肖海峰 賀昱耀 喬社娟
摘 要:針對(duì)永磁同步電機(jī)矢量控制電流環(huán)內(nèi)存在的固有延遲環(huán)節(jié),如電流采樣、占空比計(jì)算、逆變器死區(qū)效應(yīng)及數(shù)字控制延時(shí)等。在同步旋轉(zhuǎn)坐標(biāo)系下引入電流解耦項(xiàng)jωrL,分析制約電流環(huán)頻率響應(yīng)能力的主要遲滯因素,并對(duì)比不同電流采樣時(shí)刻與脈寬調(diào)制(pulse width modulation,PWM)占空比更新時(shí)序?qū)﹄娏鳝h(huán)頻率響應(yīng)的影響。提出了一種新的電流采樣時(shí)機(jī)和更新輸出PWM信號(hào)模式,在半個(gè)載波周期內(nèi)優(yōu)化采樣、計(jì)算和輸出時(shí)序,減小了電流環(huán)固有延時(shí)等待時(shí)間。在載波頻率不變的前提下,提高電流環(huán)動(dòng)態(tài)加速過(guò)程中電流的跟蹤性能。仿真和實(shí)驗(yàn)結(jié)果與理論分析基本吻合,電流環(huán)的頻率頻帶帶寬提高了近一倍,表明該策略的有效性和正確性。
關(guān)鍵詞:永磁同步電機(jī);頻率響應(yīng);占空比更新;脈寬調(diào)制;電流環(huán)
中圖分類號(hào):TP 273
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-449X(2018)06-0107-07
Abstract:Considering the inherent delay existing in the current loop of permanent magnet synchronous motor, such as the current sampling, duty ratio calculation, inverter deadtime effect and digital control delay, etc, it introduces the current decoupling jωrL in the synchronous rotating reference frame, conducts the analysis of main hysteresis factor restricting current loop frequency response ability, and comparison of impact of different current sampling time and renewal of the PWM duty cycle on current loop frequency response. This paper proposed a new current sampling time and updated the output PWM signal model. The optimization calculation and output sequence in half a carrier cycle sampling were achieved to reduce the current loop inherent delay. The current loop current in the process of dynamic tracking performance was improved under the premise of the invariable carrier frequency. The simulation and experimental results are in accordance with the basic theoretical analysis, and the current loop bandwidth of frequency band can be nearly increased by double.
Keywords:permanent magnet synchronous motor; frequency response; duty ratio updates; pulse width modulation;current loop
0 引 言
交流永磁同步電機(jī)調(diào)速系統(tǒng)的動(dòng)、靜態(tài)特性主要由兩個(gè)嵌套的控制環(huán)性能決定,即電流環(huán)、速度環(huán),而內(nèi)環(huán)電流環(huán)的動(dòng)態(tài)響應(yīng)能力是制約整個(gè)系統(tǒng)性能的關(guān)鍵,其主要采用的控制策略為滯環(huán)控制、比例積分(proportional integral, PI)控制以及智能控制等。
在中、小功率調(diào)速系統(tǒng)中僅僅依靠改變電流控制策略很難滿足調(diào)速系統(tǒng)的動(dòng)態(tài)要求[1-4]。文獻(xiàn)[5]分析了滯環(huán)電流控制動(dòng)態(tài)響應(yīng)快的特點(diǎn),但該策略開(kāi)關(guān)引起的諧波頻帶分布較寬,而過(guò)多的濾波環(huán)節(jié)會(huì)降低系統(tǒng)電流響應(yīng);基于PI調(diào)節(jié)器的電流控制以固定的開(kāi)關(guān)頻率和較好的穩(wěn)態(tài)、動(dòng)態(tài)性能等優(yōu)點(diǎn),但PI調(diào)節(jié)器的自身濾波特性也將影響系統(tǒng)的頻率響應(yīng)[6-8];采用了滑模變結(jié)構(gòu)等智能控制方案可以有效改進(jìn)電流環(huán)動(dòng)態(tài)性能,但對(duì)于電機(jī)控制系統(tǒng)內(nèi)固有的遲滯無(wú)法消除[9-10]。
在電流環(huán)中還存在著諸多其他主要遲滯因素,如相電流濾波、電流采樣/保持、矢量控制算法及PWM輸出更新延時(shí)[11-12]。本文通過(guò)永磁同步電機(jī)調(diào)速系統(tǒng)連續(xù)模型,僅對(duì)PI調(diào)節(jié)器濾波特性、PWM計(jì)算、更新及電流采樣之間的時(shí)序關(guān)系進(jìn)行詳細(xì)分析,針對(duì)時(shí)序中存在的延時(shí)進(jìn)行優(yōu)化,提出新的電流采樣時(shí)機(jī)與PWM占空比更新時(shí)序,在半個(gè)載波周期內(nèi)完成電流采樣、矢量計(jì)算和指令輸出等環(huán)節(jié),減小了電流環(huán)固有延時(shí)等待時(shí)間,提高系統(tǒng)動(dòng)態(tài)響應(yīng)時(shí)間。為了保持電流采樣精確度,同時(shí)兼顧濾波效果和延時(shí)影響[13],選取低通濾波器的截止頻率約為開(kāi)關(guān)頻率的兩倍。通過(guò)采用Matlab/SIMULINK構(gòu)建矢量控制系統(tǒng)模型,分別針對(duì)不同電流環(huán)工作時(shí)序模式進(jìn)行仿真分析,并結(jié)合1.5 kW永磁同步電機(jī)開(kāi)展了實(shí)驗(yàn)驗(yàn)證。
1 永磁同步電機(jī)數(shù)學(xué)模型
2 永磁同步電機(jī)電流環(huán)動(dòng)態(tài)響應(yīng)性能分析
在同步旋轉(zhuǎn)坐標(biāo)系dq下,建立永磁同步電機(jī)交流調(diào)速系統(tǒng)電流環(huán)連續(xù)控制模型,如圖1所示。電流環(huán)的反饋滯后項(xiàng)和電流調(diào)節(jié)器位于同步坐標(biāo)系,而觸發(fā)信號(hào)的輸出和被控對(duì)象位于靜止坐標(biāo)系,通過(guò)坐標(biāo)變換構(gòu)成完整的閉環(huán)系統(tǒng)。為了消除交、直軸之間存在電流交叉耦合,在同步旋轉(zhuǎn)坐標(biāo)系下引入電流解耦項(xiàng)jωrL以實(shí)現(xiàn)交、直軸電流獨(dú)立控制[14]。
圖8為不同參考電流給定信號(hào)的響應(yīng)波形。在雙次采樣更新方式下,如圖8(a)所示,q軸階躍響應(yīng)電流能更快的跟蹤參考給定,且調(diào)整時(shí)間和最大波動(dòng)值都小于異步采樣更新方式。當(dāng)參考給定為300 Hz正弦電流信號(hào)時(shí),如圖8(b)所示,雙次采樣更新方式電流響應(yīng)與參考電流存在0.000 15 s的延時(shí),即相角滯后16.2°,異步采樣更新方式電流響應(yīng)延時(shí)達(dá)0.000 35 s,即相角滯后37.8°。由仿真結(jié)果可知在一個(gè)載波周期內(nèi)提高電流采樣頻率和PWM更新頻率能夠有效拓展電流環(huán)帶寬,改善實(shí)際轉(zhuǎn)矩的快速性。
在永磁同步電機(jī)調(diào)速系統(tǒng)實(shí)驗(yàn)平臺(tái)上,驗(yàn)證不同電流采樣和PWM更新模式電流響應(yīng)速度,實(shí)驗(yàn)所用電機(jī)額定功率為1.5 kW,極對(duì)數(shù)為4,相關(guān)實(shí)驗(yàn)參數(shù)如下:電流采樣周期為2 us;PWM開(kāi)關(guān)頻率為15 kHz。電機(jī)正弦給定信號(hào)頻率為166.6 Hz,如圖9(a)所示為異步模式下電機(jī)相電流響應(yīng)波形,電流采樣與電流響應(yīng)之間的理論延時(shí)只有1.625Tpwm,但考慮到濾波器和電機(jī)時(shí)間常數(shù)等因素,實(shí)際電流相位滯后達(dá)2 ms,且存在約為0.1 A的幅度衰減。在電流同步采樣時(shí)序下,電機(jī)相電流相位滯后減小,滯后時(shí)間約為1.5 ms,幅度衰減減小到為0.07 A,如圖9(b)。改進(jìn)后的電流采樣與PWM占空比更新時(shí)序,如圖9(c),實(shí)際電流相位滯后小于1 ms,同時(shí)電流具有較小的衰減幅度,對(duì)比不同的電流采樣和PWM更新時(shí)序模式,相電流響應(yīng)得到明顯的提高,拓展了調(diào)速系統(tǒng)電流環(huán)的帶寬。
5 結(jié) 論
本文改進(jìn)電流采樣與PWM更新時(shí)序,即在一個(gè)載波周期內(nèi)實(shí)現(xiàn)增加電流采樣和PWM更新次數(shù),縮短了電流環(huán)控制周期,提高電流環(huán)動(dòng)態(tài)響應(yīng)能力。采用1.5 kW永磁同步電機(jī)構(gòu)建矢量控制系統(tǒng),進(jìn)行了所提出控制策略有效性的驗(yàn)證。仿真和實(shí)驗(yàn)結(jié)果表明該方法可有效提高電流環(huán)動(dòng)態(tài)響應(yīng)能力,有著較大的工程價(jià)值和實(shí)際意義。
參 考 文 獻(xiàn):
[1] CHOI J, KIM H, SUL S K.Design of fast response current controller using dq axis crosscoupling application to permanent magnet synchronous motor drive[C]//International Conference on Industrial Electronics, Control, and Instrumentation. Melbourne: IEEE,1996:1187.
[2] LI S H, ZONG K, LIU H X.A composite speed controller based on a secondorder model of PMSMsystem[J].Transactions of the Institute of Measurement and Control, 2011, 33(5):522.
[3] BLANCO F B, DEGNER M W, LORENZ R D. Analysis and design of current regulators using complex vectors[J].IEEE Transactions on Industry Applications, 2000, 36(3):817.
[4] TARCZYNSKI W,HEJMAN T,SMUGALA D.Computer controlled testing system for investigating the dynamic characteristics of contactors with AC electromagnet drives[J]. Measurement, 2003,(33):313.
[5] 張成, 孫馳, 艾勝, 等. 控制網(wǎng)絡(luò)延時(shí)對(duì)SPWM逆變器輸出電壓的影響[J]. 電工技術(shù)學(xué)報(bào), 2013,28(8):194.
ZHANG Cheng, SUN Chi, AI Sheng, et al.Influence of control network delay on output voltage of SPWM inverter[J].Electric Machines and Control,2013,28(8):194.
[6] JUNG J, NAM K. A dynamic decoupling control scheme for highspeed operation of induction motors[J]. IEEE Transactions on Industrial Electronics,1999, 46(1):100.
[7] 李春龍,沈頌華,盧家林,等. 具有延時(shí)補(bǔ)償?shù)臄?shù)字控制在PWM整流器中的應(yīng)用[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2007, 27(7): 94.
LI Chunlong,SHEN Songhua,LU Jialin,et al. Digital control with compensation of delay for PWM rectifier[J].Proceedings of the CSEE, 2007, 27(7): 94.
[8] 賀明智,許建平, 游小杰, 等.環(huán)路延時(shí)對(duì)數(shù)字峰值電壓控制開(kāi)關(guān)變換器瞬態(tài)性能的影響[J].中國(guó)電機(jī)工程學(xué)報(bào), 2009, 29(6):1.
HE Mingzhi, XU Jianping, YOU Xiaojie, et al. Time delay effect ontransient performance of digital peak voltage controlled switching converter[J]. Proceedings of the CSEE, 2009, 29(6):1.
[9] KAKU B, MIYASHITA I,SONE S.Switching loss minimised space vector PWM method for IGBT threelevel inverter[J]. IEEE Proceedings Electric Power Applications, 1997, 144(3):182.
[10] JEONG S J, SONG S H. Improvement of predictive current control performance using online parameter estimation in phase controlled rectifier[J]. IEEE Transactions on Power Electronics, 2007, 22(5):1820.
[11] MOREL F,LINSHI X, RTIF J M,et al.A comparative study of predictive current control schemes for apermanentmagnet synchronous machine drive[J]. IEEE Trans on Industrial Electronics, 2009, 56(7):2715.
[12] BLAABJERG F, KJAER P C, RASMUSSEN P O, et al. Improved digital current control methods in switched reluctance motor drives[J]. IEEE Transactions on Power Electronics, 1999, 14(3):563.
[13] LAAKKONEN T. Distributed control architecture of power electronics buildingblockbased frequency converters[D]. Lappeenranta:Lappeenranta University of Technology, 2010.
(編輯:賈志超)