• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      縫隙對鋼襯鋼筋混凝土管道結構承載特性的影響研究

      2018-08-02 07:25:50楊子娟伍鶴皋石長征
      關鍵詞:鋼襯內水環(huán)向

      蘇 凱,楊子娟,伍鶴皋,周 利,石長征

      (武漢大學水資源與水電工程科學國家重點實驗室,武漢 430072)

      鋼襯鋼筋混凝土管道是指利用鋼板內襯與外包鋼筋混凝土聯合承載的結構型式.這種管道型式允許外包混凝土開裂,利用外圍環(huán)筋分擔部分內壓,可減薄鋼襯厚度以及減少高強鋼材的使用,從而降低施工焊接難度并節(jié)省工程投資.此外,將鋼襯鋼筋混凝土管道敷設在壩下游面時,既能避免鋼管安裝與壩體混凝土施工相互干擾,又有利于保持大壩結構的整體性,同時管道結構也具備足夠的安全度[1].基于以上性質,鋼襯鋼筋混凝土管道結構近幾十年來被廣泛應用于高HD值的水電站壓力管道中.

      鋼襯鋼筋混凝土管道由于其特殊的聯合承載結構型式以及在工程中的重要性,一直受到學者關注,圍繞其展開的研究包括外包混凝土裂縫計算理論及控制方法、管道結構優(yōu)化布置以及非線性承載性能和破壞機理研究等.董哲仁等[2]提出了計算管道混凝土裂縫寬度的數學模型;龔國芝等[3]將有限元法和模型試驗相結合,提出了控制裂縫寬度的有效措施;伍鶴皋等[4]提出外包混凝土厚度較薄時有助于降低鋼材的動應力;董哲仁[5]從經濟直徑、鋼管壁厚以及配筋量等方面探討了管道結構優(yōu)化設計方法;張偉等[6]、石長征等[7]考慮混凝土開裂后的軟化特性對管道的損傷和承載特性進行了三維非線性有限元分析.

      可以看出,以上研究假定鋼襯與外包混凝土共節(jié)點,即認為兩者在徑向以及環(huán)向上同步變形,忽略了縫隙以及接觸滑移等因素的影響.蘇凱等[8]在鋼襯與外包混凝土間引入面/面接觸單元,研究了鋼管與外包混凝土間摩擦滑移特性對管道承載特性的影響,但該文假定鋼管與外包混凝土之間的縫隙為零.工程實踐表明:由于施工澆筑、混凝土干縮徐變以及溫變作用等因素,鋼襯與其外包混凝土之間往往存在縫隙,目前關于縫隙對鋼襯鋼筋混凝土管道承載特性的系統研究較少,考慮不均勻縫隙或隨機縫隙分布特征的研究則幾乎沒有.馬善定[9]提出了考慮均勻縫隙的壩后背管在內水壓力作用下的線彈性解析算法,汪艷青等[10]對鋼襯鋼筋混凝土岔管的非線性研究表明徑向縫隙值的大小對管道裂縫寬度和受力有一定影響.

      對于具有相近承載屬性的充水保壓蝸殼結構,鋼蝸殼與其外包混凝土之間的縫隙已經得到了學者們的廣泛關注,申艷等[11]指出,與傳統的簡化算法相比,考慮預壓縫隙大小和形狀變化的仿真算法能更好地模擬蝸殼充水保壓過程;聶金育等[12]研究了不同保壓值下縫隙對機組穩(wěn)定的影響;郭濤等[13]、許新勇等[14]考慮接觸滑移特性以及保壓縫隙的非均勻性,對保壓蝸殼施工過程進行全仿真.這些研究均表明,接觸滑移對結構應力值的影響有限,縫隙才是結構受力的主要影響因素.

      同時,規(guī)范[15]指出,縫隙值是管道結構承受內、外壓計算的重要參數之一,對管道混凝土和鋼筋應力、混凝土裂縫深度以及鋼管應力等影響較大.因此,本文基于某水電站壩后背管工程實際,建立了壩后背管斜直段底端的局部三維有限元數值分析模型,采用混凝土塑性損傷模型模擬管道外包及壩體混凝土,在鋼管與外包混凝土之間引入摩擦接觸單元模擬兩者之間的接觸滑移特性,并根據鋼管與外包混凝土間縫隙分布特征,擬定了均勻縫隙、非均勻縫隙以及隨機縫隙3組方案,系統研究了縫隙值大小及分布對管道混凝土損傷發(fā)展過程、管道變形、鋼材應力以及鋼襯與鋼筋混凝土承載比的影響.

      1 計算模型及理論基礎

      1.1 計算模型

      某水電站大壩為三心圓雙曲拱壩,最大壩高155,m,廠房采用壩后雙排機布置,引水管道采用鋼襯鋼筋混凝土結構型式,布置在壩下游面.壓力管道的內半徑為 4,m,最大內水壓力 pmax=1.392,MPa,鋼襯厚26,mm,共布置4層φ32@200鋼筋(由里向外記為 RB1、RB2、RB3、RB4),鋼襯及鋼筋的彈性模量均為200,GPa,泊松比為0.3,管道及壩體均采用C25混凝土,沿管軸向取 1,m 建立計算模型.混凝土、鋼筋和鋼襯分別采用 ABAQUS中實體單元 C3D8、桿單元 T3D2與三維殼單元 S4模擬,將鋼筋單元埋入混凝土單元中,并假定鋼筋與混凝土之間不發(fā)生滑移.有限元模型共有單元14,580個,其中混凝土單元10,940個,鋼襯單元640個,鋼筋單元3,000個,在模型底部施加全約束,管軸向上、下游端面(包含鋼襯與外包混凝土)均施加沿法向的位移約束,不考慮水重和結構自重的影響,模型尺寸及有限元網格見圖1.

      圖1 有限元模型Fig.1 Finite element model

      1.2 理論基礎

      有限元分析中常用的混凝土材料模型有3種,即彌散裂縫模型、脆性開裂模型和塑性損傷模型[16].采用彌散裂縫模型進行計算時,產生一條裂縫時往往被誤判為多條裂縫[17];脆性開裂模型應用于 ABAQUS顯式分析模塊,適用于求解高度非線性瞬態(tài)問題;塑性損傷模型能定義混凝土開裂后的拉伸和壓縮強化特性,在混凝土非線性分析中得到廣泛應用[18].本文采用塑性損傷模型,考慮混凝土的軟化和剛度退化特征,引入 Mazars損傷模型獲取損傷值,得到的 C25混凝土應力-應變以及損傷-應變曲線見圖2.

      圖2 C25混凝土應力-應變及損傷-應變曲線Fig.2 Stress-strain and damage-strain curves of concrete C25

      單軸應力條件下,混凝土結構的拉、壓應力可以分別表示為塑性應變()、塑性應變率(,)、溫度以及場變量的函數:

      式中下標t和c分別代表拉應力和壓應力狀態(tài).

      單軸應力條件下混凝土的損傷變量(dt,dc)是塑性應變、溫度以及場變量的遞增函數:

      本文采用 ABAQUS中的面/面接觸模型來模擬鋼襯與混凝土之間的接觸關系,接觸面之間的法向作用采用硬接觸,即兩接觸面壓緊時才傳遞法向壓力pnor,接觸面間的切向作用采用經典庫倫摩擦模型,在計算過程中假定摩擦系數μ不隨pnor變化,當接觸面上剪力 Fs大于 μpnor時,兩接觸面產生切向滑動.本文參考文獻[19-20]將鋼襯與混凝土之間的摩擦系數取為0.2.

      縫隙值至今無統一算法,工程中壩內埋管采用的相對縫隙值Δ/R(縫隙值/鋼管內徑)在 0~7×10-4之間[15].本文擬定均勻縫隙、非均勻縫隙和隨機縫隙 3組計算方案,如表 1所示.其中均勻縫隙方案中鋼襯與混凝土之間的縫隙值處處為定值;考慮管道多年運行后部分軟弱墊層硬化失效或混凝土回彈變形不完全等原因,非均勻縫隙方案中縫隙值由管頂的某一數值沿環(huán)向均勻變化,管底處縫隙值取為 0,如圖3(a)所示;隨機縫隙方案中設置了兩種縫隙隨機分布情況,縫隙值分別服從正態(tài)分布和均勻分布,隨機縫隙方案在管頂、管底以及管腰等特征部位的縫隙值見圖3(b).同時,為了更好地描述各方案應力位移沿環(huán)向的分布,從管底開始沿順時針方向定義了單位化的環(huán)向路徑NDP,如圖3(a)所示.

      表1 計算方案Tab.1 Calculation scheme

      圖3 縫隙示意Fig.3 Gap diagram

      2 管道開裂特征及變形特征分析

      2.1 管道開裂特征分析

      在內水壓力的作用下,管道混凝土主要承受環(huán)向拉應力,不可避免損傷開裂,當損傷值達到 0.5~0.8時可能產生宏觀裂縫[21],本文將損傷臨界值取為 0.5來判定裂縫的產生[7,,21].各方案下的起裂荷載 CPR(混凝土開裂時的水壓力 pc與最大內水壓力 pmax之比)如圖4所示.可以看出,均勻縫隙方案與對應縫隙均值相同的非均勻縫隙方案的起裂荷載量值基本一致,與縫隙值大小呈線性關系,由于這兩組方案初裂部位均為管道腰部外側,而腰部附近縫隙量比較接近,說明起裂荷載大小由初裂部位附近的縫隙量控制.服從同一隨機分布的系列方案起裂荷載基本一致,正態(tài)分布方案的起裂荷載(0.56,0.55,0.59)大于隨機均勻分布方案(0.45,0.45,0.42),較均勻方案及相同的非均勻方案?。?/p>

      圖4 管道起裂荷載Fig.4 Initial cracking load of penstock

      方案 G1-3管道損傷演化過程(顯示損傷值大于0.5的區(qū)域)如圖5所示,內水壓力達到0.69,pmax時,管道腰部外側最先開裂,頂部內側緊隨,腰部兩側首先出現兩條貫穿裂縫,隨即頂部也出現兩條貫穿裂縫,最后頂部與腰部之間、腰部與底部之間產生裂縫.3組方案的損傷發(fā)展規(guī)律相似,但其中隨機縫隙方案的初裂位置較均勻及不均勻縫隙方案不同,出現在管道頂部的內側.

      從圖6可以看出,同一組方案中隨著縫隙值的增加,管道混凝土損傷程度減小,管道腰部容易產生貫通的損傷區(qū),且由于壩體混凝土的制約,上半周損傷范圍明顯大于下半周;隨機縫隙方案的損傷情況與前兩組方案類似,比較接近G1-2及G2-2方案.

      圖5 管道混凝土損傷演化過程(方案G1-3)Fig.5 Concrete damage development process of penstock(Scheme G1-3)

      圖6 管道混凝土最終損傷狀態(tài)Fig.6 Final damage state of penstock concrete

      2.2 管道變形特征分析

      在最大內水壓力 pmax的作用下,管道發(fā)生徑向朝外的變形,由于壩體混凝土的制約,管道底部的變形量幾乎為 0,整體發(fā)生上抬變形.對于均勻和非均勻縫隙方案,隨著縫隙值的增加,變形量明顯減?。粚Ρ认嗤膬山M方案,非均勻縫隙方案頂部變形明顯小于均勻縫隙方案,在腰部和下半周的變形情況比較接近,對于隨機縫隙分布方案,總體變形與前兩組方案相似,說明縫隙的分布基本不影響管道總體變形規(guī)律,見圖7.

      圖7 管道變形(變形放大系數500)Fig.7 Deformations of penstock(deformation magnification factor 500)

      同時,本文將管道混凝土的變形映射到單位化的環(huán)向路徑上(見圖 8),3組縫隙方案均為管道底部位移最小,接近于 0,最大值基本出現在腰部附近(NDP=0.2~0.3或 0.7~0.8).非均勻縫隙方案管道下半周位移分布規(guī)律及量值接近相同的均勻縫隙方案,管道頂部位移曲線則明顯下凹,可見縫隙值分布對管道上半周尤其是管頂的變形影響最大.隨機均勻分布系列位移整體量值大于正態(tài)分布,且均大于相同的G1-3及G2-3方案.

      圖8 管道混凝土內表面位移沿環(huán)向的分布Fig.8 Displacements of the inner surface of penstock concrete along circumferential direction

      3 鋼材應力分析

      3.1 鋼襯應力分析

      管道頂部(NDP=0.5)鋼襯應力最大,從頂部至底部鋼襯應力逐漸減?。S著縫隙的增大,鋼襯應力值整體有所增加,均勻系列方案沿環(huán)向分布更加均勻,其中 G1-5(Δ/R=5×10-4)方案鋼襯應力值分布最為均勻,曲線接近水平,而非均勻系列隨縫隙值增加應力值沿環(huán)向分布不均勻程度增加,其中 G2-5(Δ/R=0~10×10-4)鋼襯應力值分布最不均勻,隨機系列方案鋼襯應力沿環(huán)向分布極不均勻,數值集中在60~140,MPa,見圖 9和圖10.

      圖9 均勻縫隙方案和非均勻縫隙方案下的鋼襯應力Fig.9 Stress of steel liner for uniform gap and non-uniform gap schemes

      圖10 隨機縫隙方案下的鋼襯應力Fig.10 Stresse of steel liner for random distribution gap scheme

      3.2 鋼筋應力分析

      選取方案G1-3分析4層鋼筋應力的分布規(guī)律,從圖11可以看出,在內水壓力作用下,管道混凝土產生密集的裂縫,鋼筋應力會在裂縫處發(fā)生突變,鋼筋應力曲線均起伏較大,外圈鋼筋(RB3,RB4)更甚,起伏處與裂縫位置相呼應(與圖5進行對照),但是由于本文假定鋼筋與混凝土間不發(fā)生滑移,在局部裂縫位置可能導致鋼筋應力偏?。?/p>

      管底鋼筋應力均較小,內圈鋼筋應力較大值出現在管頂 100°范圍內(頂部內側裂縫較為發(fā)育),外圈鋼筋在腰部裂縫處應力值較大(腰部外側裂縫發(fā)育較早),在管頂應力曲線明顯下凹.

      圖12 最大鋼筋應力Fig.12 Maximum reinforcement stress

      圖11 G1-3鋼筋應力沿環(huán)向的分布Fig.11 Reinforcement stresses along circumferential direction for scheme G1-3

      圖13 特征部位鋼筋應力值Fig.13 Reinforcement stresses of typical positions

      圖12給出了最大鋼筋應力.同時,本文分析了管頂、左腰與管底等特征部位的鋼筋應力值,如圖13所示.可以看出,同一縫隙分布條件下,從整體上來說,鋼筋應力隨縫隙值增加而減小,但對于隨機縫隙方案來說,各層鋼筋在各個特征位置的應力數值大小規(guī)律性并不一致,這是由于縫隙分布的隨機性導致的,可以從圖3(b)中的縫隙分布特征中得到印證.而對于圖12中的鋼筋應力最大值,在縫隙方案既定時,各層鋼筋具有較好的一致性.

      圖14 RB4鋼筋應力隨水壓力變化曲線Fig.14 Variation of RB4 reinforcement stress with water pressure

      根據RB4鋼筋的實測位置(位于左側腰部位置,NDP=0.25),本文研究了水壓力增長過程中不同方案的鋼筋應力變化規(guī)律,如圖14所示.可以看出,隨著縫隙值增大,均勻縫隙與非均勻縫隙方案鋼筋應力呈減小趨勢,鋼筋應力突變點有明顯延遲,且混凝土開裂前,兩組隨機縫隙方案鋼筋應力隨水壓力增加趨勢一致.對比實測值[22]可以發(fā)現,無縫隙方案 G1-0最為接近實測值,說明該壩后背管斜直段存在的縫隙值很小,這也說明壩后背管豎直角度較大(豎直角度76°)時,有利于減小縫隙值以及降低縫隙分布的不均勻性.

      4 承載比特征分析

      對于鋼襯鋼筋混凝土組合結構可以采用式(5)計算鋼襯的承載比,即

      式中:分別為無鋼襯基準方案典型截面處混凝土環(huán)向應力平均值以及鋼筋軸向應力平均值;分別為 i方案典型截面處混凝土環(huán)向應力平均值以及鋼筋軸向應力平均值;S1、S2分別為典型截面處混凝土面積以及鋼筋總截面積.

      選取 NDP=0、0.125、0.25、0.375、0.5、0.625、0.75、0.875等 8個截面,分析內水壓力分別為0.21pmax和pmax時鋼襯的承載比,如圖15所示.內水壓力為 0.21pmax時,各方案混凝土均未開裂,3組方案鋼襯承載比在環(huán)向上分布均勻.均勻縫隙方案中,縫隙為0時,各截面鋼襯承載比為20%,左右,隨著縫隙值的增大鋼襯承載比相應增加,當Δ/R達到3×10-4時,鋼襯承擔所有的內壓荷載.均勻縫隙方案與Δ相同的非均勻縫隙方案鋼襯承載比數值接近.隨機縫隙方案中,正態(tài)分布方案 G3-Z2鋼襯承載比(85%,)大于隨機均勻分布方案 G3-J2(52%,),小于Δ相同的G1-3以及G2-3承載比(100%,).

      內水壓力增至 pmax時,混凝土開裂,3組方案鋼襯承載比沿環(huán)向分布規(guī)律相近,管道底部附近鋼襯承載比較小,管道上半周鋼襯承載比環(huán)向分布較為均勻且明顯大于下半周.均勻縫隙方案及非均勻縫隙方案中,鋼襯承載比隨縫隙值增大有所增加,與內水壓力為 0.21pmax時相比,承載比隨縫隙值增大的增加幅度降低明顯,此外縫隙均值相同的這兩組方案鋼襯承載比數值接近;隨機縫隙方案中,正態(tài)分布方案 G3-Z2承載比大于隨機均勻分布方案G3-J2,其中G3-Z2接近相同的G1-3與G2-3.

      同時,本文為了研究摩擦系數取值對鋼襯承載比的影響,取Δ/R=3×10-4的 G1-3(μ=0.2)方案與相同縫隙值下摩擦系數 μ分別為 0、0.6、0.8的 3個方案進行對比分析,如圖15(d)所示.可以看出,內水壓力為 0.21pmax時,鋼襯獨自承受內水壓力,鋼襯承載比均為 100%,;內水壓力增至 pmax時,以管道腰部(NDP=0.25或 0.75)為分界線,腰部以下,各截面鋼襯承載比隨摩擦系數增加而降低,腰部以上,鋼襯承載比隨摩擦系數增加而增加,而在管道腰部的承載比基本保持不變.

      圖15 管道承載比Fig.15 Bearing ratio of penstock

      5 結 論

      本文基于某工程鋼襯鋼筋混凝土管道,考慮鋼襯與混凝土之間存在均勻縫隙、非均勻縫隙以及隨機縫隙3種情況,研究縫隙對鋼襯鋼筋混凝土管道承載特性的影響,可以得出以下結論.

      (1) 縫隙均勻或非均勻分布時,管道初裂部位均為腰部外側,起裂荷載與縫隙值大小呈線性關系,由初裂部位附近的縫隙量控制.縫隙值服從同一隨機分布方案的起裂荷載非常接近,縫隙正態(tài)分布或隨機均勻分布時,起裂處為管道頂部的內側.

      (2) 不同縫隙分布條件下管道底部的位移均最小,接近于0,位移最大值基本出現在腰部附近40°范圍內,縫隙值分布對管道上半周尤其是管頂的變形影響最大.

      (3) 隨著縫隙值的增加,鋼襯應力值整體有所增加,均勻縫隙時鋼襯應力的環(huán)向分布更加均勻,非均勻縫隙時鋼襯應力沿環(huán)向分布的不均勻性增加.鋼筋承擔的內水壓力則隨縫隙值增加而減小,應力量值降低.水壓較小時,不同縫隙分布方案下鋼襯承載比沿環(huán)向分布規(guī)律相近,水壓較大時,各方案的鋼襯承載比數值更加接近,且腰部位置的鋼襯承載比基本不受摩擦系數的影響.

      猜你喜歡
      鋼襯內水環(huán)向
      金屬管材力學性能多角度環(huán)向拉伸測試方法研究
      自承式鋼管跨越結構鞍式支承處管壁環(huán)向彎曲應力分析
      特種結構(2022年6期)2023-01-12 09:17:02
      楊房溝水電站大壩中孔鋼襯安裝方法研究
      內水切密封條結構對異響的影響分析及優(yōu)化設計
      時代汽車(2022年20期)2022-10-20 02:28:04
      內水壓力作用下3層襯砌輸水隧洞結構受力分析
      Moragne v.States Marine Lines內水過失致死索賠案述評
      科學與生活(2021年4期)2021-11-10 20:03:17
      抽水蓄能電站壓力鋼管與圍巖縫隙對壓力鋼管受力及圍巖分擔率的影響分析
      城市供水管網中鋼筋混凝土岔管受力分析
      英國MACAW公司依據CEPA 2015提出管道環(huán)向應力腐蝕開裂預防處理改進方法
      基于彈性模量縮減法的鋼襯鋼筋混凝土壓力管道極限承載力計算
      平利县| 和顺县| 剑川县| 灵寿县| 芜湖市| 汤原县| 保亭| 信宜市| 军事| 长顺县| 南投县| 邻水| 正宁县| 隆化县| 嘉荫县| 河北省| 福贡县| 崇州市| 平果县| 香河县| 郴州市| 康平县| 平陆县| 平塘县| 西华县| 阿瓦提县| 麻城市| 澄城县| 囊谦县| 南江县| 莲花县| 塔河县| 平陆县| 彭阳县| 三亚市| 红原县| 九龙城区| 乌拉特中旗| 泗阳县| 南江县| 韶关市|