鄧嵐
摘要 利用由定義集設(shè)計(jì)線性碼的方法,通過選取新的定義集,構(gòu)造了一類新的且具有2個(gè)非零重量的線性碼,并以指數(shù)和為工具,確定了其重量分布.進(jìn)一步,判定了所構(gòu)造這類線性碼是極小線性碼,并研究了該類線性碼在秘密共享方案中的應(yīng)用.
關(guān)鍵詞
線性碼;重量分布;秘密共享方案
中圖分類號? O157
文獻(xiàn)標(biāo)志碼? A
0 引言
在編碼領(lǐng)域中,具有較少非零重量的線性碼可被應(yīng)用于秘密共享方案[1] 、強(qiáng)正則圖[2] 、結(jié)合方案[3] 等領(lǐng)域,因此,構(gòu)造具有較少非零重量的線性碼是一個(gè)十分有意義的研究課題.線性碼的重量分布是反映其性能的一個(gè)重要參數(shù),但是,計(jì)算線性碼的重量分布并不容易.只有當(dāng)線性碼具有較少個(gè)數(shù)的重量時(shí),才有可能確定其重量分布.計(jì)算線性碼的重量分布常常可轉(zhuǎn)化為確定某些指數(shù)和的取值分布問題.近年來,已有大量關(guān)于線性碼的構(gòu)造及其重量分布的研究成果[4-5] .
4 結(jié)束語
與文獻(xiàn)[11]定理5中定義的線性碼C D相比,本文的不同之處在于通過選取不同的定義集D c={(x,y)∈ ?F ?2 q: tr ?m(x 2+y 2)=c},其中c為 ?F ?* p 中一給定元素,從而構(gòu)造出了一類線性碼C D c .首先,本文確定了線性碼C D c 的重量分布.同時(shí),發(fā)現(xiàn)這類線性碼的重量分布與非零c的選取無關(guān).然后,證明了這類線性碼是一類極小線性碼,且證明了其對偶碼C ⊥ D c ?的極小距離d ⊥為2.最后,本文還給出了此類極小線性碼在秘密共享方案中的簡單應(yīng)用.此外,用文獻(xiàn)[15]中構(gòu)造的定義集可將此線性碼推廣為更寬泛的形式.
參考文獻(xiàn)
References
[ 1 ]?Yuan ?J,Ding C S.Secret sharing schemes from three classes of linear codes[J].IEEE Trans Inf Theory,2006,52(1):206-212
[ 2 ] Ding C S,Wang X S.A coding theory construction of new systematic authentication codes[J].Theoretical Computer Science,2005,330(1):81-99
[ 3 ] Calderbank A R,Goethals J M.Three-weight codes and association schemes[J].Philips Journal of Research,1984,39(4):143-152
[ 4 ] Li S,F(xiàn)eng T,Ge G.On the weight distribution of cyclic codes with Niho exponents[J].IEEE Trans Inf Theory,2014,60(7):3903-3912
[ 5 ] Ding C S,Li C,Li N,et al.Three-weight cyclic codes and their weight distributions[J].Discrete Mathematics,2016,339(2):415-427
[ 6 ] Li F,Wang Q Y,Lin D D.Complete weight enumerators of a class of three-weight linear codes[J].Journal of Applied Mathematics & Computing,2017,55(1/2):733-747
[ 7 ] Liu H B,Liao Q Y.Several classes of linear codes with a few weights from defining sets over ???F ?p+u ?F ?p [J].Designs,Codes and Cryptography,2018,DOI:10.1007/s10623-018-0478-1
[ 8 ] Li ?C J,Yue Q,F(xiàn)u F W.A construction of several classes of two-weight and three-weight linear codes[J].Applicable Algebra in Engineering,Communication & Computing,2017,28(1):11-30
[ 9 ] Lidl ?R,Niederreiter H.Finite fields[M].Cambridge,1993
[10] Li ?F,Wang Q Y,Lin D D.A class of three-weight and five-weight linear codes[J].Mathematics,2015,241(31):25-38
[11] Song ?Y,Li Z H,Li Y M.Secret sharing schemes in minimal linear code[J].Acta Electronica Sinica,2013,41(2):220-226
[12] Ding C S,Yuan J.Covering and secret sharing with linear codes[J].Discrete Mathematics,2003,2731:11-25
[13] Li Z H,Xue T,Lai H.Secret sharing schemes from binary linear codes[J].Information Sciences,2011,180(22):4412-4419
[14] Massey J L.Minimal codewords and secret sharing[C]∥The 6th ?Joint Swedish-Russian Workshop on Information theory.Netherlands:Veldhoven,1993:276-279
[15] Du X N,Wan Y Q.Linear codes from quadratic forms[J].Applicable Algebra in Engineering,Communication and Computing,2017,28(6):535-547
A class of minimum linear codes and their applications
DENG Lan 1
1 College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074
Abstract? Based a generic method,a class of linear codes with two nonzero weights wasconstructed by choosing a new definition set.Utilizing the exponential sums,the weight distribution of the proposed linear code was derived.Furthermore,it was shown that the constructed linear codes were minimum linear codes,and their application in secret sharing schemes was demonstrated.
Key words? linear code;weight distribution;secret sharing scheme
南京信息工程大學(xué)學(xué)報(bào)2018年6期