姜益軍 姜珊 陶楠 楊福俊 何小元
摘要: 利用有限元法和電子散斑干涉技術(shù)研究了缺陷對(duì)矩形薄鋁板的振動(dòng)模態(tài)的影響。通過數(shù)值模擬和實(shí)驗(yàn)測(cè)量同時(shí)得到了1塊完整和4塊帶有缺陷大小與位置均不同的鋁板1~10階的振型圖;鋁板的邊界條件為長(zhǎng)對(duì)邊自由,短對(duì)邊固支。結(jié)果表明:缺陷的存在對(duì)薄板結(jié)構(gòu)的共振振型影響較大,而對(duì)共振頻率的影響較小。共振振型隨裂縫的大小、位置和方位的不同而有所變化。研究也表明,有限元計(jì)算出的模態(tài)形狀與實(shí)驗(yàn)測(cè)量得到的結(jié)果一致性較好。關(guān)鍵詞: 振動(dòng)測(cè)量; 模態(tài)振型; 含裂縫薄矩形板; 電子散斑干涉; 有限元法
中圖分類號(hào): O329; TU33+9文獻(xiàn)標(biāo)志碼: A文章編號(hào): 10044523(2017)04056406
DOI:10.16385/j.cnki.issn.10044523.2017.04.006
引言
板殼、桿及梁等是機(jī)械制造等領(lǐng)域常用結(jié)構(gòu)形式[12],其受外界沖擊或振動(dòng)激勵(lì)易引起變形,特別是當(dāng)激勵(lì)頻率接近其共振頻率時(shí),變形量達(dá)到最大值。其中,矩形薄板因是航空及汽車等工程設(shè)計(jì)中最為常見的結(jié)構(gòu)類型之一,它的振動(dòng)響應(yīng)特性被廣泛地研究。
研究板存在裂縫缺陷時(shí)的振動(dòng)行為具有重要的實(shí)用價(jià)值,目前有關(guān)含裂縫板的振動(dòng)研究論文較為有限。裂縫的存在將影響板的靜態(tài)和動(dòng)態(tài)力學(xué)行為,這是因?yàn)榘宓牧芽p改變其局部的剛度,使得板的靜態(tài)撓曲和動(dòng)態(tài)的固有頻率發(fā)生變化。在有限元方法出現(xiàn)之前,主要用數(shù)學(xué)物理方法研究帶缺陷板的振動(dòng)特性。如文獻(xiàn)[3]研究有裂紋的矩形板振動(dòng)時(shí)利用格林函數(shù)表示板的撓度,進(jìn)而得到第一類齊次弗雷德霍姆積分方程;Stahl和Keer則利用雙級(jí)數(shù)方程研究矩形板的振動(dòng)和穩(wěn)定性問題,最終轉(zhuǎn)化為一個(gè)解第二類齊次弗雷德霍姆積分方程[4]。隨著振動(dòng)理論的不斷完善及有限元方法的發(fā)展,對(duì)于由各向同性的材料組成,即便是復(fù)雜的結(jié)構(gòu),有限元方法均能分析和研究其振動(dòng)特性[57]。
振動(dòng)特性測(cè)量的實(shí)驗(yàn)方法有傳感器法[8]、激光多普勒法[910]、全息干涉法[11]和電子散斑干涉法等[1213]。傳感器法需要將傳感器直接粘貼在待測(cè)結(jié)構(gòu)表面,容易改變結(jié)構(gòu)局部的質(zhì)量分布且只能測(cè)得離散的數(shù)據(jù),從而影響實(shí)驗(yàn)結(jié)果的精確性;激光多普勒法是非接觸測(cè)量,響應(yīng)快、測(cè)量范圍大,不過它是通過快速逐點(diǎn)掃描進(jìn)行測(cè)量,測(cè)試精度和速度依賴于測(cè)點(diǎn)數(shù),且測(cè)試設(shè)備價(jià)格昂貴。時(shí)間平均的激光全息干涉和激光電子散斑干涉技術(shù)適合于薄板、殼的微米級(jí)振動(dòng)變形測(cè)量,前者對(duì)于光路布置及系統(tǒng)隔振要求較為嚴(yán)苛,因此激光電子散斑干涉技術(shù)更有利于振動(dòng)的測(cè)量與分析。全息干涉和電子散斑干涉得到的是穩(wěn)態(tài)振動(dòng)狀態(tài)下位移等值線條紋圖,直觀地反映共振態(tài)的振型。
文獻(xiàn)[29,11]主要以單邊固支的懸臂板為研究對(duì)象,通過理論、有限元模擬及實(shí)驗(yàn)方法研究缺陷對(duì)平板的振動(dòng)模態(tài)、共振頻率的影響,為工程應(yīng)用提供有益的參考。文獻(xiàn)[14]則是利用理論模擬和電子散斑干涉技術(shù)研究了無缺陷完整平板的單邊、對(duì)邊及周邊固支情況下的模態(tài)特性。本文采用有限元法和電子散斑干涉技術(shù)對(duì)4個(gè)含不同類型缺陷的對(duì)邊固支矩形薄鋁板振動(dòng)特性進(jìn)行研究;結(jié)果表明缺陷的位置對(duì)薄板結(jié)構(gòu)的振型具有一定的影響。
1含缺陷薄板振動(dòng)的數(shù)值分析
含缺陷薄板結(jié)構(gòu)的控制方程為Md2u(t)dt2+Cdu(t)dt+Ku(t)=b(t)+f(u)
(M, C, K∈Rn×n; u, b, f ∈Rn)(1)式中u為位移矢量,M為質(zhì)量矩陣,C為阻尼矩陣,K為剛度矩陣,b(t)為與時(shí)間有關(guān)的外力,f(u)為裂縫表面間斷接觸引起的非線性接觸力。利用有限元軟件ANSYS對(duì)鋁板結(jié)構(gòu)進(jìn)行數(shù)值模擬,為了便于建模,假定含缺陷鋁板結(jié)構(gòu)為各向同性的線彈性材料,結(jié)構(gòu)的形變無窮小,所以忽略了式(1)中非線性接觸力f(u)的影響。本文矩形鋁板結(jié)構(gòu)有限元模型的物理及幾何參數(shù)為:彈性模量E = 70 GPa,泊松比ν= 0.33,密度ρ = 2700 kg/m3;試樣大小為180 mm×80 mm×0.9 mm,邊界約束條件為短對(duì)邊固支長(zhǎng)對(duì)邊自由。有限元計(jì)算時(shí)選用SHELL 181單元,并將殼單元?jiǎng)澐譃槎鄠€(gè)1 mm×1 mm× 0.9 mm的小單元進(jìn)行計(jì)算。為了保證實(shí)驗(yàn)時(shí)測(cè)試試樣尺寸與有限元模型一樣,考慮到約束邊界實(shí)際加工試樣尺寸為260 mm×80 mm×0.9 mm,具體試樣示意圖如圖1所示。
圖1線切割加工的(a)完整及(b)~(e)含預(yù)制邊緣、內(nèi)裂縫的薄鋁板示意圖
Fig.1Schematic of thin Aluminum plates (a) Intact and (b)~(e) with slits cut by EDM第4期姜益軍,等: 缺陷對(duì)薄板結(jié)構(gòu)振動(dòng)模態(tài)影響的數(shù)值與實(shí)驗(yàn)分析振 動(dòng) 工 程 學(xué) 報(bào)第30卷2激光電子散斑干涉振動(dòng)測(cè)試技術(shù)
圖2是本文測(cè)量薄鋁板離面振動(dòng)特性的系統(tǒng)示意圖。參考圖2的左半部分,根據(jù)干涉理論,t時(shí)刻兩束光干涉形成的散斑強(qiáng)度為[1415]
I(x,y,t)=Io+Ir+2IoIrcos[(x,y)+
φ(x,y,t)](2)
式中Io,Ir分別為經(jīng)試樣漫反射的物光束與由漫反射面反射的參考光束的光強(qiáng),(x, y)為試樣靜止時(shí)參考光與物光間的隨機(jī)相位差;φ(x, y, t)則與試樣振動(dòng)引起的物光光程變化有關(guān)。對(duì)于純離面振動(dòng)的情形,即面內(nèi)變形或位移為0,可知φ(x,y,t)=4πAcos(ωt)λ(3)式中Acos(ωt)為t時(shí)刻物面上點(diǎn)(x, y)處的離面位移,其中A表示離面振動(dòng)的振幅,ω振動(dòng)圓頻率,λ為激光波長(zhǎng)。事實(shí)上,CCD相機(jī)采集一幅圖像需要一定的時(shí)間,因此計(jì)算機(jī)顯示的圖像實(shí)際上是CCD在成像周期內(nèi)對(duì)光強(qiáng)信息的積分。如果CCD在t與t+τ時(shí)間內(nèi)曝光進(jìn)行光電轉(zhuǎn)換,則其輸出數(shù)字圖像的灰度為
g(x,y)=k∫t+τt[Io+Ir+2IoIrcos((x,y)+
φ(x,y,t))]dt(4)
式中k為CCD光電轉(zhuǎn)化系數(shù),τ表示曝光時(shí)間。假設(shè)相機(jī)曝光時(shí)間τ是試樣振動(dòng)周期的整數(shù)倍(即τ=2nπ/ω,n為正整數(shù)),上式可進(jìn)一步寫成
g(x,y)=2nkπω[Io+Ir+2IoIrJ0(m)·
cos(x,y)](5)
式中J0(m)為如圖3所示的第一類零階Bessel函數(shù),m=4πA/λ。假設(shè)振動(dòng)過程中激振器激勵(lì)力的振幅微小波動(dòng),導(dǎo)致試樣振動(dòng)的振幅從A改變成A+ΔA,則此時(shí)CCD在另一個(gè)曝光周期τ內(nèi)獲得圖像的灰度為
f(x,y)=k∫τ0[Io+Ir+2IoIrcos((x,y)+
4π(A+ΔA)〖〗λcos(ωt)]dt(6)
令Δm=4πΔ/λ,式(6)可改寫成
f(x,y)=k∫τ0{Io+Ir+2IoIrcos[((x,y)+
(m+Δm)cos(ωt)]}dt(7)
將cos[(m+Δm)cos(ωt)]在m處泰勒展開并忽略高級(jí)小量,式(7)簡(jiǎn)寫成
f(x,y)=2nkπω[Io+Ir+2IoIr1-
(Δm)22J0(m)cos(x,y)](8)
式(5)與式(8)相減并取絕對(duì)值得到振幅漲落電子散斑干涉條紋灰度表達(dá)式為[16]
G(x,y)=2πnkω(Δm)2IoIr|J0(m)cos(x,y)|(9)
圖2離面振動(dòng)測(cè)試系統(tǒng)示意圖
Fig.2The setup for outofplane vibration testing
圖3零階Bessel函數(shù)
Fig.3First kind zeroorder Bessel function3有限元及實(shí)驗(yàn)結(jié)果
圖2所示的測(cè)量系統(tǒng)中,激光器產(chǎn)生波長(zhǎng)為532 nm綠色的相干光,功率0~50 mW連續(xù)可調(diào);CCD為德國(guó)IDS公司的1280×1024像素可編程控制的相機(jī);信號(hào)發(fā)生器可產(chǎn)生0~20000 Hz正弦波,信號(hào)發(fā)生器、功放器及激振器均為江蘇聯(lián)能公司制造。
試樣由貼在其后表面薄壓電陶瓷激勵(lì),陶瓷直徑10 mm,厚0.4 mm。為了對(duì)比,圖4給出有限元法模擬計(jì)算及實(shí)驗(yàn)測(cè)量獲得的圖1(a)所示的無缺陷完整、長(zhǎng)對(duì)邊固支短對(duì)邊自由的薄鋁板試樣1的離面1~10階振型云圖和散斑干涉條紋圖。
由圖3及式(9)知圖4(A)~(J)散斑干涉條紋圖中最亮的條紋對(duì)應(yīng)于振動(dòng)節(jié)線(駐點(diǎn)線)。由于鋁板固支部分無法達(dá)到完全剛性夾持,導(dǎo)致對(duì)應(yīng)于圖4(B)與圖4(F)的一階純扭及二階純扭的節(jié)線位置與有限元計(jì)算結(jié)果有一定偏差。
圖5是模擬與測(cè)量得到的圖1(b)所示試樣2的1~10階振型圖。計(jì)算模型和測(cè)試試樣中預(yù)制邊緣裂縫距下固定邊90 mm處,縫寬1 mm,長(zhǎng)32 mm。由圖5(a)~(c),(e)與(f)可以看出,對(duì)于居中對(duì)稱的邊緣裂縫,其對(duì)純彎及純扭振動(dòng)的振型影響很?。坏珜?duì)彎扭組合振動(dòng)的振型影響較大。
模擬與測(cè)量得到的圖1(c)所示試樣1~10階振型圖如圖6所示。計(jì)算模型和測(cè)試試樣中預(yù)制邊緣裂縫距下固定邊115 mm處,縫寬1 mm,長(zhǎng)30 mm。由圖6(a)~(b)看出,對(duì)于非居中的邊緣裂縫,除了對(duì)一階純彎及一階純扭振動(dòng)的振型影響較小外;對(duì)其他高階的彎、扭及彎扭組合振動(dòng)的振型影響都較大。
圖7是對(duì)應(yīng)于圖1(d)所示試樣的1~10階振型圖。該試樣中距下固定邊60 mm處有一與其平行的預(yù)制內(nèi)部裂縫,裂縫長(zhǎng)50 mm,寬1 mm。圖7(a)~(d)、圖7(A)~(D)以及圖7(f)~(g)表明,該內(nèi)部裂縫對(duì)低階彎、扭及彎扭振動(dòng)的振型影響不大。
含內(nèi)部斜裂縫的薄鋁板1~10階振動(dòng)振型圖如圖8所示。該試樣的裂縫以對(duì)稱軸上點(diǎn)為中心對(duì)稱,長(zhǎng)50 mm,寬1 mm,與對(duì)稱軸成60°。模擬與實(shí)驗(yàn)結(jié)果表明,該斜裂縫僅對(duì)前4階振型影響較小。圖8(H)和圖8(I)的8,9階振型,與圖8(h)和圖8(i)有限元模擬得到振型位次互換,即出現(xiàn)了模態(tài)的躍遷。
表1為實(shí)驗(yàn)中5個(gè)試樣1~10階共振頻率的測(cè)量和有限元模擬的結(jié)果。
4討論與結(jié)論
由于實(shí)驗(yàn)中試樣夾持邊界條件不是理想的固支約束,導(dǎo)致測(cè)得純彎模態(tài),特別是一階純彎的共振頻率與有限元模擬值相差較大(參見表1)。
模擬和實(shí)驗(yàn)結(jié)果表明,缺陷對(duì)薄板各階的模態(tài)和共振頻率都會(huì)產(chǎn)生影響,缺陷位置的不同對(duì)振型影響也不同,缺陷對(duì)共振頻率的影響相對(duì)較小。對(duì)比圖5(f),(F)及圖6(g),(G)可知,缺陷的存在除了上述影響外,缺陷位置和大小的不同有可能導(dǎo)致薄板振動(dòng)模態(tài)的躍遷現(xiàn)象產(chǎn)生,這在文獻(xiàn)[6]有限元圖4完整薄鋁板1~10階離面振動(dòng)振型: (a)~(j)有限元計(jì)算;(A)~(J)實(shí)驗(yàn)測(cè)試結(jié)果
Fig.4Mode shapes of first 10 resonant mode of CFCF Aluminunm plate from: (a)~(j) FEM simulation and (A)~(J) experiment measurement, respectively圖5(a)~(j)和(A)~(J)分別對(duì)應(yīng)于含邊緣居中裂縫薄板1~10階離面振動(dòng)振型的模擬和實(shí)驗(yàn)結(jié)果
Fig.5Mode shapes of first 10 resonant mode of Aluminunm plate with central edge slit results from (a)~(j) FEM and (A)~(J) experiment methods, respectively圖6(a)~(j)和(A)~(J)分別為含邊緣非居中裂縫薄板1~10階離面振動(dòng)振型的模擬和實(shí)驗(yàn)結(jié)果
Fig.6Mode shapes of first 10 resonant mode of Aluminunm plate with noncentral edge slit results from (a)~(j) FEM and (A)~(J) experiment methods, respectively圖7含內(nèi)部裂縫薄板1~10階離面振動(dòng)振型圖:(a)~(j)為計(jì)算值;(A)~(J)對(duì)應(yīng)于實(shí)驗(yàn)測(cè)量值
Fig.7Mode shapes of first 10 resonant mode of Aluminunm plate with inner horizontal slit results from (a)~(j) FEM and (A)~(J) experiment methods, respectively圖8內(nèi)部斜裂縫薄板1~10階離面振動(dòng)振型圖:(a)~(j)為計(jì)算值;(A)~(J)對(duì)應(yīng)于實(shí)驗(yàn)測(cè)量值
Fig.8Mode shapes of first 10 resonant mode of Aluminunm plate with inner skewed slit results from (a)~(j) FEM and (A)~(J) experiment methods, respectively
表1測(cè)試試樣的1~10階共振頻率 (Hz)
Tab.1First 10 resonant frequencies (Hz) of the tested specimens from FEM and experimental methods,
respectively
階數(shù)試樣1試樣2試樣3試樣4試樣5計(jì)算值實(shí)驗(yàn)值計(jì)算值實(shí)驗(yàn)值計(jì)算值實(shí)驗(yàn)值計(jì)算值實(shí)驗(yàn)值計(jì)算值實(shí)驗(yàn)值1149.77120141.18121142.81118144.96110146.481062260.21224.8256.29227246.61214.9259.46〖〗233.8256.59242.13413.04356.4381.54307379.18327.9377.25321.8390.87330.24587.15532507.63453.6531.89473.5582.37523.7583.685265812.34720744.44680674.63611.2778.08686.8777.15674.36904.85877.9903.73900.7880.18766.2879.19872.2855.67809.271018.8939.4962.83936910.58840.21013.6913.8998.6490481241.51147976.99986.51195.41016.71194.61091.31183.4103591346.712211266.012601235.512141225.71191.31254.91108101570.914071433.712931409.81268.81527.313171512.8〖〗1309分析含缺陷懸臂薄板振動(dòng)時(shí)也有類似現(xiàn)象。從彈性力學(xué)及振動(dòng)理論觀點(diǎn)來說,薄板的局部損傷導(dǎo)致結(jié)構(gòu)局部剛度產(chǎn)生變化,引起非線性響應(yīng)導(dǎo)致模態(tài)躍遷。本文研究表明,在一定假設(shè)前提下,有限元模擬計(jì)算的結(jié)果必然與實(shí)驗(yàn)的結(jié)果有一定的差異。因此,在計(jì)算機(jī)模擬的基礎(chǔ)上開展實(shí)驗(yàn)研究是很有必要的。
參考文獻(xiàn):
[1]Dimarogonas A D. Vibration of cracked structures: a state of the art review[J]. Engineering Fracture Mechanics, 1996,55(5):831—857.
[2]Qiu Z C, Wu H X, Ye C D. Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate[J]. Aerospace Science and Technology, 2009,13(6):277—290.
[3]Lynn P P, Kumbasar N. Free vibration of thin rectangular plates having narrow cracks with simply supported edges[C]. Proceedings of 10th Midwestern Mechanics Conference, 1967:911—928.
[4]Stahl B, Keer L M. Vibration and stability of cracked rectangular plates[J]. International Journal of Solids and Structures, 1972,8,69—91.
[5]Wu G Y, Shih Y S. Dynamic instability of rectangular plate with an edge crack[J]. Computers and Structures, 2005,84:1—10.
[6]Saito A, Castanier M P, Pierre C. Estimation and veering analysis of nonlinear resonant frequencies of cracked plates[J]. Journal of Sound and Vibration, 2009,326:725—739.
[7]Huang C S, Leissa A W, Li R S. Accurate vibration analysis of thick, cracked rectangular plates[J]. Journal of Sound and Vibration, 2011,330:2079—2093.
[8]Yang Z B, Chen X F, Yu J, et al. A damage identification approach for plate structures based on frequency measurements[J]. Nondestructive Testing and Evaluation, 2013,28(4):321—341.
[9]Sundaresan M J, Ghoshal A, Li J, et al. Experimental damage detection on a wing panel using vibration deflection shapes[J]. Structural Health Monitoring, 2003,2(3):243—256.
[10]Qiao P Z, Lu K, Lestari W, et al. Curvature mode shapebased damage detection in composite laminated plates[J]. Composite Structures, 2007,80:409—428.
[11]Maruyama K, Ichinomiya O. Experimental study of free vibration of clamped rectangular plates with straight narrow slits[J]. JSME Int. J. Ser. III, 1989,32:187—193.
[12]Ma C C, Huang C H. Experimental and numerical analysis of vibrating cracked plates at resonant frequencies[J]. Experimental Mechanics, 2001,41(1):8—18.
[13]季業(yè).電子散斑干涉測(cè)量技術(shù)在薄板結(jié)構(gòu)模態(tài)分析中的研究[D].天津:天津大學(xué),2012.
Ji Ye. The study on model analysis of thin plate based on Electronic Speckle Pattern Interferometry[D]. Tianjin: Tianjin University, 2012.
[14]Butters J N, Leendertz J A. Speckle pattern and holographic techniques in engineering metrology[J]. Optics and Laser Technology, 1971,3(1):26—30.
[15]Creath K. Slettemoen G A. Vibration observation techniques for digital specklepattern interferometry[J]. Journal of the Optical Society of America A, 1985,2(10):1629—1636.
[16]Wang W C, Hwang C H, Lin S Y. Vibration measurement by the timeaveraged electronic speckle pattern interferometry methods[J]. Applied Optics, 1996,35(22):4502—4509.Investigation on vibration characteristics of thin plates with
defect by numerical and experimental methodsJIANG Yijun, JIANG Shan, TAO Nan, YANG Fujun, HE Xiaoyuan
(Department of Engineering Mechanics, Southeast University, Nanjing 210096, China)Abstract: Vibration characteristics of thin rectangular plates with slit are studied by use of finite element method (FEM) and electronic speckle pattern interferometry (ESPI). The first ten outofplane resonant mode shapes of an intact plate and four plates with slit were obtained by numerical and experimental methods, respectively. The supported conditions of all five rectangular plates were one opposite edges clamped and the other opposite edges free (CFCF). The results show that resonant mode shapes are changed with slit or crack′s size, location and orientation. From the results of FEM, it can be seen that the resonant frequencies of cracked plates are lower than those of intact one. In addition, it should be noted that mode shapes based on FEM are good agreement with those obtained by experimental measurement.Key words: vibration measurement; mode shape; thin rectangular plates with slit; electronic speckle pattern interferometry; FEM作者簡(jiǎn)介: 姜益軍(1970—),男, 碩士, 講師。電話: (025)83793384; Email: yj_jiang@126.com