韋顯凱 覃晴 祝健 唐海波 梁晶晶 李曉寧 羅廷榮
摘要:【目的】建立Toll樣受體3(TLR3)基因缺失的小鼠巨噬細胞RAW264.7細胞系,為探索狂犬病毒感染機體過程中TLR3在固有免疫反應(yīng)中的作用機制提供理論依據(jù)。【方法】采用Golden Gate Kit試劑盒組裝轉(zhuǎn)錄激活樣效應(yīng)因子核酸酶(TALEN)打靶載體pTALEN-TLR3,經(jīng)酶切和測序驗證其連接正確后,通過脂質(zhì)體瞬時轉(zhuǎn)染RAW264.7細胞,轉(zhuǎn)染后提取細胞DNA,用T7核酸內(nèi)切酶酶切驗證TALEN質(zhì)粒剪切活性?!窘Y(jié)果】TALENs左右臂分兩部分連接,首先完成A、B部分的各自連接,然后分別將T1LA與T1LB、T1RA與T1RB、T2LA與T2LB、T2RA與T2RB連接,TALEN模塊經(jīng)過兩次連接后的PCR鑒定結(jié)果顯示,T1L、T1R和T2L的4個克隆均呈陽性,T2R有3個克隆呈陽性。T2L和T2R質(zhì)粒共轉(zhuǎn)染RAW264.7細胞后提取DNA為模板,經(jīng)PCR擴增后用T7核酸內(nèi)切酶進行酶切,酶切后的DNA電泳結(jié)果顯示TALEN2剪切活性較強,共獲得3條條帶(931、555和376 bp)。TALEN打靶載體pTALEN-TLR3轉(zhuǎn)染RAW264.7細胞24 h后用胰酶進行消化,并加入800 μg/mL G418進行篩選,7 d后獲得細胞單克隆;挑選陽性細胞克隆進行T7核酸內(nèi)切酶酶切鑒定及測序,結(jié)果發(fā)現(xiàn)4-1和4-40號細胞克隆為雙敲細胞系,均缺失7 bp的核苷酸堿基,為非3整數(shù)倍堿基缺失,可造成后續(xù)基因移碼突變,使細胞基因功能失活?!窘Y(jié)論】通過TALEN技術(shù)可成功構(gòu)建TLR3基因雙敲除的小鼠巨噬細胞RAW264.7TLR3-/-細胞系,且可用于狂犬病毒感染細胞后細胞因子和TLR3間的關(guān)系研究。
關(guān)鍵詞: 狂犬病毒;RAW264.7細胞;轉(zhuǎn)錄激活樣效應(yīng)因子核酸酶(TALEN);Toll樣受體3(TLR3);基因敲除
中圖分類號: S852.33 文獻標志碼:A 文章編號:2095-1191(2018)05-0993-07
Abstract:【Objective】The aims of this experiment was through establishing macrophage RAW264.7 cell line lacked Toll-like receptors 3(TLR3) gene to provide theoretical basis for exploring the role of TLR3 in inherent immunity during the process of rabies virus infection. 【Method】The Golden Gate Kit was used for constructing transcription activation effect factor nuclease(TALEN) targeting vector pTALEN-TLR3, and correctness was verified by enzyme digestion and sequencing, RAW264.7 cells by were transiently transfected liposome, and the cells DNA was extracted after transfection, then the shear activity of pTALEN-TLR3 was verified with T7 nucleic acid enzyme. 【Result】The connection of left arm and right arm of TALENs was constructed by two steps. In the first step, part A and B were connected separately. Then T1LA and T1LB, T1RA and T1RB, T2LA and T2LB, T2RA and T2RB were connected separately. After the two steps, TALEN module was identified by PCR, the results show that all the four clones of T1L, T1R and T2L were positive, three clones of T2R were positive. The T2L and T2R plasmids were co-transfected to RAW264.7 cells, and then DNA was extracted as template,which was implemented in enzyme digestion by T7 nucleic acid endonuclease after PCR amplification. The DNA electrophoresis results after enzyme digestion showed that TALEN2 shear activity was strong, and three bands(931, 555 and 376 bp) were obtained. RAW264.7 cells were transfected with the TALEN2-TLR3, and then digested with pancreatic enzymes after 24 h, and were screened by adding 800 μg/mL G418, a single clone was obtained after 7 d. The positive cell clones were chosen for identification and sequencing by T7 endonuclease digestion. The results showed that No.4-1 and 4-40 clone cells were double knockout cell lines, they all missed 7 bp nucleotide bases, as non-three integer times base deletion. It could cause subsequent frame shift mutations, and inactivated gene function of the cell. 【Conclusion】RAW264.7TLR3-/- cell line from macrophages of mice with the double knockout of TLR3 gene was constructed successfully by TALEN technology. This can be applied for further study on the relationship between cytokines and TLR3 after rabies virus infects cells.
Key words: rabies virus; RAW264.7 cell; transcription activation effect factor nuclease(TALEN); Toll-like ceptors 3(TLR3); gene knockout
0 引言
【研究意義】Toll樣受體3(Toll-like receptors 3,TLR3)位于細胞內(nèi)膜上,是機體識別外源病原體的重要受體,通過特異性識別雙鏈RNA(dsRNA)而激活細胞內(nèi)信號轉(zhuǎn)導(dǎo)通路并活化特定的細胞因子,最終誘導(dǎo)產(chǎn)生干擾素(IFN)(Beutler,2003)。狂犬病毒感染動物機體或細胞后能通過TLR3刺激宿主產(chǎn)生I型干擾素(Chopy et al.,2011;王攀等,2017),而I型干擾素通過與細胞膜上的特異受體結(jié)合,引發(fā)級聯(lián)性的信號并傳遞到細胞核內(nèi),對一系列干擾素刺激基因的表達進行調(diào)控,誘導(dǎo)靶細胞產(chǎn)生特異性抗病毒蛋白(李軍和曾蕓,2006)。因此,通過敲除小鼠巨噬細胞RAW264.7的TLR3,對研究狂犬病毒感染RAW264.7細胞后的細胞因子產(chǎn)生通路具有重要意義?!厩叭搜芯窟M展】轉(zhuǎn)錄激活樣效應(yīng)因子(Transcription activator-like effector,TALEs)是一種能與DNA結(jié)合的天然蛋白,最初在植物黃單胞菌中發(fā)現(xiàn),可通過Ⅲ型分泌系統(tǒng)進入宿主細胞,也被稱為Ⅲ型效應(yīng)物(Jiang et al.,2013)。TALEs通過其獨特結(jié)構(gòu)能與DNA特異性結(jié)合(Moscou and Bogdanove,2009),結(jié)合部位是由7~34個高度同源的重復(fù)單元組成,尤其是重復(fù)單元的第12和13位氨基酸對DNA的特異性識別起重要作用(Mak et al.,2013)。重復(fù)單元由N端開始到C端結(jié)束,其排列順序與識別的DNA雙鏈5'端到3'端的堿基順序一致,一個重復(fù)單元的雙氨基酸殘基(Repeat variant diresidue,RVD)特異識別一個堿基對(曲曉辰等,2016)。TALEs可特異性識別任意設(shè)計的DNA序列,配合核酸酶、轉(zhuǎn)錄因子或同源重組序列,實現(xiàn)生物體內(nèi)的基因靶向操作,包括基因敲除、同源重組和基因激活等,同時可調(diào)節(jié)目的基因轉(zhuǎn)錄(Geissler et al.,2011;Miller et al.,2011;Sanjana et al.,2012)及對基因組進行編輯(Bogdanove and Voytas,2011;Tesson et al.,2011)。因此,TALEN技術(shù)是一種新型的基因敲除方法(Christian et al.,2010)。此外,識別特異DNA序列的TALE與核酸內(nèi)切酶Fok I偶聯(lián),構(gòu)建獲得剪切特異DNA序列的內(nèi)切酶轉(zhuǎn)錄激活樣效應(yīng)因子核酸酶(TALEN),將其轉(zhuǎn)入細胞中可實現(xiàn)靶基因敲除(Mussolino et al.,2011)或DNA定點修飾(Christian et al.,2010;Mahfouz et al.,2011;Morbitzer et al.,2011)。Toll樣受體(TLR)是固有免疫中高度保守病原體相關(guān)分子模式(Pathogen-associated molecular pattern,PAMPs)的特異性模式識別受體,通過識別微生物的保守序列而在炎癥反應(yīng)及機體固有防御體系中發(fā)揮重要作用。其中,TLR3可識別dsRNA及病毒復(fù)制過程中產(chǎn)生的中間復(fù)合物,活化IFN-α/β而限制感染部位病毒的復(fù)制,形成局部抗病毒狀態(tài)(Krishnan et al.,2007)。Chen等(2016)研究發(fā)現(xiàn),豬圓環(huán)病毒2型(PCV2)感染能顯著上調(diào)體外培養(yǎng)豬肺泡巨噬細胞中TLR3的表達;王鵬飛等(2016)研究表明,抗藍耳病豬肺組織中的TLR3基因表達量顯著高于易感藍耳病豬,即TLR3基因高表達可能與豬對藍耳病的抗性有關(guān);姜雪婷等(2017)研究表明,PCV2感染豬后第7和14 d,TLR3 mRNA與蛋白表達顯著上調(diào)?!颈狙芯壳腥朦c】小鼠巨噬細胞RAW264.7是由鼠白血病病毒誘導(dǎo)后得到的細胞株,具有很強的黏附和吞噬抗原能力,是動物體內(nèi)重要的免疫應(yīng)答細胞之一,在適應(yīng)性免疫和固有免疫中發(fā)揮重要作用(Beutler,2003)。因此,RAW264.7細胞適用于狂犬病毒感染后產(chǎn)生的固有免疫相關(guān)細胞因子研究。【擬解決的關(guān)鍵問題】以小鼠巨噬細胞RAW264.7為模型,建立TLR3基因雙敲除細胞系,并通過TALEN打靶載體的構(gòu)建及驗證,瞬時轉(zhuǎn)染RAW264.7細胞后用于TLR3-/-細胞系篩選,為探索狂犬病毒感染機體過程中TLR3在固有免疫反應(yīng)中的作用機制提供理論依據(jù)。
1 材料與方法
1. 1 試驗材料
RAW264.7細胞由廣西大學亞熱帶農(nóng)業(yè)生物資源保護與利用國家重點實驗室保存提供,培養(yǎng)于含10%胎牛血清的DMEM培養(yǎng)基中;胎牛血清、DMEM和脂質(zhì)體(Lipofectamine 2000)購自美國Life公司,PCR Buffer和DNA Marker等試劑購自TaKaRa公司,熒光倒置顯微鏡購自日本Nikon公司。
1. 2 TALEN載體構(gòu)建
1. 2. 1 TALEN打靶位點設(shè)計 根據(jù)小鼠TLR3基因序列,標注出基因外顯子及內(nèi)含子范圍,在翻譯起始位點所在的外顯子處尋找限制性內(nèi)切酶位點并設(shè)計TALEN載體(TALEN1和TALEN2),進行基因敲除,TALEN載體設(shè)計原理見圖1。
1. 2. 2 TALEN模塊組裝 根據(jù)TALEs蛋白的重復(fù)可變RVD與堿基的對應(yīng)關(guān)系,組裝TALEN模塊。RVD組裝采用Golden Gate Kit試劑盒,TALEN打靶載體pTALEN-TLR3構(gòu)建采用Golden Gate TALEN and TAL Effector Kit試劑盒。
1. 2. 3 TALEN模塊連接 TALENs左右臂分兩部分連接:首先是完成A、B部分的各自連接(以下分別稱為T1LA、T1LB、T1RA、T1RB和T2LA、T2LB、T2RA、T2RB),然后分別將T1LA與T1LB、T1RA與T1RB、T2LA與T2LB、T2RA與T2RB連接,即完成TALEN第二次連接。
1. 2. 4 TALEN質(zhì)粒剪切活性驗證 通過脂質(zhì)體方法以TALEN打靶載體pTALEN-TLR3瞬時轉(zhuǎn)染RAW264.7細胞,轉(zhuǎn)染后提取細胞DNA為模板,經(jīng)PCR擴增后用T7核酸內(nèi)切酶進行酶切,并檢測目的基因完整性以驗證TALEN質(zhì)粒剪切活性。
1. 2. 5 基因敲除細胞系篩選 細胞轉(zhuǎn)染:以具有基因剪切活性的TALEN2進行細胞篩選,細胞培養(yǎng)生長至70%匯合度時進行脂質(zhì)體轉(zhuǎn)染。細胞篩選及培養(yǎng):轉(zhuǎn)染24 h后用胰酶EDTA消化液消化RAW264.7細胞,稀釋后轉(zhuǎn)入新的細胞板,同時加入800 μg/mL G418進行篩選,當出現(xiàn)單克隆時,挑取單克隆至96孔板中培養(yǎng),長滿后擴大至48孔中繼續(xù)培養(yǎng),細胞匯合生長至80%~90%時,胰酶消化后挑取一半的細胞提取DNA,然后PCR擴增目的片段并進行酶切鑒定,剩余細胞在原孔培養(yǎng)。陽性克隆酶切鑒定:采用T7核酸內(nèi)切酶酶切鑒定RAW264.7細胞是否為TLR3基因雙敲除,其過程需經(jīng)過兩輪PCR擴增和酶切。PCR擴增程序:95 ℃預(yù)變性5 min;94 ℃ 30 s,56 ℃ 30 s,72 ℃ 2 min,進行30個循環(huán);72 ℃延伸10 min。第一輪細胞裂解擴增出目的條帶后,PCR產(chǎn)物采用T7核酸內(nèi)切酶進行酶切鑒定,出現(xiàn)與預(yù)期結(jié)果一致的兩條剪切產(chǎn)物,此為單敲細胞克??;將T7核酸內(nèi)切酶未能切開PCR產(chǎn)物的細胞克隆再次進行PCR擴增,與野生型細胞PCR擴增產(chǎn)物1∶1混合后,以T7核酸內(nèi)切酶進行酶切鑒定,出現(xiàn)大小吻合的酶切產(chǎn)物,即為雙敲細胞克隆。測序鑒定:提取酶切鑒定為TLR3基因雙敲除的細胞克隆DNA,PCR擴增打靶位點及其上、下游目的基因,產(chǎn)物與pMD18-T載體連接,挑取8個陽性克隆送至深圳華大基因公司測序,在線比對分析測序結(jié)果,全為非3整數(shù)倍缺失的細胞克隆即為所需的基因純合敲除細胞系。
2 結(jié)果與分析
2. 1 TALEN模塊第一次連接及PCR鑒定結(jié)果
TALENs左右臂分兩部分連接,第一次完成A、B部分的各自連接。連接完成后即轉(zhuǎn)化感受態(tài)細胞并涂布于含氨芐青霉素的瓊脂培養(yǎng)基上,每個培養(yǎng)基挑3~5個克隆進行PCR鑒定,鑒定結(jié)果出現(xiàn)彌散條帶即為陽性(圖2)。
2. 2 TALEN模塊第二次連接及酶切鑒定結(jié)果
分別將T1LA與T1LB、T1RA與T1RB、T2LA與T2LB、T2RA與T2RB連接,轉(zhuǎn)化涂板后挑克隆進行PCR鑒定,若出現(xiàn)彌散條帶即為陽性(圖3-A)。挑取陽性菌落提質(zhì)粒后,用限制性內(nèi)切酶Xho I和Afl II進行酶切鑒定,獲得的目的條帶大小約3000和4000 bp(圖3-B)。TALEN模塊第二次連接后的菌液PCR鑒定結(jié)果顯示,T1L、T1R和T2L的4個克隆均呈陽性,T2R有3個克隆呈陽性。
2. 3 TALEN質(zhì)粒剪切活性驗證結(jié)果
2. 3. 1 脂質(zhì)體轉(zhuǎn)染結(jié)果 取鑒定正確的一個T2L和T2R進行下游試驗。RAW264.7細胞培養(yǎng)于12孔板(2孔),通過脂質(zhì)體方法以TALEN打靶載體pTALEN-TLR3進行瞬時轉(zhuǎn)染。其中一孔轉(zhuǎn)染EGFP(增強綠色熒光蛋白)質(zhì)粒作為對照,以觀察轉(zhuǎn)染效率;另一孔共轉(zhuǎn)染T2L和T2R質(zhì)粒。pEGFP-N1轉(zhuǎn)染RAW264.7細胞17 h后,EGFP表達出強熒光信號(圖4),表明RAW264.7細胞轉(zhuǎn)染成功。
2. 3. 2 T2L/T2R酶切鑒定活性 T2L和T2R質(zhì)粒共轉(zhuǎn)染RAW264.7細胞后,通過檢測目的基因完整性以驗證TALEN質(zhì)粒剪切活性。本研究中,TALEN2活性鑒定結(jié)果顯示其活性較強,酶切后的DNA電泳條帶顯示出3條條帶(931、555和376 bp);而TALEN1活性較弱(圖5),故選取TALEN2進行后續(xù)試驗。
2. 4 基因敲除細胞系篩選結(jié)果
2. 4. 1 細胞克隆篩選 轉(zhuǎn)染24 h后用胰酶消化RAW264.7細胞,稀釋后轉(zhuǎn)入新的細胞板,同時加入800 μg/mL G418進行篩選,7 d后獲得單克?。▓D6)。
2. 4. 2 陽性克隆酶切鑒定結(jié)果 在挑取的189個細胞克隆中有166個克隆的裂解液能擴增出明顯條帶。部分細胞克隆兩輪PCR擴增產(chǎn)物的T7核酸內(nèi)切酶酶切結(jié)果如圖7所示。其中,4-1和4-40號細胞克隆在第一輪PCR中只有擴增條帶,在第二輪PCR中出現(xiàn)兩條清晰且大小吻合的目的條帶,為純合敲除;4-48號細胞克隆在第一輪PCR中也只有擴增條帶,在第二輪PCR中出現(xiàn)兩條模糊的目的帶,為疑似純合敲除,測序后確定為單敲細胞系。其余細胞克隆均為單敲細胞系。
2. 5 雙敲細胞系的測序鑒定結(jié)果
測序鑒定結(jié)果表明,4-1和4-40號細胞克隆為雙敲細胞系,均缺失7 bp的核苷酸堿基(圖8),為非3整數(shù)倍堿基缺失,可造成后續(xù)基因移碼突變,使細胞基因功能失活。
3 討論
TALEN技術(shù)作為一種新的基因修飾方法,除了用于陽性細胞系的篩選,現(xiàn)已成功應(yīng)用于植物基因修飾及動物模型產(chǎn)生(Morbitzer et al.,2010)。通過TALEN技術(shù)構(gòu)建基因敲除動物模型的研究進一步拓寬了其應(yīng)用于遺傳工程的前景,尤其對于一些不能利用傳統(tǒng)基因敲除方法進行敲除的基因,可利用TALEN技術(shù)進行敲除。在本研究中,通過TALEN打靶載體切割獲得兩個單敲細胞系,分別缺失5和86 bp的核苷酸堿基,而雙敲細胞系僅缺失7 bp的核苷酸堿基。盡管TALEN載體在體內(nèi)具有很高的切割活性,但由一對TALEN載體切割只會引起小范圍的片段丟失(Ma et al.,2012)。因此,本研究在利用一對TALEN載體對TLR3進行基因敲除的基礎(chǔ)上,采用兩對TALEN載體同時對基因組進行修飾,從而為機體內(nèi)非編碼序列及假基因進行整體功能研究提供了新方法。TALEN載體組裝方式便捷,切割效率高,毒性低,其活性在斑馬魚(Sander et al.,2011)、線蟲(Sanjana et al.,2012)、鼠(Tong et al.,2012)、人類(Ding et al.,2013)及多能干細胞(Hockemeyer et al.,2011)中均已得到驗證,但在實際應(yīng)用中仍需注意基因脫靶現(xiàn)象的發(fā)生。
本研究中,TALEN打靶載體pTALEN-TLR3轉(zhuǎn)染RAW264.7細胞48 h后收集提取DNA,用T7核酸內(nèi)切酶進行活性鑒定。T7核酸內(nèi)切酶酶切鑒定TALEN質(zhì)?;钚缘脑恚寒擳ALEN質(zhì)粒作用于靶位點時,會在Spacer位置將DNA雙鏈切斷,導(dǎo)致部分堿基缺失或改變,將這一序列擴增下來再變性—復(fù)性,PCR擴增產(chǎn)物中的野生型序列和突變型序列會退火形成雙鏈,由于剪切位置堿基改變,無法堿性互補,而形成泡狀的DNA結(jié)構(gòu),T7核酸內(nèi)切酶則可特異性地切斷泡狀單鏈,將PCR擴增產(chǎn)物剪切成兩段,因此經(jīng)T7核酸內(nèi)切酶酶切后電泳條帶顯示出3條條帶。TLRs屬模式識別受體,是一個非常重要的天然免疫分子,廣泛分布于免疫細胞及上皮細胞表面,通過識別不同病原體的PAMP而在天然免疫中發(fā)揮重要作用。TLRs與PAMPs相互作用引發(fā)的信號傳導(dǎo)能導(dǎo)致炎癥介質(zhì)的釋放,并最終激活獲得性免疫系統(tǒng)(Ding et al.,2013)。當機體受到病原微生物刺激時,I型干擾素參與天然免疫反應(yīng),抵抗病毒感染,而TLR3是調(diào)節(jié)I型干擾素表達的關(guān)鍵轉(zhuǎn)錄因子(Jiang et al.,2014;Satoh and Akira,2016)。目前已檢測到多種細胞表達TLRs,包括不同的樹突狀細胞(DCs)亞群、T淋巴細胞、中性粒細胞、嗜酸性粒細胞、肥大細胞、單核細胞及多種上皮細胞,CD4+CD25+調(diào)節(jié)性T淋巴細胞也有TLRs表達(Gururajan et al.,2007;Kawai and Akira,2009)。因此,利用TLR3基因雙敲除構(gòu)建的TALEN打靶載體pTALEN-TLR3不僅適用于小鼠巨噬細胞的陽性細胞系篩選,還可運用到所有能表達TLRs的細胞中。
RAW264.7細胞是由鼠白血病病毒誘導(dǎo)后得到的穩(wěn)定傳代細胞株。巨噬細胞作為機體固有免疫系統(tǒng)中的重要效應(yīng)細胞,其效應(yīng)蛋白及抗原遞逞功能負責防御不同的病原體(Yao et al.,2015;李輝等,2016)。巨噬細胞表達多種模式識別受體(Pattern recognition receptor,PRR),且能特異性識別PAMP而有效監(jiān)測病原微生物的入侵及誘導(dǎo)機體免疫應(yīng)答反應(yīng)(Rhule et al.,2006)。TLRs激活可誘導(dǎo)巨噬細胞產(chǎn)生炎癥因子,促進炎癥反應(yīng)的發(fā)生。TLR3存在于中樞神經(jīng)系統(tǒng)中(Alexopoulou et al.,2001),當神經(jīng)退行性疾病或病毒侵染大腦后,中樞神經(jīng)系統(tǒng)的膠質(zhì)細胞及神經(jīng)元中存在高水平的TLR3(Farina et al.,2005),說明TLR3在神經(jīng)損傷性病毒感染過程中發(fā)揮重要作用(Jackson et al.,2006)。TLR3對狂犬病毒侵染神經(jīng)元細胞形成尼氏小體的過程也起重要作用(Ménager et al.,2009),但目前關(guān)于TLR3在狂犬病毒與宿主相互作用過程中的作用機制尚未明確。本研究通過TALEN技術(shù)成功構(gòu)建了雙敲除TLR3基因的小鼠巨噬細胞RAW264.7TLR3-/-細胞系,為下一步研究狂犬病毒感染細胞后細胞因子和TLR3間的關(guān)系打下基礎(chǔ)。
4 結(jié)論
通過TALEN技術(shù)可成功構(gòu)建TLR3基因雙敲除的小鼠巨噬細胞RAW264.7TLR3-/-細胞系,且可用于狂犬病毒感染細胞后細胞因子和TLR3間的關(guān)系研究。
參考文獻:
姜雪婷,黃立平,王偉,危艷武,劉賽寶,魯國濤,劉長明,孟慶文,陳洪巖. 2017. 利用ICR小鼠模型對PCV2感染中TLR3信號通路的研究[J]. 中國預(yù)防獸醫(yī)學報,39(10):820-825. [Jiang X T,Huang L P,Wang W,Wei Y W,Liu S B,Lu G T,Liu C M,Meng Q W,Chen H Y. 2017. Signal pathway of TLR3 induced by procine circovirus type 2 in spleen of ICR mice[J]. Chinese Journal of Preventive Veterinary Medicine,39(10):820-825.]
李輝,果雙雙,孟春花,周亞文,施振旦. 2016. 豬髓樣細胞觸發(fā)因子1 CDR區(qū)的克隆、表達及生物活性[J]. 江蘇農(nóng)業(yè)學報,32(5):1100-1106. [Li H,Guo S S,Meng C H,Zhou Y W,Shi Z D. 2016. Cloning and expression of the CDR area from swine triggering receptor expressed on myeloid cells 1 and its bioactivity[J]. Jiangsu Journal of Agricultural Sciences,32(5):1100-1106.]
李軍,曾蕓. 2006. 病毒誘導(dǎo)I型干擾素產(chǎn)生的機制[J]. 生命的化學,26(5):395-398. [Li J, Zeng Y. 2006. Mechanism of virus inducing type I interferon production[J]. Chemistry of Life, 26(5): 395-398.]
曲曉辰,高志賢,寧保安,劉穎. 2016. TALEs:識別DNA的有力工具[J]. 解放軍預(yù)防醫(yī)學雜志,34(2):277-280. [Qu X C,Gao Z X,Ning B A,Liu Y. 2016. TALEs:A powerful tool to identify DNA[J]. Journal of Preventive Medicine of Chinese Peoples Liberation Army,34(2):277-280.]
王攀,劉運超,魏薔,柴書軍,陳玉梅,張改平. 2017. 狂犬病病毒G蛋白的原核表達及反應(yīng)原性分析[J]. 河南農(nóng)業(yè)科學,46(4):108-112. [Wang P,Liu Y C,Wei Q,Chai S J,Chen Y M,Zhang G P. 2017. Prokaryotic expression and immunore activity analysis of rabies G protein[J]. Journal of Henan Agricultural Sciences,46(4):108-112.]
王鵬飛,劉根,李艷平,孫億,劉浩,張萍,姜運良. 2016. 豬TLR3 mRNA的表達特征與調(diào)控分析及其與感染藍耳病的關(guān)系[J]. 中國獸醫(yī)學報,36(7):1163-1167. [Wang P F,Liu G,Li Y P,Sun Y,Liu H,Zhang P,Jiang Y L. 2016. Expression and relationship of TLR3 mRNA with PRRS infection and regulatory analysis on its transcription in pigs[J]. Chinese Journal of Veterinary Science,36(7):1163-1167.]
Alexopoulou L,Holt A C,Medzhitov R,F(xiàn)lavell R A. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3[J]. Nature,413(6857):732-738.
Beutler B. 2003. Innate immune response to microbial poisons: Discovery and function of the Toll-like receptors[J]. Annual Review of Pharmacology and Toxicology,43:609-628.
Bogdanove A J,Voytas D F. 2011. TAL effectors:Customi-zable proteins for DNA targeting[J]. Science,333(6051):1843-1846.
Chen M,Han J,Zhang Y,Duan D,Zhang S. 2016. Porcine circovirus type 2 induces type I interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro[J]. Research in Veterinary Science,104:188-194.
Chopy D,Detje C N,Lafage M,Kalinke U,Lafon M. 2011. The type I interferon response bridles rabies virus infection and reduces pathogenicity[J]. Journal of Neuroviro-logy,17(4):353-367.
Christian M,Cermak T,Doyle E L,Schmidt C,Zhang F,Hummel A,Bogdanove A J,Voytas D F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics,186(2):757-761.
Ding Q,Regan S N,Xia Y,Oostrom L A,Cowan C A,Musunuru K. 2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs[J]. Cell Stem Cell,12(4):393-394.
Farina C,Krumbholz M,Giese T,Hartmann G,Aloisi F,Meinl E. 2005. Preferential expression and function of Toll-like receptor 3 in human astrocytes[J]. Journal of Neuroimmunology,159(1-2):12-19.
Geissler R,Scholze H,Hahn S,Streubel J,Bonas U,Behrens S E,Boch J. 2011. Transcriptional activators of human genes with programmable DNA-specificity[J]. PLoS One,6(5):e19509.
Gururajan M,Jacob J,Pulendran B. 2007. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets[J]. PLoS One,2(9):e863.
Hockemeyer D,Wang H,Kiani S,Lai C,Gao Q,Cassady J P,Cost G J,Zhang L,Santiago Y,Miller J C,Zeitler B,Cherone J M,Meng X,Hinkley S J,Rebar E J,Gregory P D,Urnov F D,Jaenisch R. 2011. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nature Biotechnology,29(8):731-734.
Jackson A C,Rossiter J P,Lafon M. 2006. Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis,and other neurological di-seases[J]. Journal of Neurovirology,12(3):229-234.
Jiang G F,Jiang B L,Yang M,Liu S,Liu J,Liang X X,Bai X F,Tang D J,Lu G T,He Y Q,Yu D Q,Tang J L. 2013. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris[J]. Brazilian Journal of Microbiology,44(3):945-952.
Jiang M,Broering R,Trippler M,Poggenpohl L,F(xiàn)iedler M,Gerken G,Lu M,Schlaak J F. 2014. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen[J]. Journal of Viral Hepatitis,21(12):860-872.
Kawai T,Akira S. 2009. The roles of TLRs,RLRs and NLRs in pathogen recognition[J]. International Immunology,21(4):317-337.
Krishnan J,Selvarajoo K,Tsuchiya M,Lee G,Choi S. 2007. Toll-like receptor signal transduction[J]. Experimental and Molecular Medicine,39(4):421-438.
Ma S,Zhang S,Wang F,Liu Y,Liu Y,Xu H,Liu C,Lin Y,Zhao P,Xia Q. 2012. Highly efficient and specific genome editing in silkworm using custom TALENs[J]. PLoS One,7(9):e45035.
Mahfouz M M,Li L,Shamimuzzaman M,Wibowo A,F(xiàn)ang X,Zhu J K. 2011. Denovo-engineered transcription activator-like effector(TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proceedings of the National Academy of Sciences of the Uni-ted States of America,108(6):2623-2628.
Mak A N,Bradley P,Bogdanove A J,Stoddard B L. 2013. TAL effectors: Function,structure,engineering and applications[J]. Current Opinion in Structral Biology,23(1):93-99.
Ménager P,Roux P,Mégret F,Bourgeois J P,Le Sourd A M,Danckaert A,Lafage M,Prhaud C,Lafon M. 2009. Toll-like receptor 3(TLR3) plays a major role in the formation of rabies virus Negri bodies[J]. PLoS Pathogens,5(2):el000315.
Miller J C,Tan S,Qiao G,Barlow K A,Wang J,Xia D F,Meng X,Paschon D E,Leung E,Hinkley S J,Dulay G P,Hua K L,Ankoudinova I,Cost G J,Urnov F D,Zhang H S,Holmes M C,Zhang L,Gregory P D,Rebar E J. 2011. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,29(2):143-148.
Morbitzer R,Elsaesser J,Hausner J,Lahaye T. 2011. Assembly of custom TALE-type DNA binding domains by mo-dular clonin[J]. Nucleic Acids Research,39(13):5790-5799.
Morbitzer R,R?mer P,Boch J,Lahaye T. 2010. Regulation of selected genome loci using de novo-engineered transcription activator-like effector(TALE)-type transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America,107(50):21617-21622.
Moscou M J,Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effector[J]. Science,326(5959):1501.
Mussolino C,Morbitzer R,Lütge F,Dannemann N,Lahaye T,Cathomen T. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J]. Nucleic Acids Research,39(21):9283-9293.
Rhule A,Navarro S,Smith J R,Shepherd D M. 2006. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells[J]. Journal of Ethnopharmacology,106(1):121-128.
Sander J D,Cade L,Khayter C,Reyon D,Peterson R T,Joung J K,Yeh J R. 2011. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nature Biotechnology,29(8):697-698.
Sanjana N,Cong L,Zhou Y,Cunniff M M,F(xiàn)eng G,Zhang F. 2012. A transcription activator-like effector toolbox for genome engineering[J]. Nature Protocols,7(1):171-192.
Satoh T,Akira S. 2016. Toll-like receptor signaling and its inducible proteins[J]. Microbiology Spectrum,4(6). doi: 10.1128/microbiolspec.MCHD-0040-2016.
Tesson L,Usal C,Ménoret S,Leung E,Niles B J,Remy S,Santiago Y,Vincent A I,Meng X,Zhang L,Gregory P D,Anegon I,Cost G J. 2011. Knockout rats generated by embryo microinjection of TALENs[J]. Nature Biotechnology,29(8):695-696.
Tong C,Huang G,Ashton C,Wu H,Yan H,Ying Q. 2012. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs[J]. Journal of Genetics and Genomics,39(6):275-280.
Yao Z Y,Zhang P,Guo H,Shi J,Liu S L,Liu Y X,Zheng D X. 2015. RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages[J]. Molecular Oncology,9(4):806-817.
(責任編輯 蘭宗寶)