?1)基因在腦組織中的表達變化,對神經(jīng)生長分化起重要作用[58]。阿爾茨海默病患者海馬組織miRNA?9、miRNA?128、miRNA?146a表達上調(diào),尤以miRNA?146a與腦組織炎癥反應(yīng)的關(guān)系最密切[47?48]。腦脊液可檢出52種miRNA,與正常對照者相比較,阿爾茨海默病患者miRNA?15a?5p 和 let?7i?5p表達上調(diào),miRNA?29c?3p表達下調(diào)[49],表明腦脊液miRNA表達變化可以鑒別診斷阿爾茨海默病。Kiko等[59]研究顯示,與正常對照者相比,阿爾茨海默病患者腦脊液miRNA?29a和miRNA?29b表達上調(diào),miRNA?34a、miRNA?125b和miRNA?146a表達下調(diào)。此外,阿爾茨海默病患者腦脊液 miRNA?199b?5p、miRNA?22?5p 和 miRNA?206表達亦上調(diào)[49]。外周血miRNA表達變化也可以為阿爾茨海默病的臨床預(yù)測提供參考。晚近研究顯示,與阿爾茨海默病易感性相關(guān)的7種miRNA中,miRNA?9?5p、miRNA?106a?5p、miRNA?106b?5p 和miRNA?107表達下調(diào)可以增加阿爾茨海默病患病風險,其中miRNA?106a?5p作為預(yù)測因素,其靈敏度68%,特異度 93%;miRNA?29a?3p、miRNA?125a?3p和 miRNA?125b?5p 則無明顯變化[50]。外周血可以檢出168種miRNA,與正常對照者相比,阿爾茨海默病患者 miRNA?590?5p和 miRNA?142?5p表達上調(diào),miRNA?194?5p 表達下調(diào)[49]。目前研究最多的 6 種miRNA 為 miRNA?9、miRNA?125b、miRNA?146a、miRNA?181c、let?7g?5p 和 miRNA?191?5p,最有希望成為早期診斷阿爾茨海默病的生物學(xué)標志物[51]。盡管目前對miRNA的研究尚不充分,仍待更大規(guī)模臨床研究的驗證,但是未來有望可以通過幾種miRNA組合以診斷不同類型癡呆。
4.檢測技術(shù) 除生物學(xué)標志物外,檢測技術(shù)也應(yīng)受到重視。小分子或蛋白質(zhì)檢測通常采用質(zhì)譜法(MS),免疫分析如酶聯(lián)免疫吸附試驗(ELISA)或兩種方法形成酶聯(lián)免疫質(zhì)譜測定技術(shù)。近年出現(xiàn)多種超靈敏檢測平臺,如單分子計數(shù)(SMC)、單分子陣列(Simoa)、免疫磁減量(IMR)等,不僅適用于血液檢測,也適用于腦脊液低水平生物學(xué)標志物檢測。如采用Simoa法測定血清Aβ和t?tau蛋白以預(yù)測神經(jīng)功能,采用IMR法測定血漿t?tau蛋白以區(qū)分阿爾茨海默病患者與正常對照者[60]。采用SMC法可以檢出阿爾茨海默病患者腦脊液高水平視錐蛋白樣蛋白1,也可以檢出腦脊液低水平Aβ低聚物以區(qū)分阿爾茨海默病患者、輕度認知損害患者與正常對照者[61]。上述檢測技術(shù)尚未普及,但前景可觀。
圖1 阿爾茨海默病早期診斷流程圖Figure 1 Flow diagram of AD's early diagnosis.
上述檢測方法可以輔助判斷阿爾茨海默病病理學(xué)過程,有助于其早期診斷,但存在以下不足:首先,由于基因的復(fù)雜性和樣本量的局限性,晚發(fā)性阿爾茨海默病相關(guān)基因位點有待驗證。其次,影像學(xué)檢查不如生物學(xué)標志物敏感性高,而腦脊液采集存在一定風險,外周血檢測尚不成熟。而且,生物學(xué)標志物的特異性方面存在局限性,如18F?FDG PET顯像,葡萄糖代謝是非特異性指標,多種原因如缺血、炎癥反應(yīng)等均可以影響葡萄糖代謝,可能與阿爾茨海默病病程無直接關(guān)系[62]。此外,生物學(xué)標志物雖然可以在無癥狀階段進行預(yù)測,但單一指標一般不足以確定為一種疾病,結(jié)果可能與預(yù)測方向存在差異[7]。因此,多方面、多指標相結(jié)合進行診斷至關(guān)重要。人為因素也不可忽視,不同研究團隊對一些潛在生物學(xué)標志物的研究可能由于地域局限性和技術(shù)方法的不同而存在爭議,尚待擴大樣本量并統(tǒng)一研究方法以期獲得一致性結(jié)論。
本文總結(jié)較為綜合的阿爾茨海默病早期診斷方法,參見圖1。對臨床前阿爾茨海默病或輕度認知損害患者進行早期診斷,首先應(yīng)詢問患者或知情人相關(guān)病史,基于提供的信息和MMSE量表進行認知功能評價。如果患者有阿爾茨海默病家族史或年齡<65歲即有認知損害傾向,從其外周血中提取基因組DNA以檢測是否攜帶致病性基因,包括APP、PS?1和 PS?2。若無明顯臨床癥狀,則應(yīng)進行影像學(xué)檢查,首選11C?PIB PET,且與MRI相結(jié)合準確性較高。如果需要更加精細地診斷與預(yù)測,可以采集腦脊液進行檢查。外周血檢測尚待更多研究和驗證,雖然前景廣闊,但目前筆者仍推薦通過MRI、11C?PIB PET和腦脊液檢查相結(jié)合的方法進行阿爾茨海默病早期診斷。
[1]Alzheimer's Disease International.World AlzheimerReport 2009[R].London:ADI,2009:1?94.
[2]Peng D,Shi Z,Xu J,Shen L,Xiao S,Zhang N,Li Y,Jiao J,Wang YJ,Liu S,Zhou Y,Zhang X,Gu XH,Yang CC,Wang Y,Jiao B,Tang B,Wang J,Yu T,Ji Y.Demographic and clinical characteristics related to cognitive decline in Alzheimer disease in China:a multicenter survey from 2011 to 2014[J].Medicine,2016,95:E3727.
[3]Ji Y.A 200?year history of Alzheimer's disease[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2014,14:156?160[.紀勇.阿爾茨海默病 200年[J].中國現(xiàn)代神經(jīng)疾病雜志,2014,14:156?160.]
[4]Tian JZ,Shi J,Zhang XK,Ni JN,Zhang BL,Wang YY.The interpretation of latest diagnostic criteria for Alzheimer's disease in 2011[J].Zhongguo Yi Xue Qian Yan Za Zhi(Dian Zi Ban),2011,3:91?100[.田金洲,時晶,張學(xué)凱,倪敬年,張伯禮,王永炎.2011年美國阿爾茨海默病最新診斷標準解讀[J].中國醫(yī)學(xué)前沿雜志(電子版),2011,3:91?100.]
[5]Alberta MS,Dickson D,Dubois B,Feldman HH,Fox NC,Gamst A,Holtzman DM,Jagust WJ,Petersen RC,Snyder PJ,Carrillo MC,ThiesB,PhelpsCH.Thediagnosisofmild cognitive impairment due to Alzheimer's disease:recommendations from the National Institute on Aging?Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J].Alzheimers Dement,2011,7:270?279.
[6]Okello A,Koivunen J,Edison P,Archer HA,Turkheimer FE,N?gren K,Bullock R,Walker Z,Kennedy A,Fox NC,Rossor MN,Rinne JO,Brooks DJ.Conversion of amyloid positive and negative MCI to AD over 3 years:an11C ?PIB PET study[J].Neurology,2009,73:754?760.
[7]Sperling RA,Aisen PS,Beckett LA,Bennett DA,Craft S,Fagan AM,Iwatsubo T,Jack CR Jr,Kaye J,Montine TJ,Park DC,Reiman EM,Rowe CC,Siemers E,Stern Y,Yaffe K,Carrillo MC,Thies B,Morrison?BogoradM,Wagster MV,Phelps CH. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging?Alzheimer'sAssociation workgroupson diagnostic guidelines for Alzheimer's disease[J].Alzheimers Dement,2011,7:280?292.
[8]Bateman RJ,Xiong C,Benzinger TL,Fagan AM,Goate A,Fox NC,Marcus DS,Cairns NJ,Xie X,Blazey TM,Holtzman DM,Santacruz A,Buckles V,Oliver A,Moulder K,Aisen PS,Ghetti B,Klunk WE,McDade E,Martins RN,Masters CL,Mayeux R,Ringman JM,Rossor MN,Schofield PR,Sperling RA,Salloway S,Morris JC;Dominantly Inherited Alzheimer Network.Clinical and biomarker changes in dominantly inherited Alzheimer's disease[J].N Engl J Med,2012,367:795?804.
[9]Mormino EC,Sperling RA,Holmes AJ,Buckner RL,De Jager PL, Smoller JW, Sabuncu MR; Alzheimer's Disease Neuroimaging Initiative.Polygenic risk of Alzheimer disease is associated with early?and late?life processes[J].Neurology,2016,12:481?488.
[10]Li XQ,Cao YP.Research status of familial Alzheimer's disease[J].Guo Ji Shen Jing Bing Xue Shen Jing Wai Ke Xue Za Zhi,2014,41:156?159[.李興強,曹云鵬.家族性阿爾茨海默病研究現(xiàn)狀[J].國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志,2014,41:156?159.]
[11]Wray NR,Goddard ME,Visscher PM.Prediction of individual genetic risk to disease from genome?wide association studies[J].Genome Res,2007,17:1520?1528.
[12]Liu SL,Zhang T,Zhang YJ,Yue W,Shi ZH,Guan YL,Liu S,Wang XD,Ji Y.Meta?analysis on correlation between genetic polymorphism of ApoE and late onset Alzheimer's disease in Chinese population[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2016,16:30?37[.劉淑玲,張婷,張雅靜,岳偉,石志鴻,管雅琳,劉帥,王曉丹,紀勇.中國人群ApoE基因多態(tài)性與遲發(fā)性阿爾茨海默病關(guān)系的Meta分析[J].中國現(xiàn)代神經(jīng)疾病雜志,2016,16:30?37.]
[13]Zhang W,Wu N,Zhao XD.Research progressofgene mechanism of Alzheimer's disease[J].Xian Dai Yi Yao Wei Sheng,2007,23:2112?2113[.張薇,吳娜,趙旭東.阿爾茨海默病發(fā)生的基因機制研究進展[J].現(xiàn)代醫(yī)藥衛(wèi)生,2007,23:2112?2113.]
[14]Herrup K.Reimagining Alzheimer's disease:an age?based hypothesis[J].J Neurosci,2010,30:16755?16762.
[15]Goedert M,Spillantini MG.Tau mutations in frontotemporal dementia FTDP?17 and their relevance for Alzheimer's disease[J].Biochim Biophys Acta,2000,1502:110?121.
[16]Arosio B,Segat L,Milanese M,Galimberti L,Calabresi C,Zanetti M,Trabattoni D,Annoni G,Crovella S,Vergani C.PIN?1 promoter polymorphisms in mild cognitive impairment and susceptibility to Alzheimer's disease:a preliminary report[J].Aging Clin Exp Res,2007,19:406?409.
[17]Rosenthal SL,Kamboh MI.Late?onset Alzheimer's disease genes and the potentially implicated pathways[J].Curr Genet Med Rep,2014,2:85?101.
[18]Naj AC,Jun G,Beecham GW,Wang LS,Vardarajan BN,Buros J,Gallins PJ,Buxbaum JD,Jarvik GP,Crane PK,Larson EB,Bird TD,Boeve BF,Graff?Radford NR,De Jager PL,Evans D,Schneider JA,Carrasquillo MM,Ertekin?Taner N,Younkin SG,CruchagaC,KauweJS,NowotnyP,KramerP,HardyJ,Huentelman MJ,Myers AJ,Barmada MM,Demirci FY,Baldwin CT,Green RC,Rogaeva E,St George?Hyslop P,Arnold SE,Barber R,Beach T,Bigio EH,Bowen JD,Boxer A,Burke JR,Cairns NJ,Carlson CS,Carney RM,Carroll SL,Chui HC,Clark DG,Corneveaux J,Cotman CW,Cummings JL,DeCarli C,DeKosky ST,Diaz?Arrastia R,Dick M,Dickson DW,Ellis WG,FaberKM,Fallon KB,Farlow MR,FerrisS,Frosch MP,Galasko DR,Ganguli M,Gearing M,Geschwind DH,Ghetti B,Gilbert JR,Gilman S,Giordani B,Glass JD,Growdon JH,Hamilton RL,Harrell LE,Head E,Honig LS,Hulette CM,Hyman BT,JichaGA,Jin LW,Johnson N,Karlawish J,Karydas A,Kaye JA,Kim R,Koo EH,Kowall NW,Lah JJ,Levey AI,Lieberman AP,Lopez OL,Mack WJ,Marson DC,Martiniuk F,Mash DC,Masliah E,McCormick WC,McCurry SM,McDavid AN,McKee AC,Mesulam M,Miller BL,Miller CA,Miller JW,Parisi JE,Perl DP,Peskind E,Petersen RC,Poon WW,Quinn JF,Rajbhandary RA,Raskind M,Reisberg B,Ringman JM,Roberson ED,RosenbergRN,SanoM,Schneider LS,Seeley W,Shelanski ML,Slifer MA,Smith CD,Sonnen JA,Spina S,Stern RA,Tanzi RE,Trojanowski JQ,TroncosoJC,VanDeerlin VM,VintersHV,VonsattelJP,Weintraub S,Welsh?Bohmer KA,Williamson J,Woltjer RL,Cantwell LB,Dombroski BA,Beekly D,Lunetta KL,Martin ER,Kamboh MI,Saykin AJ,Reiman EM,Bennett DA,Morris JC,Montine TJ,Goate AM,Blacker D,Tsuang DW,Hakonarson H,Kukull WA,Foroud TM,Haines JL,Mayeux R,Pericak?Vance MA,Farrer LA,Schellenberg GD.Common variants at MS4A4/MS4A6E,CD2AP,CD33 and EPHA1 are associated with late?onset Alzheimer's disease[J].Nat Genet,2011,43:436?441.
[19]Di Bona D,Candore G,Franceschi C,Licastro F,Colonna?Romano G,Cammà C,Lio D,Caruso C.Systematic review by meta?analyses on the possible role of TNF?α polymorphisms in association with Alzheimer's disease[J].Brain Res Rev,2009,61:60?68.
[20]Ma SL,Tang NL,Zhang YP,Ji LD,Tam CW,Lui VW,Chiu HF,Lam LC.Association ofprostaglandin?endoperoxide synthase 2(PTGS2)polymorphisms and Alzheimer's disease in Chinese[J].Neurobiol Aging,2008,29:856?860.
[21]Mun MJ,Kim JH,Choi JY,Jang WC.Genetic polymorphisms of interleukin genes and the risk of Alzheimer's disease:an update meta?analysis[J].Meta Gene,2016,8:1?10.
[22]Guerreiro RJ,Gustafson DR,Hardy J.The genetic architecture of Alzheimer's disease:beyond APP,PSENs and APOE[J].Neurobiol Aging,2012,33:437?456.
[23]Cruchaga C,Haller G,Chakraverty S,Mayo K,Vallania FL,Mitra RD,Faber K,Williamson J,Bird T,Diaz?Arrastia R,Foroud TM,Boeve BF,Graff?Radford NR,St Jean P,Lawson M,EhmMG,Mayeux R,Goate AM;NIA?LOAD/NCRAD Family Study Consortium.Rare variants in APP,PSEN1 and PSEN2 increase risk for AD in late?onset Alzheimer's disease families[J].PLoS One,2012,7:E31039.
[24]Wildsmith KR,Holley M,Savage JC,Skerrett R,Landreth GE.Evidencefor impairedamyloidβclearanceinAlzheimer's disease[J].Alzheimers Res Ther,2013,5:33.
[25]LambertJC,Heath S,Even G,Campion D,SleegersK,Hiltunen M,Combarros O,Zelenika D,Bullido MJ,Tavernier B,Letenneur L,Bettens K,Berr C,Pasquier F,Fiévet N,Barberger?Gateau P,Engelborghs S,De Deyn P,Mateo I,Franck A,HelisalmiS,PorcelliniE,Hanon O;European Alzheimer's Disease Initiative Investigators;de Pancorbo MM,Lendon C,Dufouil C,Jaillard C,Leveillard T,Alvarez V,Bosco P,Mancuso M,Panza F,Nacmias B,Bossù P,Piccardi P,Annoni G,Seripa D,Galimberti D,Hannequin D,Licastro F,Soininen H,Ritchie K,Blanché H,Dartigues JF,Tzourio C,Gut I,Van Broeckhoven C,Alpérovitch A,Lathrop M,Amouyel P.Genome?wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease[J].Nat Genet,2009,41:1094?1099.
[26]Harold D,Abraham R,Hollingworth P,Sims R,Gerrish A,Hamshere ML,Pahwa JS,Moskvina V,Dowzell K,Williams A,Jones N,Thomas C,Stretton A,Morgan AR,Lovestone S,Powell J,Proitsi P,Lupton MK,Brayne C,Rubinsztein DC,Gill M,Lawlor B,Lynch A,Morgan K,Brown KS,Passmore PA,Craig D,McGuinness B,Todd S,Holmes C,Mann D,Smith AD,Love S,Kehoe PG,Hardy J,Mead S,Fox N,Rossor M,Collinge J,Maier W,Jessen F,Schürmann B,Heun R,van den Bussche H,Heuser I,Kornhuber J,Wiltfang J,Dichgans M,Fr?lich L,Hampel H,Hüll M,Rujescu D,Goate AM,Kauwe JS,Cruchaga C,Nowotny P,Morris JC,Mayo K,Sleegers K,Bettens K,Engelborghs S,De Deyn PP,Van Broeckhoven C,Livingston G,Bass NJ,Gurling H,McQuillin A,Gwilliam R,Deloukas P,Al?Chalabi A,Shaw CE,Tsolaki M,Singleton AB,Guerreiro R,Mühleisen TW,N?then MM,Moebus S,J?ckel KH,Klopp N,Wichmann HE,Carrasquillo MM,Pankratz VS,Younkin SG,Holmans PA,O'Donovan M,Owen MJ,Williams J.Genome?wide association study identifies variants at CLU and PICALM associated with Alzheimer'sdisease[J].Nat Genet,2009,41:1088?1093.
[27]VasquezJB,Fardo DW,EstusS.ABCA7 expression is associated with Alzheimer's disease polymorphism and disease status[J].Neurosci Lett,2013,556:58?62.
[28]Karch CM,Goate AM.Alzheimer's disease risk genes and mechanisms of disease pathogenesis[J].Biol Psychiatry,2015,77:43?51.
[29]Lambert JC,Ibrahim?Verbaas CA,Harold D,Naj AC,Sims R,Bellenguez C,DeStafano AL,Bis JC,Beecham GW,Grenier?Boley B,Russo G,Thorton?Wells TA,Jones N,Smith AV,Chouraki V,Thomas C,Ikram MA,Zelenika D,Vardarajan BN,Kamatani Y,Lin CF,Gerrish A,Schmidt H,Kunkle B,Dunstan ML,Ruiz A,Bihoreau MT,Choi SH,Reitz C,Pasquier F,Cruchaga C,Craig D,Amin N,Berr C,Lopez OL,De Jager PL,Deramecourt V,Johnston JA,Evans D,Lovestone S,Letenneur L,Morón FJ,Rubinsztein DC,Eiriksdottir G,Sleegers K,Goate AM,Fiévet N,Huentelman MW,Gill M,Brown K,Kamboh MI,Keller L,Barberger?Gateau P,McGuiness B,Larson EB,Green R,Myers AJ,Dufouil C,Todd S,Wallon D,Love S,Rogaeva E,Gallacher J,St George?Hyslop P,Clarimon J,Lleo A,Bayer A,Tsuang DW,Yu L,Tsolaki M,Bossù P,Spalletta G,Proitsi P,Collinge J,Sorbi S,Sanchez?Garcia F,Fox NC,Hardy J,Deniz Naranjo MC,Bosco P,Clarke R,Brayne C,Galimberti D,Mancuso M,Matthews F;European Alzheimer's Disease Initiative (EADI), Genetic and Environmental Risk in Alzheimer's Disease,Alzheimer's Disease Genetic Consortium,Cohorts for Heart and Aging Research in Genomic Epidemiology;Moebus S,Mecocci P,Del Zompo M,Maier W,Hampel H,Pilotto A,Bullido M,Panza F,Caffarra P,Nacmias B,Gilbert JR,Mayhaus M,Lannefelt L,Hakonarson H,Pichler S,Carrasquillo MM,Ingelsson M,Beekly D,Alvarez V,Zou F,Valladares O,Younkin SG,Coto E,Hamilton?Nelson KL,Gu W,Razquin C,Pastor P,Mateo I,Owen MJ,Faber KM,Jonsson PV,Combarros O,O'Donovan MC,Cantwell LB,Soininen H,Blacker D,Mead S,Mosley TH Jr,Bennett DA,Harris TB,Fratiglioni L,Holmes C,de Bruijn RF,Passmore P,Montine TJ,Bettens K,Rotter JI,Brice A,Morgan K,Foroud TM,Kukull WA,Hannequin D,Powell JF,Nalls MA,Ritchie K,Lunetta KL,Kauwe JS,Boerwinkle E,Riemenschneider M,Boada M,Hiltuenen M,Martin ER,Schmidt R,Rujescu D,Wang LS,Dartigues JF,Mayeux R,Tzourio C,Hofman A,N?then MM,Graff C,Psaty BM,Jones L,Haines JL,Holmans PA,Lathrop M,Pericak?Vance MA,Launer LJ,Farrer LA,van Duijn CM,Van Broeckhoven C,MoskvinaV,SeshadriS,Williams J,Schellenberg GD,Amouyel P.Meta?analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease[J].Nat Genet,2013,45:1452?1458.
[30]Lee SH,Bachman AH,Yu D,Lim J,Ardekani BA.Predicting progression from mild cognitive impairmentto Alzheimer's disease using longitudinalcallosalatrophy[J].Alzheimers Dement,2016,2:68?74.
[31]Mosconi L.Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease:FDG?PET studies in MCI and AD[J].Eur J Nucl Med Mol Imaging,2005,32:486?510.
[32]Nir TM,Jahanshad N,Villalon?Reina JE,Toga AW,Jack CR,Weiner MW,Thompson PM;Alzheimer's Disease Neuroimaging Initiative(ADNI).Effectiveness of regional DTI measures in distinguishing Alzheimer's disease,MCI,and normal aging[J].Neuroimage Clin,2013,3:180?195.
[33]LiKC.Progressofneuroimaging research on Alzheimer's disease[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2014,14:176?180[.李坤成.阿爾茨海默病神經(jīng)影像學(xué)研究進展[J].中國現(xiàn)代神經(jīng)疾病雜志,2014,14:176?180.]
[34]Jin M,Pelak VS,Cordes D.Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting?state functional MRI[J].Magn Reson Imaging,2012,30:48?61.
[35]de Leon MJ,Ferris SH,George AE,Christman DR,Fowler JS,Gentes C,Reisberg B,Gee B,Emmerich M,Yonekura Y,Brodie J,Kricheff II,Wolf AP.Positron emission tomographic studiesofagingand Alzheimerdisease[J].AJNR Am J Neuroradiol,1983,4:568?571.
[36]Ishii K.Clinical application of positron emission tomography for diagnosis of dementia[J].Ann Nucl Med,2002,16:515?525.
[37]Smailagic N,Vacante M,Hyde C,Martin S,Ukoumunne O,Sachpekidis C.18F?FDG PET forthe early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment(MCI)[J].Cochrane Database Syst Rev,2015,1:CD010632.
[38]Hatashita S,Yamasaki H.Diagnosed mild cognitive impairment due to Alzheimer'sdisease with PET biomarkersofbeta amyloid and neuronal dysfunction[J].PLoS One,2013,8:E66877.
[39]Landau SM,Mintun MA,Joshi AD,Koeppe RA,Petersen RC,Aisen PS,WeinerMW,JagustWJ;Alzheimer's Disease Neuroimaging Initiative.Amyloid deposition,hypometabolism,and longitudinal cognitive decline[J].Ann Neurol,2012,72:578?586.
[40]Trzepacz PT,Yu P,Sun J,Schuh K,Case M,Witte MM,HochstetlerH,HakeA;Alzheimer'sDiseaseNeuroimaging Initiative.Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer's dementia[J].Neurobiol Aging,2014,35:143?151.
[41]Wang YH,Ji Y.Recent advances in Alzheimer's disease all over the world[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2015,15:507?511[.王蔭華,紀勇.世界阿爾茨海默病發(fā)展現(xiàn)狀[J].中國現(xiàn)代神經(jīng)疾病雜志,2015,15:507?511.]
[42]Jellinger KA,Janetzky B,Attems J,Kienzl E.Biomarkers for early diagnosis of Alzheimer disease:'ALZheimer ASsociated gene',a new blood biomarker[J]?J Cell Mol Med,2008,12:1094?1117.
[43]Olsson B,Lautner R,Andreasson U,?hrfelt A,Portelius E,Bjerke M,H?ltt? M,Rosén C,Olsson C,Strobel G,Wu E,Dakin K,Petzold M,Blennow K,Zetterberg H.CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta ?analysis[J].Lancet Neurol,2016,15:673?684.
[44]Borroni B,Colciaghi F,Caltagirone C,Rozzini L,Broglio L,Cattabeni F,Di Luca M,Padovani A.Platelet amyloid precursor protein abnormalities in mild cognitive impairmentpredict conversion to dementia of Alzheimer type:a 2?year follow?up study[J].Arch Neurol,2003,60:1740?1744.
[45]Swardfager W,Lanct?t K,Rothenburg L,Wong A,Cappell J,Herrmann N.A meta?analysis of cytokines in Alzheimer's disease[J].Biol Psychiatry,2010,68:930?941.
[46]Hellwig K,Kvartsberg H,Portelius E,Andreasson U,Oberstein TJ,Lewczuk P,Blennow K,Kornhuber J,Maler JM,Zetterberg H,Spitzer P.Neurogranin and YKL?40:independent markers of synaptic degeneration and neuroinflammation in Alzheimer's disease[J].Alzheimers Res Ther,2015,7:74.
[47]Lukiw WJ.Micro?RNA speciation in fetal,adult and Alzheimer's disease hippocampus[J].Neuroreport,2007,18:297?300.
[48]Lukiw WJ,Zhao Y,Cui JG.An NF?kappaB?sensitive micro RNA?146a?mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells[J].J Biol Chem,2008,283:31315?31322.
[49]S?rensen SS,Nygaard AB,Christensen T.miRNA expression profiles in cerebrospinalfluid and blood ofpatients with Alzheimer's disease and other types of dementia:an exploratory study[J].Transl Neurodegener,2016,5:6.
[50]Y?lmaz ?G,Erdal ME, ?zge AA,Sungur MA.Can peripheral microRNA expression data serve asepigenomic(upstream)biomarkers of Alzheimer's disease[J]?OMICS,2016,20:456?461.
[51]Kumar S,Reddy PH.Are circulating microRNAs peripheral biomarkers for Alzheimer's disease[J]?Biochim Biophys Acta,2016,1862:1617?1627.
[52]Fagan AM,Mintun MA,Shah AR,Aldea P,Roe CM,Mach RH,Marcus D,Morris JC,Holtzman DM.Cerebrospinal fluid tau and ptau(181)increase with cortical amyloid deposition in cognitively normal individuals:implications for future clinical trials of Alzheimer's disease[J].EMBO Mol Med,2009,1:371?380.
[53]PalmqvistS,Mattsson N,Hansson O;Alzheimer'sDisease Neuroimaging Initiative.Cerebrospinalfluid analysisdetects cerebral amyloid?β accumulation earlier than positron emission tomography[J].Brain,2016,139:1226?1236.
[54]LanariA,ParnettiL.Cerebrospinalfluid biomarkers and prediction of conversion in patients with mild cognitive impairment:4 ?year follow ?up in a routine clinical setting[J].ScientificWorldJournal,2009,9:961?966.
[55]Diniz BS,Pinto Júnior JA,Forlenza OV.Do CSF total tau,phosphorylated tau,and beta?amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease:a systematic review and meta?analysis of the literature[J]?World J Biol Psychiatry,2008,9:172?182.
[56]Neumann K,Farías G,Slachevsky A,Perez P,Maccioni RB.Human platelets tau: a potential peripheral marker for Alzheimer's disease[J].J Alzheimers Dis,2011,25:103?109.
[57]García ?Blanco A,Baquero M,Vento M,Gil E,Bataller L,Cháfer?Pericás C.Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease[J].J Neurol Sci,2017,373:295?302.
[58]Jiang W,Zhang Y,Meng F,Lian B,Chen X,Yu X,Dai E,Wang S,Liu X,Li X.Identification of active transcription factor and miRNA regulatory pathways in Alzheimer's disease[J].Bioinformatics,2013,29:2596?2602.
[59]KikoT,NakagawaK,TsudukiT,FurukawaK,AraiH,Miyazawa T.MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease[J].J Alzheimers Dis,2014,39:253?259.
[60]Andreasson U, Blennow K, Zetterberg H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders[J].Alzheimers Dement,2016,3:98?102.
[61]YangT,O'malleyTT,KanmertD,JerecicJ,ZieskeLR,Zetterberg H,Hyman BT,Walsh DM,Selkoe DJ.A highly sensitive novel immunoassay specifically detects low levels of soluble A β oligomers in human cerebrospinalfluid [J].Alzheimers Res Ther,2015,7:14.
[62]Shi ZH,Wang Y,Liu S,Liu SL,Zhou YY,Wang JH,Cai L,Gao S,Ji Y.11C?PIB PET and18F?FDG PET in patients with Alzheimer's disease and amnestic mild cognitive impairment[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2014,14:222?231.[石志鴻,王穎,劉帥,劉淑玲,周玉穎,王金環(huán),蔡莉,高碩,紀勇.11C?PIB PET和18F?FDG PET顯像診斷阿爾茨海默病與遺忘型輕度認知損害的臨床價值[J].中國現(xiàn)代神經(jīng)疾病雜志,2014,14:222?231.]