• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      妊娠期代謝性疾病與運(yùn)動(dòng)介導(dǎo)的內(nèi)質(zhì)網(wǎng)自適應(yīng)機(jī)制

      2018-06-06 07:39:26朱小烽
      中國(guó)體育科技 2018年3期
      關(guān)鍵詞:代謝性內(nèi)質(zhì)網(wǎng)線粒體

      朱小烽,馬 云,葉 群,3,梁 辰,傅 姍,4

      ?

      妊娠期代謝性疾病與運(yùn)動(dòng)介導(dǎo)的內(nèi)質(zhì)網(wǎng)自適應(yīng)機(jī)制

      朱小烽1,2,馬 云1,葉 群1,3,梁 辰1,傅 姍1,4

      1.國(guó)家體育總局運(yùn)動(dòng)醫(yī)學(xué)研究所, 北京 100061; 2. 嘉興學(xué)院師范學(xué)院, 浙江 314000; 3.上海體育學(xué)院 運(yùn)動(dòng)科學(xué)學(xué)院, 上海 200438; 4.溫州醫(yī)科大學(xué) 體育與健康學(xué)院, 浙江 325035

      孕期代謝性疾病的共同特征是胰島素抵抗發(fā)展為病理性的糖脂代謝紊亂,再進(jìn)而導(dǎo)致血管內(nèi)皮損傷、胎盤(pán)炎癥和氧化應(yīng)激狀態(tài)增加。各種內(nèi)源性和外源性細(xì)胞損傷都將引起內(nèi)分泌器官(如胰腺和胎盤(pán))的內(nèi)質(zhì)網(wǎng)應(yīng)激。這種機(jī)體內(nèi)環(huán)境受損可能會(huì)導(dǎo)致“胎兒編程”易感性,使得將來(lái)發(fā)展為代謝性疾病的風(fēng)險(xiǎn)增加。為了適應(yīng)孕期代謝應(yīng)激,運(yùn)動(dòng)可以刺激內(nèi)質(zhì)網(wǎng)實(shí)現(xiàn)新的代謝平衡。適宜的運(yùn)動(dòng)可以減輕氧化應(yīng)激、炎癥反應(yīng)、線粒體功能障礙和鈣離子失衡,這可能是重建孕期代謝性疾病中內(nèi)質(zhì)網(wǎng)平衡的潛在機(jī)制。

      妊娠期糖尿??;內(nèi)質(zhì)網(wǎng)應(yīng)激;先兆子癇;運(yùn)動(dòng)適應(yīng)

      在過(guò)去的20年中,肥胖、高血壓和2型糖尿病的患病率在全球范圍內(nèi)急劇增加。久坐的生活方式、不平衡的飲食結(jié)構(gòu)及遺傳傾向是代謝性疾病的主要危險(xiǎn)因素[18]。研究表明[18,69],成人階段的疾病可以發(fā)生在胎兒期,母親接觸的不良環(huán)境可以在后期的生活中使子代感染疾病?!敖】蹬c疾病的發(fā)育起源”學(xué)說(shuō)(Developmental Origins of Health and Disease Hypothesis,DOHaD)認(rèn)為,不良的子宮內(nèi)環(huán)境可能影響胎兒的代謝模式、生長(zhǎng)發(fā)育及增加子代成年期罹患慢性疾病,如肥胖、心血管疾病、糖尿病等的風(fēng)險(xiǎn)[6]。

      內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是在真核生物細(xì)胞中由膜圍成的隧道系統(tǒng),為細(xì)胞中重要的亞細(xì)胞器。負(fù)責(zé)蛋白的生物合成、折疊、組裝和修飾加工(包括羥基化、糖基化、?;投蜴I形成等)[4]。實(shí)際上內(nèi)質(zhì)網(wǎng)是膜被折疊成一個(gè)扁囊或細(xì)管狀構(gòu)造,可分為粗面內(nèi)質(zhì)網(wǎng)(rough Endoplasmic Reticulum,rER)和光面內(nèi)質(zhì)網(wǎng)(smooth Endoplasmic Reticulum,sER)兩種。粗面內(nèi)質(zhì)網(wǎng)上附著有大量核糖體,合成膜蛋白和分泌蛋白。光面內(nèi)質(zhì)網(wǎng)上無(wú)核糖體,為細(xì)胞內(nèi)外糖類和脂類的合成和轉(zhuǎn)運(yùn)場(chǎng)所,同時(shí)與鈣離子的運(yùn)輸息息相關(guān),故與運(yùn)動(dòng)的關(guān)系更為密切[21]。

      內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)是ER由于各種應(yīng)激因素導(dǎo)致生理功能發(fā)生紊亂的一種亞細(xì)胞器的病理過(guò)程[4]。各類應(yīng)激源都能促使內(nèi)質(zhì)網(wǎng)產(chǎn)生應(yīng)激,包括熱休克、糖耗竭、鈣離子失衡或蛋白糖基化障礙等都會(huì)擾亂內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài),導(dǎo)致在內(nèi)質(zhì)網(wǎng)腔中未折疊和錯(cuò)誤蛋白折疊的積累[22]。并導(dǎo)致一個(gè)復(fù)雜的信號(hào)網(wǎng)絡(luò)——未折疊蛋白反應(yīng)(unfolded protein response,UPR)的激活,以緩解ERS并促進(jìn)細(xì)胞存活,其具體途徑主要有3個(gè)[107]:1)通過(guò)減弱蛋白質(zhì)翻譯來(lái)減少新合成的蛋白質(zhì)進(jìn)入ER;2)通過(guò)上調(diào)ER相關(guān)基因表達(dá)增加蛋白質(zhì)折疊能力;3)通過(guò)ER相關(guān)降解(ERAD)和溶酶體自噬使得錯(cuò)誤折疊和未折疊蛋白質(zhì)降解。以往的研究表明,在肥胖誘導(dǎo)的胰島素抵抗和2型糖尿病中,ERS和UPR信號(hào)通路的激活扮演著重要的角色[23,81,107]。

      由于體力活動(dòng)的減少、飲食習(xí)慣的改變和遺傳等因素,流行病學(xué)研究顯示,近年來(lái)妊娠期糖尿?。╣estational diabetes mellitus,GDM)、妊娠期高血壓(hypertensive disorder complicating pregnancy,HDCP)和孕期代謝綜合征(gestational metabolic syndrome,GMS)呈現(xiàn)逐年遞增的趨勢(shì)[102]。該類疾病的共同特征為胰島素抵抗發(fā)展為病理性的糖脂代謝紊亂,再進(jìn)而導(dǎo)致血管內(nèi)皮損傷、胎盤(pán)炎癥和氧化應(yīng)激狀態(tài)增加[49,95]。胎盤(pán)組織ER微環(huán)境中可能受到Ca2+的消耗,缺氧和N-末端糖基化的功能障礙的干擾,導(dǎo)致ERS[93]。這種子宮內(nèi)環(huán)境受損可能會(huì)導(dǎo)致“胎兒編程”易感性,使得將來(lái)發(fā)展為代謝性疾病的風(fēng)險(xiǎn)增加(圖1)。

      近10年來(lái),合理運(yùn)動(dòng)是圍產(chǎn)期健康促進(jìn)的研究熱點(diǎn)之一,適宜的運(yùn)動(dòng)有助于改善胰島素的敏感性、抗氧化應(yīng)激和降低炎癥等,在妊娠期代謝性疾病的防治中發(fā)揮著重要的角色,本文試對(duì)妊娠期代謝性疾病與運(yùn)動(dòng)介導(dǎo)的內(nèi)質(zhì)網(wǎng)自適應(yīng)機(jī)制進(jìn)行綜述。

      Figure1. The Fetal Programming of Metabolic Diseases

      1 內(nèi)質(zhì)網(wǎng)應(yīng)激調(diào)控細(xì)胞代謝穩(wěn)態(tài)的基本作用機(jī)制

      UPR屬于細(xì)胞自適應(yīng)機(jī)制[88],當(dāng)出現(xiàn)錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)積累后,刺激一系列的信號(hào)通路,恢復(fù)ER功能和保持內(nèi)環(huán)境穩(wěn)態(tài)的一個(gè)過(guò)程。UPR主要由3種跨膜蛋白所介導(dǎo):雙鏈RNA依賴的蛋白激酶樣內(nèi)質(zhì)網(wǎng)類激酶[double-stand and RNA-dependent protein kinase (PKR) -like ER kinase, PERK],激活轉(zhuǎn)錄因子6(activating transcription factor 6, ATF6)和肌醇需求激酶(inositol requiring enzyme 1 alpha, IRE1α)[21,22,43,81,109]。在基礎(chǔ)(非活動(dòng))狀態(tài)下,這3種跨膜蛋白均與伴侶分子免疫球蛋白結(jié)合蛋白/葡萄糖調(diào)節(jié)蛋白78(B-cell immunoglobulin binding protein /glucose-regulated protein 78, Bip/GRP78)結(jié)合,處于無(wú)活性狀態(tài)[41]。GRP78蛋白為熱休克蛋白70(hot shock protein 70,HSP70)的家族成員,可以促進(jìn)新生蛋白的正確折疊。當(dāng)錯(cuò)誤折疊和未折疊蛋白積累到一定閾值時(shí),PERK、IRE1α和ATF6從Bip/GRP78釋放,從而被激活[92]。

      1.1 PERK通路與內(nèi)質(zhì)網(wǎng)應(yīng)激

      PERK是位于內(nèi)質(zhì)網(wǎng)膜上的一種Ⅰ型跨膜蛋白,具有絲氨酸/蘇氨酸蛋白激酶活性。PERK敲除小鼠在胚胎期正常發(fā)育,但出生后出現(xiàn)異常,如高血糖癥、低胰島素血癥、胰腺細(xì)胞死亡、動(dòng)脈粥樣硬化和生長(zhǎng)遲緩等[121]。一旦出現(xiàn)內(nèi)質(zhì)網(wǎng)應(yīng)激,PERK可以磷酸化真核細(xì)胞蛋白質(zhì)翻譯起始復(fù)合體2α(eukaryotic initiation factor 2α, eIF2α)[46]。eIF2α是PERK的主要底物,eIF2α磷酸化干擾了活性43S翻譯起始復(fù)合物的形成并抑制了翻譯過(guò)程[39]。eIF2α的絲氨酸-51殘基是蛋白質(zhì)功能磷酸化的重要位點(diǎn),絲氨酸-51對(duì)丙氨酸(S51A)的突變可以減弱應(yīng)激條件下的翻譯抑制[46,100]。eIF2α中S51A突變的純合子小鼠在胚胎和出生階段都顯示有胰島β細(xì)胞的死亡,并且由于糖異生缺陷相關(guān)的低血糖在出生后18 h內(nèi)死亡[98];而S51A突變的雜合子小鼠在給予高脂喂養(yǎng)后變得肥胖并具有糖尿病,并且由于胰島素的分泌減少,它們顯示出嚴(yán)重的葡萄糖耐受性降低,隨著ER腔的異常擴(kuò)張,胰島素原運(yùn)輸不暢,胰島β細(xì)胞中胰島素顆粒數(shù)量減少[97]。此外,隨后的研究也證實(shí)了eIF2α的幾個(gè)重要功能,eIF2α磷酸化具有抑制β細(xì)胞中蛋白質(zhì)合成的功能,通過(guò)翻譯抑制是體內(nèi)葡萄糖平衡和成熟β細(xì)胞存活所必需的;同時(shí),eIF2α磷酸化所導(dǎo)致的翻譯抑制是UPR基因、氧化應(yīng)激反應(yīng)基因和β細(xì)胞特異性基因最佳表達(dá)所必需的,如果有機(jī)體這種調(diào)控機(jī)能衰退則會(huì)導(dǎo)致ER膨脹和線粒體的損傷[46]。

      eIF2α去磷酸化由兩種不同的酶進(jìn)行調(diào)節(jié),生長(zhǎng)停滯和DNA損傷誘導(dǎo)蛋白34(GADD34)和蛋白磷酸酶1[78]。GADD34的失活可防止eIF2α的去磷酸化,并阻止蛋白質(zhì)合成的恢復(fù),這通常在應(yīng)激反應(yīng)晚期被觀察到。蛋白質(zhì)合成恢復(fù)缺陷能有效抑制應(yīng)激誘導(dǎo)蛋白的翻譯,并且干擾GADD34突變細(xì)胞中應(yīng)激誘導(dǎo)基因的程序化激活[79]。Salubrinal是eIF2α去磷酸化的選擇性抑制劑,因此,它被提出作為胰腺β細(xì)胞的保護(hù)劑,然而,也有報(bào)道指出,Salubrinal能增強(qiáng)脂肪酸誘導(dǎo)的ERS,并引起胰腺β細(xì)胞的翻譯抑制,胰島素釋放缺陷和胰腺β細(xì)胞的凋亡[29,48,114]。

      當(dāng)PERK被ERS激活時(shí),大多數(shù)mRNA的翻譯通過(guò)eIF2α的磷酸化作用被抑制,但也選擇性地提高翻譯激活轉(zhuǎn)錄因子4(ATF4)[4,83]。導(dǎo)致下游基因C/EBP同源蛋白(GADD153)的誘導(dǎo)。ATF4在不同的途徑中具有不同的生物調(diào)控效應(yīng),ATF4激活涉及蛋白質(zhì)合成和折疊、運(yùn)輸營(yíng)養(yǎng)、機(jī)體代謝、氧化還原調(diào)節(jié)和細(xì)胞凋亡的某些基因的轉(zhuǎn)錄[56,106]。ATF4基因敲除小鼠顯示出明顯的新生鼠貧血癥狀,大多數(shù)在出生后的頭3個(gè)星期死亡,幸存的也通常不具有生育能力[70]。由于ATF4是不同eIF2特異性激酶的常見(jiàn)下游靶標(biāo),因此,活化的eIF2α/ATF4途徑產(chǎn)生的效應(yīng)通常稱為綜合應(yīng)激反應(yīng)(integrated Stress Response,ISR)[42]。ISR期間腎上腺髓質(zhì)素2(adrenomedullin 2,ADM2)基因受ATF4調(diào)控,ADM2基因的高表達(dá)可以被認(rèn)為是線粒體呼吸鏈?zhǔn)艿揭种芠56]。同樣,基因C/EBP同源蛋白(CHOP/GADD153)也受ATF4的轉(zhuǎn)錄調(diào)控[38]。而CCAAT/增強(qiáng)子結(jié)合蛋白(CHOP)在ERS環(huán)境下可作為凋亡誘導(dǎo)劑起作用,CHOP基因缺陷型小鼠比野生型小鼠表現(xiàn)出更少的程序性細(xì)胞死亡[122]。真核細(xì)胞翻譯起始因子4E(eukaryotic translation initiation factor 4E,eIF4E)結(jié)合蛋白1(4E-BP1)基因也受ATF4的調(diào)控與轉(zhuǎn)錄,4E-BP1基因敲除小鼠顯示出低血糖、白色脂肪組織減少和代謝率增加的現(xiàn)象[55]。另外一份研究也指出,4E-BP1表達(dá)的異常增加可誘導(dǎo)β細(xì)胞凋亡,并表明高密度脂蛋白參與下調(diào)4E-BP1,與胰腺β細(xì)胞的保護(hù)有關(guān)[87]。

      1.2 IRE1通路與內(nèi)質(zhì)網(wǎng)應(yīng)激

      IRE1是屬于內(nèi)質(zhì)網(wǎng)N型跨膜蛋白,不僅具有絲氨酸/蘇氨酸蛋白激酶活性,此外還具有位點(diǎn)特異性的核酸內(nèi)切酶活性[21]。IRE1具有IRE1α和IRE1β兩個(gè)亞型,IRE1α在胰腺組織中大量存在,而IRE1β只存在胃腸道的上皮細(xì)胞中[21]。當(dāng)細(xì)胞培養(yǎng)過(guò)表達(dá)時(shí),IRE1α可以有效激活Bip的轉(zhuǎn)錄,而IRE1β則導(dǎo)致強(qiáng)烈的凋亡[45]。IRE1α基因敲除的小鼠胚胎就顯示死亡,而IRE1β敲除的小鼠以類似Mendelian率出生,發(fā)育正常,具有正常的生育能力和生殖行為[103]。體內(nèi)成像顯示,通過(guò)XBP1的剪接,IRE1α在胰腺和胎盤(pán)中生理活化,IRE1α的喪失導(dǎo)致嚴(yán)重的胎盤(pán)功能障礙[44]。

      另外有研究也證實(shí)了IRE1α在肝臟發(fā)育、B細(xì)胞分化及胰島素生物合成中具有重要作用[65,120]。IRE1α磷酸化與胰島β細(xì)胞中的胰島素生物合成結(jié)合,對(duì)機(jī)體瞬間暴露于高糖環(huán)境做出反應(yīng);相反,在胰腺β細(xì)胞中敲除IRE1α或抑制IRE1α磷酸化將阻止胰島素的生物合成[65]。在另一項(xiàng)關(guān)于IRE1α介導(dǎo)胰島素mRNA降解機(jī)制的研究中,在輕度ERS條件下發(fā)現(xiàn)IRE1α通過(guò)XBP1剪接傳遞蛋白信號(hào),而在嚴(yán)重的ERS下,通過(guò)ER定位的mRNA衰變傳遞凋亡信號(hào)[35]。

      IRE1α也參與胰腺β細(xì)胞的NO信號(hào)傳遞和IL-1β信號(hào)傳導(dǎo),NO是腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)的有效活化劑,其參與胰腺β細(xì)胞中NO介導(dǎo)的損傷性防御。在輕度ERS下,通過(guò)增加胰腺β細(xì)胞中的NF-kB活化來(lái)激活I(lǐng)L-1β信號(hào)傳導(dǎo)[72]。

      XBP1最初被認(rèn)為是調(diào)控主要組織相容性復(fù)合物Ⅱ類基因表達(dá)的轉(zhuǎn)錄因子[42]。近年來(lái),XBP1被報(bào)道在預(yù)防氧化應(yīng)激以及ERS方面發(fā)揮了重要的調(diào)節(jié)作用[72]。XBP1與磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)的p85調(diào)節(jié)亞基相互作用,促進(jìn)了在ERS條件下XBP1的核易位和UPR誘導(dǎo),PI3K也是胰島素代謝作用的重要介質(zhì),p85通過(guò)胰島素刺激從催化亞單位(p110)解離[84]。XBP1的輕度激活以叉頭框蛋白O1(FoxO1)依賴的方式增強(qiáng)葡萄糖耐量[58]。XBP1也被p38絲裂原活化蛋白激酶(p38 MAPK)介導(dǎo)的磷酸化調(diào)控[58]。

      ERS期間,IRE1與腫瘤壞死因子受體相關(guān)因子2(TNF receptor-associated factor 2,TRAF2)結(jié)合,IRE1α-TRAF2復(fù)合物與Jun氨基端激酶(Jun N-Terminal kinase,JNK)和IkB激酶(IkB kinase,IKK)相互作用并最終激活它們[21]。激活的JNK磷酸化轉(zhuǎn)錄因子激活蛋白1(activator protein 1,AP1);激活的IKK降解IkB,從而釋放NF-kB,導(dǎo)致促炎因子的表達(dá)[21];此外,AP1的激活入核也能誘導(dǎo)炎癥相關(guān)基因的轉(zhuǎn)錄[50](圖2)。細(xì)胞凋亡信號(hào)調(diào)節(jié)激酶1(apoptosis signalregulating kinase 1,ASK1)與TRAF2直接相互作用并介導(dǎo)JNK通路的激活[77]。此外,通過(guò)對(duì)肝細(xì)胞特異性TRAF2基因敲除的小鼠研究發(fā)現(xiàn),TRAF2通過(guò)對(duì)胰高血糖素的高血糖反應(yīng)促進(jìn)肝臟糖異生,使得肥胖癥中的高血糖癥患病風(fēng)險(xiǎn)升高[19]。ASK1基因常規(guī)敲除的小鼠以Mendelian比率出生,與野生型的外觀無(wú)差異,在其發(fā)育階段也沒(méi)有表現(xiàn)出組織與形態(tài)學(xué)異常[101];另一方面,據(jù)報(bào)道,ASK1介導(dǎo)內(nèi)皮細(xì)胞中高葡萄糖誘導(dǎo)的細(xì)胞衰老,ASK1缺乏可減輕胰島素抵抗、心臟炎癥纖維化以及肥胖引起的血管內(nèi)皮功能障礙[110,113]。

      當(dāng)ERS時(shí),激活的IRE1α在低聚反應(yīng)和磷酸化的作用下,內(nèi)切核糖核酸酶活性,去除轉(zhuǎn)錄因子X(jué)盒結(jié)合蛋白1(X-box binding protein 1,XBP1)上的一個(gè)26堿基的內(nèi)含子,產(chǎn)生具有活性的轉(zhuǎn)錄因子X(jué)BP1s,XBP1s與ATF6共同啟動(dòng)轉(zhuǎn)錄,誘導(dǎo)內(nèi)質(zhì)網(wǎng)相關(guān)性死亡(endoplasmic reticulum associated degradation,ERAD)相關(guān)因子的表達(dá)[11](圖2)。

      圖2 內(nèi)質(zhì)網(wǎng)應(yīng)激通路圖

      Figure2. Endoplasmic Reticulum Stress Pathway

      注:改編自Hotamisligil[42],作圖軟件來(lái)源于Servier Medical Art(http://www.servier.com)。

      1.3 ATF6通路與內(nèi)質(zhì)網(wǎng)應(yīng)激

      在哺乳動(dòng)物中,ATF6有兩種基因:ATF6α和ATF6β[40]。ERS時(shí),ATF6與GRP78解離,需要移動(dòng)ATF6到高爾基體上,由絲氨酸蛋白酶的位點(diǎn)1(site-1 protease,S1P)和金屬蛋白酶的活性位點(diǎn)2(site-2 protease,S2P)分割后激活轉(zhuǎn)錄因子,通過(guò)多種途徑影響著UPR[21]。包括蛋白質(zhì)合成減少,上調(diào)分子伴侶和其他蛋白的表達(dá),這些將有助于重新恢復(fù)內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài),降解錯(cuò)誤折疊和未折疊的蛋白,觸發(fā)炎癥和胰島素抵抗[88]。此外,研究報(bào)道,ATF6α具有保護(hù)β細(xì)胞免受ERS并抑制肝臟硬化。它還在高脂血癥和胰島素抵抗中發(fā)揮著重要的作用[2]。ATF6α基因敲除小鼠表現(xiàn)有對(duì)葡萄糖的耐受性降低,胰島素分泌受損,胰腺中胰島素含量降低,肝臟脂肪變性等病理特征[119]。ATF6通過(guò)與環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白(CREB)轉(zhuǎn)錄共激活因子2(CREB-regulated transcription coactivator,CRTC2/ TORC2)的相互調(diào)節(jié),作為糖異生酶的關(guān)鍵調(diào)節(jié)劑在調(diào)控機(jī)體的脂代謝中發(fā)揮著重要的作用[36,66,105]。ATF6的激活可以通過(guò)破壞CREB和CRTC2之間的相互作用來(lái)減少肝臟葡萄糖輸出,從而抑制CRTC2對(duì)參與糖異生的基因啟動(dòng)子的占據(jù),因此,肥胖動(dòng)物肝臟中ATF6的過(guò)度表達(dá)似乎有利于逆轉(zhuǎn)CRTC2對(duì)葡萄糖異生的作用[105]。類似地,還有報(bào)道ATF6通過(guò)抑制CREB活性從而來(lái)抑制cAMP刺激的肝臟糖異生[99]。而運(yùn)動(dòng)的自適應(yīng)機(jī)制則是骨骼肌PGC-1α通過(guò)ATF6α的共激活介導(dǎo)肌管和骨骼肌中的UPR[108]。

      固醇調(diào)節(jié)元件結(jié)合蛋白(sterol RegulatoryElement Binding Protein,SREBP)屬于核轉(zhuǎn)錄因子家族,是脂肪合成基因重要的轉(zhuǎn)錄調(diào)節(jié)因子,SREBP家族的轉(zhuǎn)錄因子駐留在ER中。在低固醇水平或胰島素應(yīng)答中,SREBP蛋白轉(zhuǎn)運(yùn)到高爾基體并被加工成活性轉(zhuǎn)錄因子[119]。SREBP蛋白的激活也在ERS過(guò)程中發(fā)生,對(duì)于調(diào)節(jié)參與膽固醇代謝(SREBP1α、SREBP2)或脂質(zhì)合成(SREBP1c)的靶基因至關(guān)重要[31]。事實(shí)上,SREBP轉(zhuǎn)錄因子可能是脂質(zhì)代謝與UPR整合的關(guān)鍵介質(zhì)[42]。當(dāng)ER膜缺乏脂質(zhì)或固醇時(shí),SREBP切割活化蛋白(SREBP-SCAP)復(fù)合物與胰島素誘導(dǎo)基因1(insulin-induced gene 1,Insig-1)分離,因此,SCAP護(hù)送SREBPs從ER到高爾基體[9,24]。SREBPs被高爾基體中的S1P和S2P切割,切割的N-末端轉(zhuǎn)移到細(xì)胞核中以激活參與膽固醇和脂質(zhì)生物合成和代謝的基因[42](圖2)。ATF6和SREBPs都是ER膜結(jié)合的轉(zhuǎn)錄因子,研究證實(shí)了ATF6可以抑制SREBP2在肝細(xì)胞中對(duì)脂肪生成的調(diào)節(jié)[119]。

      2 孕期代謝性疾病與內(nèi)質(zhì)網(wǎng)應(yīng)激

      隨著妊娠的發(fā)展,孕婦體內(nèi)新陳代謝將發(fā)生一系列的變化。在妊娠24~28周左右,母體外周骨骼肌會(huì)逐漸出現(xiàn)生理性的胰島素抵抗,直至分娩[95]。研究發(fā)現(xiàn),孕期胎盤(pán)會(huì)分泌一系列的多肽激素、生長(zhǎng)因子、細(xì)胞因子來(lái)調(diào)節(jié)母體代謝和胎兒生長(zhǎng)發(fā)育[18,61]。人胎盤(pán)泌乳素(human placental lactogen,hPL)和催乳素誘導(dǎo)母體胰腺中的β細(xì)胞擴(kuò)增和胰島素釋放,而人胎盤(pán)生長(zhǎng)激素(human placental growth hormone,hPGH)和脂肪因子引起外周胰島素抵抗[5]。孕期母體血清中hPL和hPGH濃度分別增加30和8倍[37]。這種正常的胰島素抵抗過(guò)程可以保障骨骼肌對(duì)葡萄糖的攝入減少,將孕婦血糖維持在一個(gè)較高的水平,有助于滿足胎兒生長(zhǎng)發(fā)育所需。為滿足胰島素需求增加,孕婦胰島B細(xì)胞會(huì)主動(dòng)分泌胰島素,來(lái)代償外周組織中生理學(xué)的胰島素抵抗現(xiàn)象。胰島素分泌受限的孕婦,由于無(wú)法代償這種生理變化,進(jìn)而使得血糖升高,最終可能導(dǎo)致GDM。同時(shí),妊娠期母體脂質(zhì)代謝的異常也較為常見(jiàn)。

      胎盤(pán)分泌由胎盤(pán)特異性上游增強(qiáng)子調(diào)控的瘦素和脂聯(lián)素用于調(diào)節(jié)母體脂質(zhì)代謝,在正常懷孕期間,這些因素有利于母體能量資源的重新分配[17]。然而,胎盤(pán)功能的擾動(dòng)則可能破壞其活性,使得母體代謝的正常平衡遭到破壞,最終導(dǎo)致某些代謝性疾病的發(fā)生,如:肥胖、代謝綜合征、GDM、先兆子癇等[32,82]。已有研究表明,UPR途徑與細(xì)胞營(yíng)養(yǎng)感知機(jī)制以及糖脂代謝密切相關(guān),而具有高多肽內(nèi)分泌活性的器官(如胰腺和胎盤(pán))容易導(dǎo)致ERS[73,83]。ERS與孕期脂質(zhì)代謝的關(guān)系也是雙向的,ERS通路的激活可以導(dǎo)致脂肪生成和改變體內(nèi)的脂質(zhì)平衡,而脂質(zhì)代謝異常同樣也會(huì)引起ERS[34]。孕期高脂飲食誘導(dǎo)的ERS條件下,eIF2α的磷酸化和PERK途徑的激活允許通過(guò)誘導(dǎo)C/EBPα的降低和減少Insig1蛋白翻譯來(lái)增加脂質(zhì)的生成。然而,在長(zhǎng)時(shí)間的ERS中,CHOP可能導(dǎo)致C/EBPs的失調(diào)[7];類似的高糖飲食誘導(dǎo)的ERS環(huán)境下C/EBPα的激活依賴于XBP1的高表達(dá)。此外,在妊娠期代謝性疾病導(dǎo)致的ERS中,XBP1和ATF6對(duì)PPARα、PGC1α介導(dǎo)的載脂蛋白B和脂肪酸氧化途徑的激活都是至關(guān)重要的[7]。飽和脂肪酸,如棕櫚酸,是各種類型細(xì)胞中已知的ERS誘導(dǎo)劑,可以調(diào)節(jié)細(xì)胞的存活和凋亡相關(guān)信號(hào)。因此,ER是繼線粒體外又一治療妊娠期代謝性疾病的重要靶點(diǎn)。

      GDM是指在妊娠過(guò)程中初次出現(xiàn)的糖耐量異常,是妊娠期間最常見(jiàn)的代謝異常疾病。GDM對(duì)于母嬰健康均具有嚴(yán)重影響,一方面易增加妊高征、酮癥酸中毒、以及增加剖宮產(chǎn)率等方面的風(fēng)險(xiǎn);另一方面可導(dǎo)致胎兒呼吸窘迫、早產(chǎn)以及新生兒低血糖等,后代容易出現(xiàn)肥胖、糖耐量受損等現(xiàn)象。GDM和妊娠肥胖的主要特征是炎癥和內(nèi)毒素血癥[67]。各種內(nèi)源性和外源性細(xì)胞損傷,如病毒感染、無(wú)菌性炎癥和環(huán)境毒素都可引起ERS,從而誘導(dǎo)妊娠中參與免疫反應(yīng)的促炎細(xì)胞因子、趨化因子和其他介質(zhì)的表達(dá)[53]。越來(lái)越多的證據(jù)顯示,ERS在調(diào)節(jié)炎癥和胰島素抵抗中起著關(guān)鍵的作用[60,63,68]。IL-1α和IL-β是重要的促炎因子,能抑制GDM婦女脂肪細(xì)胞中的胰島素信號(hào)通路,加強(qiáng)了外周胰島素的抵抗和炎癥的活化[63,67]。ERS中,尤其是IRE1通路已被證明可誘導(dǎo)IL-1β的炎性體依賴性分泌[53]。因此,抑制ERS誘導(dǎo)產(chǎn)生的IL-1,可能是改善母體肥胖和妊娠代謝性疾病潛在的治療方法[63]。Liong[64]用ERS抑制劑?;敲撗跄懰幔╰auro-ursodeoxycholic acid,TUDCA)下調(diào)IRE1α和GRP78基因,顯著降低了脂多糖(lipopolysaccharide,LPS)和聚肌苷酸-聚胞苷酸(polyinosinic- polycytidylic acid,[Poly(I:C)])等導(dǎo)致的IL-6、IL-8、IL-1β和MCP-1,再次證實(shí)了人類骨骼肌中ERS誘導(dǎo)的炎癥和胰島素抵抗過(guò)程參與了GDM的發(fā)展。

      由于有效的UPR防止了細(xì)胞的凋亡,GDM胎盤(pán)和胎兒的過(guò)度生長(zhǎng)可能與凋亡途徑激活減少有關(guān)[8,47]。由此,UPR也被認(rèn)為構(gòu)成了胎盤(pán)功能不良的標(biāo)志。Belkacemi發(fā)現(xiàn),GDM胎盤(pán)的細(xì)胞凋亡指數(shù)明顯低于對(duì)照組,而葡萄糖轉(zhuǎn)運(yùn)蛋白(SLC2A)比對(duì)照組高出了3倍,SLC2A高表達(dá)與胎盤(pán)的巨噬細(xì)胞發(fā)揮作用有關(guān)[8]。與之類似,F(xiàn)arias研究還發(fā)現(xiàn),GDM孕婦臍靜脈內(nèi)皮細(xì)胞和脂肪細(xì)胞中人類CHOP同源蛋白(hCHOP)高于對(duì)照組,且與SLC29A1啟動(dòng)子的活性降低有關(guān)[25]。ER穩(wěn)態(tài)受損也與GDM有關(guān),如,GDM患者中臍靜脈內(nèi)皮細(xì)胞中CHOP表達(dá)增加,也在一定程度上表明了ERS與胎盤(pán)脈管系統(tǒng)中血管生成之間的潛在聯(lián)系[34]。最近的研究也證實(shí)了代謝性酸中毒不是高血糖所引起,而是GDM胎盤(pán)中ERS引起的[116]。綜上所述,ERS和UPR信號(hào)分子在保持胎盤(pán)功能穩(wěn)態(tài)和預(yù)防GDM中發(fā)揮著重要的作用。

      氧化應(yīng)激是GDM與先兆子癇的主要病因[90],氧化應(yīng)激也是胎盤(pán)ERS的強(qiáng)誘導(dǎo)者[47,115]。此外,先兆子癇中也存在胎盤(pán)細(xì)胞氧化應(yīng)激的現(xiàn)象[15]。胚胎植入、血管生成和胎盤(pán)發(fā)育等都會(huì)產(chǎn)生活性氧(ROS)和氮,主要通過(guò)線粒體途徑或通過(guò)黃嘌呤脫氫酶蛋白水解切割成黃嘌呤氧化酶形式導(dǎo)致ROS的產(chǎn)生[15];其次,蛋白質(zhì)折疊本身就是產(chǎn)生ROS的氧化事件。因此,高分泌負(fù)擔(dān)或反復(fù)嘗試重折疊可能導(dǎo)致ROS在細(xì)胞內(nèi)的濃度升高[15]。此外UPR可以激活一些與氧化應(yīng)激相同的細(xì)胞內(nèi)炎癥信號(hào)通路。PERK-Nrf2和IRE-CHOP是細(xì)胞在ERS下的兩種不同轉(zhuǎn)歸途徑,PERK-Nrf2上調(diào)抗氧化酶表達(dá),而IRE-CHOP則促進(jìn)細(xì)胞凋亡[115]。Muralimanoharan發(fā)現(xiàn),GDM患者胎盤(pán)中乳酸脫氫酶增加,強(qiáng)調(diào)了合成代謝途徑活化與線粒體功能障礙的相關(guān)性,其中miR-143起到了關(guān)鍵的介導(dǎo)作用[75]。而線粒體功能障礙與氧化應(yīng)激密切相關(guān),兩者影響著GDM患者的胎盤(pán)[57]。線粒體產(chǎn)生的ATP被認(rèn)為是大多數(shù)真核細(xì)胞的主要能量來(lái)源,在胎盤(pán)的滋養(yǎng)細(xì)胞中,它們具有作為類固醇激素合成及參與膽固醇轉(zhuǎn)運(yùn)和代謝的重要功能。在滋養(yǎng)層的細(xì)胞分化過(guò)程中線粒體也發(fā)生了形態(tài)學(xué)的改變,典型的類固醇生成細(xì)胞的管狀嵴通常在妊娠后期的合體滋養(yǎng)層中廣泛存在,同時(shí)伴有大量的ER[14]。此外,嚴(yán)重的先兆子癇患者胎盤(pán)中分離的線粒體顯示出顯著的形態(tài)學(xué)改變[57]。胎盤(pán)線粒體和內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的擾動(dòng)因此可能驅(qū)動(dòng)不同的下游代謝效應(yīng)。

      Yung團(tuán)隊(duì)研究證實(shí),利用維生素等抗氧化劑對(duì)高糖誘導(dǎo)的胎盤(pán)ERS有積極的預(yù)防效果[116]。因此,外源性抗氧化劑的補(bǔ)充對(duì)改善GDM患者胎盤(pán)ERS具有積極的臨床意義[47]。此外,Cheng研究推測(cè),GDM會(huì)改變胎兒內(nèi)皮細(xì)胞的氧化還原蛋白質(zhì)組,導(dǎo)致受損的核轉(zhuǎn)錄因子Nrf2介導(dǎo)抗氧化防御[20]。Nrf2在維持線粒體功能和保護(hù)細(xì)胞免受ERS中起著關(guān)鍵的作用。GDM胎兒內(nèi)皮細(xì)胞中氧化還原信號(hào)傳導(dǎo)的持續(xù)缺陷將破壞細(xì)胞對(duì)子宮內(nèi)氧化應(yīng)激的防御,使子代在后期的生活中增加2型糖尿病和心血管等代謝性疾病的風(fēng)險(xiǎn)[20]。這在一定程度上也提示了Nrf2誘導(dǎo)物有可能成為有潛力的基因靶向治療藥物。迄今為止的研究表明,無(wú)氧糖酵解作為一種基本機(jī)制與母體糖尿病、胎盤(pán)和胎兒發(fā)育中的損傷密切相關(guān),而有氧運(yùn)動(dòng)聯(lián)合抗氧化劑更能提高機(jī)體抗氧化酶的活性??寡趸委煹男ЧQ于運(yùn)動(dòng)強(qiáng)度[89]。時(shí)下,妊娠期運(yùn)動(dòng)抗氧化的研究還鮮有報(bào)道,對(duì)有氧運(yùn)動(dòng)抗氧化作用劑量與效應(yīng)的探索仍然是今后研究的重點(diǎn)。

      3 運(yùn)動(dòng)介導(dǎo)的孕期代謝性疾病與內(nèi)質(zhì)網(wǎng)自適應(yīng)機(jī)制

      妊娠過(guò)量的脂質(zhì)積累引起脂毒性和炎癥,運(yùn)動(dòng)則是防治代謝性疾病的有效方法之一。較多研究已證實(shí)運(yùn)動(dòng)可以增加骨骼肌葡萄糖轉(zhuǎn)運(yùn)蛋白、抗氧化劑和脂肪酸氧化酶活性。研究認(rèn)為,運(yùn)動(dòng)對(duì)UPR的改善機(jī)制是運(yùn)動(dòng)介導(dǎo)的代謝適應(yīng)[80]。而長(zhǎng)期運(yùn)動(dòng)對(duì)孕期代謝益處與妊娠期久坐生活方式引起的病理變化的具體分子機(jī)制尚未完全厘清。

      Kim發(fā)現(xiàn),運(yùn)動(dòng)后ERS在人類骨骼肌中被激活,與安靜狀態(tài)下相比,在完成200 km比賽后的3 h,BiP蛋白表達(dá)、ATF4 mRNA水平、XBP1的拼接和未拼接水平都顯著增加[51]。由于急性運(yùn)動(dòng)后骨骼肌中炎癥和氧化應(yīng)激被激活,UPR的增加和蛋白酶體活性的降低,變成了細(xì)胞應(yīng)激后的應(yīng)對(duì)機(jī)制[59]。運(yùn)動(dòng)后UPR的激活是對(duì)當(dāng)前應(yīng)激狀態(tài)的保護(hù)機(jī)制,這在WU的研究中予以證實(shí)[108],在一次中等強(qiáng)度的運(yùn)動(dòng)后小鼠骨骼肌中的UPR被激活,但在幾次訓(xùn)練之后,UPR一些標(biāo)志物的激活減少,有些甚至被抑制。值得注意的是,在四頭肌和腓腸肌中UPR被激活,而在非負(fù)重條件下,豎脊肌或心臟中UPR沒(méi)有明顯的改變。這意味著,肌肉收縮施加的機(jī)械應(yīng)力或直接參與運(yùn)動(dòng)的肌肉產(chǎn)生一些代謝改變,在UPR活化過(guò)程中起著重要的作用。

      此外,運(yùn)動(dòng)對(duì)疾病的防治效果和它誘導(dǎo)的生物反應(yīng)與運(yùn)動(dòng)的強(qiáng)度密切相關(guān),生物學(xué)反應(yīng)根據(jù)運(yùn)動(dòng)強(qiáng)度的變化而變化,因此誘導(dǎo)不同程度的ERS。研究者對(duì)比了兩組不同強(qiáng)度的運(yùn)動(dòng),5周后發(fā)現(xiàn),大強(qiáng)度的運(yùn)動(dòng)訓(xùn)練增加了線粒體的生物合成并降低了ERS和大鼠骨骼肌組織細(xì)胞凋亡的信號(hào)傳導(dǎo)[52]。運(yùn)動(dòng)對(duì)ERS的影響具有一定的組織特異性,如,自主運(yùn)動(dòng)可以有效上調(diào)下丘腦、海馬和皮層區(qū)域中的UPR相關(guān)蛋白表達(dá),而長(zhǎng)期強(qiáng)迫性游泳訓(xùn)練使得高脂誘導(dǎo)小鼠的脂肪組織中PERK和elF2α磷酸化降低[85]。但是,運(yùn)動(dòng)對(duì)妊娠期代謝密切相關(guān)的骨骼肌、胰腺、胎盤(pán)和肝臟等組織的影響如何,現(xiàn)階段的研究還較為匱乏,還需我們進(jìn)一步審查運(yùn)動(dòng)形式、運(yùn)動(dòng)種類、組織影響和UPR反應(yīng)階段等方面的關(guān)系。

      GDM和先兆子癇被認(rèn)為是孕期糖脂代謝異常相關(guān)的代謝綜合征表征[13]。氧化應(yīng)激被認(rèn)為與妊娠期代謝性疾病的發(fā)病有關(guān),脂質(zhì)過(guò)氧化物的增加導(dǎo)致內(nèi)皮功能障礙是其主要原因[33],一氧化氮(NO)的生物利用度降低也是發(fā)病機(jī)理之一[112]。研究者認(rèn)為,長(zhǎng)期有氧運(yùn)動(dòng)對(duì)氧化應(yīng)激和內(nèi)皮細(xì)胞功能有積極的調(diào)節(jié)作用,是妊娠期代謝性疾病良好的非藥物性治療方式[112]。已有研究證實(shí),有氧運(yùn)動(dòng)可以顯著地降低受試者的血壓和氧化應(yīng)激,但如果運(yùn)動(dòng)強(qiáng)度過(guò)大則可能損傷內(nèi)皮細(xì)胞[3]。這種機(jī)制類似于孕期運(yùn)動(dòng)劑量與健康效應(yīng)之間的“U”型效應(yīng)(圖3)即中等強(qiáng)度的運(yùn)動(dòng)負(fù)荷時(shí)擁有最佳的健康效應(yīng)。而在實(shí)際的運(yùn)動(dòng)過(guò)程中,孕期女性,尤其是代謝性疾病人群的運(yùn)動(dòng)負(fù)荷有別于常人。雖然美國(guó)婦產(chǎn)科醫(yī)師學(xué)會(huì)(American College of Obstetricians and Gynecologists,ACOG)推薦的每周150 min中等強(qiáng)度的有氧運(yùn)動(dòng)[1],而對(duì)于妊娠期患有代謝性疾病的人群而言,這種“中等強(qiáng)度”的界限還需要更加合理和科學(xué)的界定。其次,運(yùn)動(dòng)對(duì)氧化應(yīng)激與抗氧化應(yīng)激之間本身就存在一種共生關(guān)系,除抗氧化應(yīng)激外,運(yùn)動(dòng)本身就產(chǎn)生ROS,其潛在來(lái)源包括線粒體的呼吸鏈,超氧化物的黃嘌呤氧化酶產(chǎn)生、一氧化氮合成、兒茶酚胺氧化和嗜中性粒細(xì)胞誘導(dǎo)的氧化刺激[3]。機(jī)體在這種被氧化與抗氧化的過(guò)程中導(dǎo)致組織抗氧化防御機(jī)制的上調(diào),而Gounder指出,運(yùn)動(dòng)誘導(dǎo)機(jī)體抗氧化能力的提高,極有可能與Nrf2介導(dǎo)的ERS改善有關(guān)[30]。最新研究顯示[96]:4周運(yùn)動(dòng)誘導(dǎo)了AMP活化蛋白激酶(AMPK)和隨后的過(guò)氧化物酶體增殖物激活受體δ(PPARδ)的激活,有助于改善血管內(nèi)皮細(xì)胞的ERS,該研究也揭示了運(yùn)動(dòng)有助于PPARδ介導(dǎo)的ERS抑制,并為治療妊娠期代謝性血管病變提供了潛在的有效靶標(biāo)。

      圖3 孕期運(yùn)動(dòng)劑量與健康效應(yīng)

      Figure 3. The Relationship of Exercise Dose and Health Effects During Pregnancy

      注:改編自Mottola M F[74],當(dāng)孕期久坐不動(dòng)或超過(guò)一定的運(yùn)動(dòng)負(fù)荷對(duì)子代與母體都會(huì)產(chǎn)生健康的負(fù)向效應(yīng),尤其是胎兒健康效應(yīng)對(duì)運(yùn)動(dòng)的敏感性更甚母體本身。

      ERS中的炎癥通路也是孕期代謝性疾病發(fā)生與發(fā)展的一個(gè)關(guān)鍵位點(diǎn)[42]。ERS中與炎癥相關(guān)的信號(hào)通路主要有JNK-AP1和IKK-NF-kB途徑(圖4)。幾項(xiàng)研究都表明了運(yùn)動(dòng)可以反轉(zhuǎn)炎癥細(xì)胞因子的mRNA表達(dá)模式,在妊娠期糖尿病人群中,單核細(xì)胞趨化蛋白-1,纖溶酶原激活物抑制劑-1和IKKβ在脂肪組織中高表達(dá)[85]。作為一種抗炎分子,熱休克蛋白70(HSP70)可以減少炎癥介質(zhì)在不同炎癥模型中的釋放,HSP70可以與NF-kB相互作用以發(fā)揮這種抗炎作用[28]。研究證實(shí),在無(wú)氧閾強(qiáng)度下持續(xù)4 min的單次運(yùn)動(dòng)即可使得HSP70 mRNA表達(dá)顯著升高[12]。此外,運(yùn)動(dòng)降低了脂肪、胰腺和肝臟中的TNF-α、IL-6和Toll樣受體4的表達(dá)水平,運(yùn)動(dòng)鍛煉具有較好的抗炎作用[71]。體力活動(dòng)可以較好地阻止大鼠肝臟和脂肪組織中NF-kB磷酸化水平的升高。在JNK敲除的小鼠中,肥胖誘導(dǎo)的促炎因子如TNF-α、IL-6和MCP-1等的表達(dá)也被抑制[104]。IRE-1α和PERK分支可以導(dǎo)致NF-kB-IKK通路的激活[42],JNK和IKK的激活通過(guò)使胰島素受體底物(IRS1和IRS2)絲氨酸磷酸化從而抑制胰島素作用。值得注意的是,這些途徑的激活在孕期代謝異常和胰島素機(jī)制中發(fā)揮著重要的作用。孕期過(guò)量的營(yíng)養(yǎng)物質(zhì)本身可以作為誘導(dǎo)ERS的信號(hào),其與炎性信號(hào)通路的激活直接相關(guān)。如,GDM中游離脂肪酸的代謝和運(yùn)輸障礙,過(guò)量的游離脂肪酸誘導(dǎo)肌細(xì)胞、胰腺β細(xì)胞、肝細(xì)胞和胎盤(pán)細(xì)胞中產(chǎn)生炎癥[54]。白介素15(IL-15)作為骨骼肌葡萄糖攝取和利用的循環(huán)肌源性細(xì)胞因子被一些研究所發(fā)現(xiàn)。作為免疫調(diào)節(jié)因子,IL-15被認(rèn)為能增加骨骼肌中的葡萄糖攝取,改善骨骼肌胰島素敏感性[16,111]。Yang等研究發(fā)現(xiàn),跑臺(tái)運(yùn)動(dòng)促進(jìn)了高脂誘導(dǎo)的胰島素抵抗(IR)大鼠骨骼肌IL-15和IL-15受體α(IL-15Rα)的表達(dá),IL-15對(duì)ERS的抑制作用可能與運(yùn)動(dòng)訓(xùn)練對(duì)胰島素敏感性的改善有關(guān)[111]。但是,IL-15對(duì)于妊娠期胰島素敏感性的直接作用仍未徹底闡明。另外,線粒體損傷衍生的ROS是炎癥小體形成的主要觸發(fā)因素,Peeri等認(rèn)為,運(yùn)動(dòng)對(duì)自噬過(guò)程的增強(qiáng)加速了損傷線粒體的消除,從而導(dǎo)致ROS和無(wú)菌性炎癥的降低[86](圖4)。因此,線粒體的穩(wěn)定更新對(duì)于正常和健康的線粒體表現(xiàn)至關(guān)重要。研究證實(shí),孕期經(jīng)常性運(yùn)動(dòng)還能增加骨骼肌線粒體的數(shù)量[112]。線粒體生物發(fā)生也被證明在控制UPR過(guò)程中具有關(guān)鍵的作用,轉(zhuǎn)錄共激活因子PGC-1α是一種關(guān)鍵的調(diào)控因子,在維持線粒體功能,機(jī)體氧化代謝和能量穩(wěn)定的過(guò)程中發(fā)揮著重要的調(diào)控作用[27,62,76,117,118]。運(yùn)動(dòng)過(guò)程中涉及了骨骼肌功能的調(diào)節(jié),這對(duì)全身代謝的平衡起著重要的作用。在GDM等妊娠期代謝性疾病中常伴隨骨骼肌線粒體功能障礙及骨骼肌中PGC-1α和PGC-1β水平的降低[91]。此外,發(fā)現(xiàn)PGC-1α是通過(guò)ATF6共激活介導(dǎo)肌管和骨骼肌中的UPR,其中包括激活A(yù)TF-4和CHOP等分子標(biāo)記改善機(jī)體的ERS。從而推斷一些骨骼肌特異性因子可能存在或者影響著PGC-1/ATF6蛋白復(fù)合物的功能。而運(yùn)動(dòng)誘導(dǎo)的PGC-1α表達(dá)可能在疾病的自適應(yīng)機(jī)制中發(fā)揮著重要的角色[94]。CA2+/鈣調(diào)蛋白依賴性蛋白激酶4(CaMK4)在運(yùn)動(dòng)的代謝適應(yīng)中具有重要的調(diào)節(jié)作用,這可能也與PGC-1α基因的轉(zhuǎn)錄控制有關(guān)[26]。因此,骨骼肌中線粒體、ERS及運(yùn)動(dòng)三者之間的耦合關(guān)系還需進(jìn)一步的厘清。

      圖4 運(yùn)動(dòng)、炎癥與應(yīng)激

      Figure4. Exercise, Inflammation and Stress

      隨著“Sports is Medicine”(運(yùn)動(dòng)即良醫(yī))理念的深入,拓展了運(yùn)動(dòng)對(duì)孕期代謝性疾病的防治認(rèn)識(shí)的新思路。孕期是否可以借鑒Booth和Laye所建議的那樣[10],用“運(yùn)動(dòng)藥丸”來(lái)模擬產(chǎn)生與運(yùn)動(dòng)類似的分子效應(yīng),筆者認(rèn)為這種代謝調(diào)節(jié)的藥丸療法在現(xiàn)階段還是難以實(shí)現(xiàn)的,因?yàn)檫\(yùn)動(dòng)對(duì)人體帶來(lái)的是多重的代謝效應(yīng)與免疫應(yīng)答,不僅僅是幾種簡(jiǎn)單分子效應(yīng)的組合。

      4 結(jié)語(yǔ)

      為了適應(yīng)孕期代謝應(yīng)激,運(yùn)動(dòng)可以刺激ER實(shí)現(xiàn)新的代謝平衡。適宜的運(yùn)動(dòng)可以減輕氧化應(yīng)激、線粒體功能障礙和鈣離子失衡,這可能是重建孕期代謝性疾病中ER平衡的潛在機(jī)制。

      運(yùn)動(dòng)介導(dǎo)的妊娠期代謝性疾病中UPR調(diào)節(jié)作用的研究仍然較少,其機(jī)制仍未徹底闡明,探索孕期代謝性疾病與運(yùn)動(dòng)介導(dǎo)的改善機(jī)制還需更多的研究。運(yùn)動(dòng)作為有效的非藥物預(yù)防和治療手段,不同的妊娠期代謝性疾病模型,不同的干預(yù)方式(如運(yùn)動(dòng)類型、運(yùn)動(dòng)強(qiáng)度、持續(xù)時(shí)間等)可能存在不一致的結(jié)果。與機(jī)體在運(yùn)動(dòng)后UPR標(biāo)志物的增加相比,其相應(yīng)減少的效應(yīng)到底如何?運(yùn)動(dòng)如何有效地誘導(dǎo)下游通路的增加,而選擇性地減少其他UPR標(biāo)記?這些都是今后運(yùn)動(dòng)與孕期健康促進(jìn)領(lǐng)域所需要探索和研究的問(wèn)題。

      [1] ACOG. ACOG Committee opinion:Exercise during pregnancy and the postpartum period[J]. ObstetGynecol,2002, 99(1):171-173.

      [2] ARAGON I V, BARRINGTON R A, JACKOWSKI SThe specialized unfolded protein response of B lymphocytes: ATF6alpha-independentdevelopment of antibody-secreting B cells[J]. Mol Immunol,2012, 51(3-4):347-355.

      [3] AVLONITI A, CHATZINIKOLAOU A, DELI C KExercise-induced oxidative stress responses in the pediatric population[J]. Antioxidants,2017, 6(1):1-16.

      [4] BACK S H, RANDAL J. KAUFMAN. Endoplasmic reticulum stress and type 2 diabetes[J]. Annu Rev Biochem,2012, 81:767-793.

      [5] BARBOUR L A, SHAO J, QIAO LHuman placental growth hormone causes severe insulin resistance in transgenic mice [J]. Am J ObstetGynecol,2002, 186(3):512-517.

      [6] BARKER. Fetal and infant origins of adult disease[J]. MonatsschrKinderh,2001, 149(Sup1):s2-s6.

      [7] BASSERI S, AUSTIN R C. Endoplasmic reticulum stress and lipid metabolism: Mechanisms and therapeutic potential[J]. BiochemResInt,2012, 2012:1-13.

      [8] BELKACEMI L, KJOS S, NELSON D MReduced apoptosis in term placentas from gestational diabetic pregnancies[J]. J Dev Orig Health Dis,2013, 4(3):256-265.

      [9] BENNETT M K, SEO Y K, DATTA SSelective binding of sterol regulatoryelement-binding protein isoforms and co-regulatory proteins to promoters for lipid metabolic genes in liver[J]. J Biol Chem,2008, 283(23):15628-15637.

      [10] BOOTH F W, LAYE M J. Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery[J]. J Physiol,2009, 587(23):5527-5539.

      [11] BOURDIER G, ARNAUD C, BELAIDI-CORSAT ERole of endoplasmic reticulum stress in the deleterious cardiovascular consequences of chronic intermittent hypoxia. Beneficial effects of high-intensity interval training[J]. ArchCardiovasc Dis Suppl, 2015, 7(2):206.

      [12] BRUDER G, JARASCH E D, HEID H W. High concentrations of antibodies to xanthine oxidase in human and animal sera. Molecularcharacterization,[J]. J ClinInvest,1984, 74(3):783-794.

      [13] BURTON G J, YUNG H W. Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia[J]. Pregnancy hypertens, 2011, 1(1-2):72-78.

      [14] BURTON G J, YUNG H W, MURRAY A J. Mitochondrial–Endoplasmic reticulum interactions in the trophoblast: Stress and senescence[J]. Placenta,2017, ( 52):146-155.

      [15] BURTON G J, YUNG H W, CINDROVA-DAVIES TPlacental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia[J]. Placenta,2009, 30 (Suppl A)S43-48.

      [16] BUSQUETS S, FIGUERAS M, ALMENDRO VInterleukin-15 increases glucose uptake in skeletal muscle. An antidiabetoge-nic effect of the cytokine[J]. Biochim Biophys Acta, 2006, 1760 (11):1613-1617.

      [17] CALLAWAY L K, COLDITZ P B, BYRNE N MPrevention of gestational diabetes: feasibility issues for an exercise intervention in obese pregnant women[J]. Diabetes care,2010, 33(7):1457-1459.

      [18] CHALK T E, BROWN W M. Exercise epigenetics and the fetal origins of disease[J]. Epigenomics,2014, 6(5):469-472.

      [19] CHEN Z, SHENG L, SHEN HHepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses[J]. Diabetes,2012, 61(3):566-573.

      [20] CHENG X, CHAPPLE S J, PATEL BGestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero[J]. Diabetes, 2013, 62(12):4088-4097.

      [21] DELDICQUE L, HESPEL P, FRANCAUX M. Endoplasmic reticulum stress in skeletal muscle: Origin and metabolic consequences [J]. Exerc sport Sci Rev,2012, 40:43-49.

      [22] DELDICQUE L, HESPEL P, FRANCAUX M. Endoplasmic reticulum stress in skeletal muscle: origin and metabolic consequences[J]. Exerc Sport Sci Rev,2012, 40(1):43-49.

      [23] EIZIRIK D L, CARDOZO A K, CNOP M. The role for endoplasmic reticulum stress in diabetes mellitus[J]. Endocr Rev,2008, 29(1):42-61.

      [24] FANG D L, WAN Y, SHEN WEndoplasmic reticulum stress leads to lipid accumulation through upregulation of SREBP-1c in normal hepatic and hepatoma cells[J]. MolcellBiochem, 2013, 381(1-2):127-137.

      [25] FARIAS M, PUEBLA C, WESTERMEIER FNitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP-C/EBPalpha in human umbilical vein endothelial cells from gestational diabetes[J]. Cardiovasc Res,2010, 86(1):45-54.

      [26] FERRARO E, GIAMMARIOLI A M, CHIANDOTTO SExercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy[J]. Antioxid Redox Signal,2014, 21(1):154-176.

      [27] FURRER R, HANDSCHIN C. Exercise and PGC-1α in Inflammation and Chronic Disease[J]. Dtsch Z Sportmed,2015, 66(12):317-320.

      [28] GOLBIDI S, BADRAN M, LAHER I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients[J]. Exp Diabetes Res,2012, 2012:941868.

      [29] GOSWAMI P, GUPTA S, BISWAS JEndoplasmic reticul-um stress plays a key role in rotenone-induced apoptotic death of neurons[J]. Molneurobiol,2016, 53(1):285-298.

      [30] GOUNDER S S, KANNAN S, DEVADOSS DImpaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training[J]. PloS One, 2012, 7(9):e45697.

      [31] GREGOR M F, HOTAMISLIGIL G S. Adipocyte stress: the endoplasmic reticulum and metabolic disease[J]. J Lipid Res,2007, 48(9):1905-1914.

      [32] GUELINCKX I, DEVLIEGER R, MULLIE PEffect of lifestyle intervention on dietary habits, physical activity, and gestational weight gain in obese pregnant women: a randomized controlled trial[J]. Am J Clin Nutr,2010, 91(2):373-380.

      [33] GUPTA S, AGARWAL A, SHARMA R K. The role of placental oxidative stress and lipid peroxidation in preeclampsia[J]. ObstetGynecol Surv,2005, 60(12):807-816.

      [34] GUZEL E, ARLIER S, GUZELOGLU-KAYISLI OEndoplasmic reticulum stress and homeostasis in reproductive physiology and pathology[J]. Int J Mol Sci,2017, 18(4):792.

      [35] HAN D, LERNER A G, WALLE L VIRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates[J]. Cell,2009, 138(3):562-575.

      [36] HAN J, LI E, CHEN LThe CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1[J]. Nat,2015, 524(7564):243-246.

      [37] HANDWERGER S, FREEMARK M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development[J]. J Pediatr Endocrinol Metab,2000, 13(4):343-356.

      [38] HARDING H P, NOVOA I, ZHANG Y HRegulated translation initiation controls stress-induced gene expression in mammalian cells[J]. MolCell, 2000, 6(5):1099-1108.

      [39] HARDING H P, ZHANG Y, RON D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [J]. Nat,1999, 397(6716):271-274.

      [40] HAZE K, OKADA T, YOSHIDA HIdentification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response[J]. Biochem J,2001, 355(pt1):19-28.

      [41] HOTAMISLIGIL G S. Endoplasmic reticulum stress and atherosc ler-osis [J]. Nat Med,2010, 16(4):396-399.

      [42] HOTAMISLIGILGS. Endoplasmic reticulum stress and the infla-mmatory basis of metabolic disease[J]. Cell,2010, 140(6):900-917.

      [43] HUMMASTI S, HOTAMISLIGIL G S. Endoplasmic reticulum stress and inflammation in obesity and diabetes[J]. Circ Res,2010, 107(5):579-591.

      [44] IWAWAKI T, AKAI R, YAMANAKA SFunction of IRE1 alpha in the placenta is essential for placental development and embryonic viability[J]. Proc Nat AcadSci USA, 2009, 106 (39):16657-16662.

      [45] IWAWAKI T, HOSODA A, OKUDA TTranslational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress[J]. Nat Cell Biol,2001, 3(2):158-164.

      [46] IWAWAKI T, OIKAWA D. The role of the unfolded protein response in diabetes mellitus[J]. Semin Immunopathol,2013, 35 (3): 333-350.

      [47] JAWERBAUM. Placental endoplasmic reticulum stress and acidosis: relevant aspects in gestational diabetes[J]. Diabetologia, 2016, 59(10):2080-2081.

      [48] JEON Y J, KIM J H, SHIN J I. Salubrinal-mediated upregulation of eIF2alpha phosphorylation increases doxorubicin sensitivity in MCF-7/ADR cells[J]. Mol Cells,2016, 39(2):129-135.

      [49] KAMANA K C, SHAKYA S, ZHANG H. Gestational diabetes mellitus and macrosomia: a literature review[J]. Ann Nutr Metab,2015, 66 (Suppl 2):14-20.

      [50] KASSAN M, GALAN M, CHOI S KEndoplasmic reticulum stress and microvascular endothelial dysfunction in diabetes[J]. J Diabetes Metab,2011, 2.

      [51] KIM H J, JAMART C, DELDICQUE LEndoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run[J]. Med Sci Sports Exerc,2011, 43(1):18-25.

      [52] KIM K, KIM Y H, LEE S HEffect of exercise intensity on unfolded protein response in skeletal muscle of rat[J]. Korean J Physiol Pharmacol,2014, 18(3):211-216.

      [53] KIM S, JOE Y, JEONG S OEndoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways[J]. Innate Immun,2014, 20(8):799-815.

      [54] KING V, DAKIN R S, LIU LMaternal obesity has little effect on the immediate offspring but impacts on the next generation[J]. Endocrinol,2013, 154(7):2514-2524.

      [55] KOHARA K T, POULIN F, KOHARA MAdipose tissue reduction in mice lacking the translational inhibitor 4E-BP1[J]. Nat Med,2001, (7):1128-1132.

      [56] KOVALEVA I E, GARAEVA A A, CHUMAKOV P MIntermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4[J]. Gene,2016, 590(1):177-185.

      [57] LAPPAS M, HIDEN U, DESOYE GThe role of oxidative stress in the pathophysiology of gestational diabetes mellitus[J]. Antioxid Redox Signal,2011, 15(12):3061-3100.

      [58] LEE J, SUN C, ZHOU Yp38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis[J]. Nat Med,2011, 17(10):1251-1260.

      [59] LEE S S, YOO J H, SO Y S. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus[J]. J Phys Ther Sci,2015, 27(10):3063-3068.

      [60] LEGRY V, VAN ROOYEN D M, LAMBERT BEndoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice[J]. ClinSci,2014, 127(7):507-518.

      [61] LEITE C F, DO-NASCIMENTO S L, HELMO F RAn overview of maternal and fetal short and long-term impact of physical activity during pregnancy[J]. Arch GynecolObstet,2017, 295(2):273-283.

      [62] LIN J, HANDSCHIN C, SPIEGELMAN B M. Metabolic control through the PGC-1 family of transcription coactivators[J]. Cell Metab, 2005, 1(6):361-370.

      [63] LIONG S, LAPPAS M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes[J]. PloS one,2015, 10(4):e0122633.

      [64] LIONG S, LAPPAS M. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women[J]. Mole Cell Endocrinol,2016, 425(c):11-25.

      [65] LIPSON K L, FONSECA S G, ISHIGAKI SRegulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1[J]. Cell Metab, 2006, 4(3): 245-254.

      [66] LUO Q, VISTE K, URDAY-ZAA J CMechanism of CREB recognition and coactivation by the CREB-regulated transcriptio-nal coactivator CRTC2[J]. Proc Natl Acad Sci USA,2012, 109 (51):20865-20870.

      [67] LAPPAS M. Activation of inflammasomes in adipose tissue of women with gestational diabetes[J]. Mol Cell Endocrinol,2014, 382(1):74-83.

      [68] LEE J M. Nuclear receptors resolve endoplasmic reticulum stress to improve hepatic insulin resistance[J]. Diabetes Metab J,2017, 41(1):10-19.

      [69] MANZUR K, NAIM-SHUCHANA S. Physical activity and exercise during pregnancy[J]. Eur J Physiother,2013, 16(1):2-9.

      [70] MASUOKA H C, TOWNES T M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice[J]. Blood,2002, 99(3):736-745.

      [71] MELO A M, BENATTI R O, IGNACIO-SOUZA L MHypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation[J]. Metabolism,2014, 63(5): 682-692.

      [72] MIANI M, COLLI M L, LADRIERE LMild endoplasmic reticulum stress augments the proinflammatory effect of IL-1β in pancreatic rat β-cells via the IRE1α/XBP1s pathway[J]. Endocrinol, 2012, 153(7):3017-3028.

      [73] MIZUUCHI M, CINDROVA-DAVIES T, OLOVSSON MPlacental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6beta: implications for the pathophysiology of human pregnancy complications [J]. JPathol,2016, 238(4):550-561.

      [74] MOTTOLA. The role of exercise in the prevention and treatment of gestational diabetes mellitus[J]. Curr Upp Sport Med Rep,2007, 6(6):381-386.

      [75] MURALIMANOHARAN S, MALOYAN A, MYATT L. Mitoch-ondrial function and glucose metabolism in the placenta with 2 gestational diabetes mellitus: Role of MIR-143[J]. Clin Sci,2016, 36(9):8-9.

      [76] NARKAR V A, FAN W, DOWNES MExercise and PGC-1alpha-independent synchronization of type I muscle metabolism and vasculature by ERRgamma[J]. Cell Metab,2011, 13(3):283-293.

      [77] NISHITOH H, MATSUZAWA A, TOBIUME KSystematic identification of novel protein domain families associated with nuclearfunctions[J]. Genome Res,2002, 12(1):47-56.

      [78] NOVOA I, ZENG H Q, HARDING H PFeedback inhibition of the unfolded protein response by GADD34-mediated dephosph-orylation of eIF2alpha[J]. J Cell Biol,2001, 153(5):1011-1022.

      [79] NOVOA I, ZHANG Y, ZENG HStress-induced gene expression requires programmed recovery from translational repression[J]. EMBO J,2003, 22(5):1180-1187.

      [80] OST M, COLEMAN V, KASCH JRegulation of myokine expression: Role of exercise and cellular stress[J]. Free radic BiolMed,2016, 98:78-89.

      [81] OZCAN L, ERGIN A S, LU AEndoplasmic reticulum stress plays a central role in development of leptin resistance[J]. Cell Metab,2009, 9(1):35-51.

      [82] PACHECO N L P, ANDERSEN A M N, JORGENSEN M K. Preeclampsia and breast cancer: The influence of birth characteristics[J]. Breast,2015, 24(5):613-617.

      [83] PAGLIASSOTTI M J, KIM P Y, ESTRADA A LEndoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view[J]. Metabolism,2016,65(9):1238-1246.

      [84] PARK S W, ZHOU Y, LEE JThe regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation[J]. Nat Med,2010, 16(4):429-437.

      [85] PASSOS E, ASCENSAO A, MARTINS M JEndoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise[J]. Metab: Clinl and Exp,2015, 64(7):780-792.

      [86] PEERI M, AMIRI S. Protective effects of exercise in metabolic disorders are mediated by inhibition of mitochondrial-derived sterile inflammation[J]. Med Hypotheses,2015, 85(6):707-709.

      [87] PETREMAND J, BULAT N, BUTTY A CInvolvement of 4E-BP1 in the protection induced by HDLs on pancreatic beta-cells. [J]. MolEndocrinol,2009, 23(10):1572-1586.

      [88] RANGEL-ALDAO R. The unfolded protein response, inflammat-ion, oscillators, and disease: a systemsbiology approach[J]. Endoplasmic Reticulum Stress Dis,2015, 2(1).

      [89] RADAK Z, ISHIHARA K, TEKUS EExercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve[J]. Redox Biol,2017, (12):285-290.

      [90] RAIJMAKERS M T, DECHEND R, POSTON L. Oxidative stress and preeclampsia: rationale for antioxidant clinical trials[J]. Hypertension,2004, 44(4):374-380.

      [91] RAMAMOORTHY T G, LAVERNY G, SCHLAGOWSKI A IThe transcriptional coregulator PGC-1beta controls mitochond-rial function and anti-oxidant defence in skeletal muscles[J]. NatCommuns,2015, 6:10210.

      [92] RAYAVARAPU S, COLEY W, NAGARAJU K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease[J]. Curr Rheumatol Rep,2012, 14(3):238-243.

      [93] REDMAN. The endoplasmic reticulum stress of placental impoverishment[J]. Am J Pathol,2008, 173(2):311-314.

      [94] ROPELLE E R, PAULI J R, CINTRA D EAcute exercise modulates the Foxo1/PGC-1alpha pathway in the liver of diet-induced obesity rats[J]. J Physiol,2009, 587(Pt 9):2069-2076.

      [95] RYCKMAN K K, SPRACKLEN C N, SMITH C JMaternal lipid levels during pregnancy and gestational diabetes: a systema-tic review and meta-analysis[J]. BJOG,2015, 122(5):643-651.

      [96] SAN C W, WONG W T, ZHAO LPPARδ is required for exercise to attenuate endoplasmic reticulum stress and endothelial dysfunction in diabetic mice [J]. Diabetes,2017, 66(2): 519-528.

      [97] SCHEUNER D, MIERDE D V, SONG BControl of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis[J]. Nat Med,2005, 11(7):757-764.

      [98] SCHEUNER D, SONG B, MCEWEN ETranslational control Is required for the unfolded protein response and In vivo glucose homeostasis[J]. Mol Cell,2001, 7(6):1165-1176.

      [99] SEO H Y, KIM M K, MIN A KEndoplasmic reticulum stress -induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB [J]. Endocrinol,2010, 151(2):561-568.

      [100] SRIVASTAVA S P, DAVIES M V, KAUFMAN R J. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis[J]. J Biol Chem,1995, 270(28):16619-16624.

      [101] TOBIUME K, MATSUZAWA A, TAKAHASHI TASK1 is required for sustained activations of JNK/p38MAP kinases and apoptosis[J]. EMBO Rep,2001, 2(3):222-228.

      [102] TONG G X, CHENG J, CHAI JAssociation between gestational diabetes mellitus and subsequent risk of cancer: a systematic review of epidemiological studies[J]. Asian Pac J Cancer P,2014, 15(10):4265-4269.

      [103] URANO F, WANG X Z, BERTOLOTTI ACoupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1[J]. Sci,2000, 287(5453): 664-666.

      [104] VALLERIE S N, FURUHASHI M, FUCHO RA predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity[J]. PloS One, 2008, 3(9):e3151.

      [105] WANG Y, VERA L, FISCHER W HThe CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis[J]. Nat,2009, 460(7254):534-537.

      [106] WENGROD J C, GARDNER L B. Cellular adaptation to nutrient deprivation: crosstalk between the mTORC1 and eIF2alpha signaling pathways and implications for autophagy[J]. Cell cycle,2015, 14(16):2571-2577.

      [107] WU J, KAUFMAN R J. From acute ER stress to physiological roles of the unfolded protein response[J]. Cell Death Differ,2006, 13(3):374-384.

      [108] WU J, RUAS J L, ESTALL J LThe unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α /ATF6α complex[J]. Cell Metab,2011, 13(2): 160-169.

      [109] XU C, BAILLY-MAITRE B, REED J C. Endoplasmic reticulum stress: cell life and death decisions[J]. J Clin Invest,2005, 115(10):2656-2664.

      [110] YAMAMOTO E, DONG Y F, KATAOKA KOlmesartan prevents cardiovascular injury and hepatic steatosis in obesity and diabetes, accompanied by apoptosis signal regulating kinase-1 inhibition[J]. Hypertens,2008, 52(3):573-580.

      [111] YANG H T, LUO L J, CHEN W JIL-15 expression increas-ed in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats[J]. Endocrine,2015, 48(1):152-163.

      [112] YEO S, DAVIDGE S T. Possible beneficial effect of exercise, by reducing oxidative stress, on the incidence of preeclampsia [J]. J Womens Health Gend Based Med,2001, 10(10):983-989.

      [113] YOKOI T, FUKUO K, YASUDA OApoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells[J]. Diabetes,2006, 55(6):1660-1665.

      [114] YUAN T, LUO B L, WEI T HSalubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2α signaling pathway[J]. Arch of MedRes,2012, 43(7):522-529.

      [115] YUNG H, KOROLCHUK S, TOLKOVSKY A MEndoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells[J]. FASEB J,2009, 21(3):872-884.

      [116] YUNG H W, ALNAES-KATJAVIVI P, JONES C JPlacental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants[J]. Diabetologia,2016, 59(10):2240-2250.

      [117] YAN Z. Exercise, PGC-1alpha, and metabolic adaptation in skeletal muscle[J]. Appl Physiol Nutr Metab,2009, 34(3):424-427.

      [118] ZADEGAN F G, GHAEDI K, KALANTAR S MCardiac differentiation of mouse embryonic stem cells is influenced by a PPAR gamma/PGC-1alpha-FNDC5 pathway during the stage of cardiac precursor cell formation[J]. Eur J Cell Biol,2015, 94(6): 257-266.

      [119] ZENG L F, LU M, MORI KATF6 modulates SREBP2-mediated lipogenesis[J]. EMBO J,2004, 23(4):950-958.

      [120] ZHANG K Z, WONG H N, SONG B BThe unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis[J]. JClinInvest,2005, 115(2):268-281.

      [121] ZHANG P, MCGRATH B, LI SThe PERK eukaryotic initiation factor 2 kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas[J]. MolCellBiol,2002, 22(11):3864-3874.

      [122] ZINSZNER H, KURODA M, WANG X ZCHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum[J]. Genes Dev,1998, 12(7): 982-995.

      Adaptive Mechanism of Endoplasmic Reticulum by Gestational Metabolic Diseases and Exercise Mediated

      ZHU Xiao-feng1,2, MAYun1, YE Qun1,3, LIANG Chen1, FU Shan1,4

      1.National Reserch Institate of Sport Medicine,Beijing 100061,China;2.Jiaxing University,Zhejiang 314000,China;3.Shanghai University of Sport,Shanghai 200438, China; 4.Wenzhou Medical University, Zhejiang 325035, China.

      Gestational metabolic diseases share a common feature, which is the development of insulin resistance to pathological glucose and lipid metabolism disorders. It has thus led to vascular endothelial injury, placental inflammation and aggravated oxidative stress.. A variety of endogenous and exogenous cell damage will induce endoplasmic reticulum stress in endocrine organs, such as pancreas and placenta. Such damage to the internal environment of the body may lead to fetal programming susceptibility, thus adding to the risk of future development into metabolic diseases. Exercise can stimulate the endoplasmic reticulum to achieve a new metabolic balance, so as to adapt to the gestational metabolic stress. Appropriate exercise can alleviate oxidative stress, inflammatory response, mitochondrial dysfunction and calcium ion imbalance, which may account for the underlying mechanism of reconstructing endoplasmic reticulum balance in gestational metabolic diseases.

      梁辰,女,副主任醫(yī)師,碩士生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)與醫(yī)務(wù)監(jiān)督,E-mail:lclc3@163.com。

      1002-9826(2018)03-0068-11

      G804.7

      2017-10-11;

      2018-02-09

      國(guó)家體育總局政府性基金資助項(xiàng)目(109031000000015J001);嘉興市科技計(jì)劃項(xiàng)目(2017AY33078)。

      朱小烽,男,講師,在讀博士研究生,主要研究方向?yàn)閶D幼體力活動(dòng)與健康促進(jìn),E-mai:zhuxiaofeng102@126. com。

      10.16470/j.csst.201803009

      猜你喜歡
      代謝性內(nèi)質(zhì)網(wǎng)線粒體
      減肥和改善代謝性疾病或有新途徑
      中老年保健(2022年2期)2022-11-25 23:46:31
      抗代謝性疾病藥物研究專欄簡(jiǎn)介
      嗜黏蛋白阿克曼菌與肥胖相關(guān)代謝性疾病的研究進(jìn)展
      內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
      棘皮動(dòng)物線粒體基因組研究進(jìn)展
      線粒體自噬與帕金森病的研究進(jìn)展
      憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
      mTOR信號(hào)通路在衰老相關(guān)代謝性疾病發(fā)生中的作用研究進(jìn)展
      LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
      Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
      墨竹工卡县| 当涂县| 盐亭县| 嘉义县| 华池县| 霍林郭勒市| 兴海县| 龙岩市| 云龙县| 金平| 大安市| 枣阳市| 当雄县| 巴彦县| 长乐市| 紫金县| 尚志市| 抚顺县| 元江| 江永县| 宣城市| 庆元县| 阳曲县| 泰兴市| 玉溪市| 尤溪县| 方城县| 库伦旗| 吉安市| 个旧市| 如东县| 灵台县| 集贤县| 三台县| 定州市| 江都市| 洪泽县| 涪陵区| 政和县| 五台县| 江永县|