• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      重塑黃土動(dòng)態(tài)回彈模量依賴性分析及預(yù)估模型

      2018-12-11 09:52冉武平李玲張翛張祥

      冉武平 李玲 張翛 張祥

      摘要:為明確重塑黃土動(dòng)態(tài)回彈模量的應(yīng)力依賴性,借助室內(nèi)重復(fù)加載三軸試驗(yàn),研究了在16種應(yīng)力路徑、3個(gè)壓實(shí)度和4個(gè)含水量狀態(tài)下黃土動(dòng)回彈特性.試驗(yàn)結(jié)果表明:含水量越高時(shí)偏應(yīng)力和圍壓影響較體應(yīng)力顯著,含水量越低時(shí)偏應(yīng)力和體應(yīng)力影響較圍壓顯著.低偏應(yīng)力條件下,含水量對(duì)低壓實(shí)度黃土的回彈模量影響顯著,反之高偏應(yīng)力條件下含水量則對(duì)高壓實(shí)度黃土回彈模量影響顯著;回彈模量在含水量大于等于最佳含水量時(shí),受偏應(yīng)力和體應(yīng)力影響顯著,而在含水量小于最佳含水量時(shí)受偏應(yīng)力和圍壓影響顯著.鑒于此,提出以Ni模型為基礎(chǔ),在不同濕度階段采用不同的應(yīng)力控制參數(shù)的兩階段動(dòng)態(tài)回彈模量預(yù)估模型,從而精準(zhǔn)表達(dá)黃土路基性能參數(shù).

      關(guān)鍵詞:重塑黃土;動(dòng)態(tài)回彈模量;重復(fù)加載三軸試驗(yàn);依賴性分析;分階段預(yù)估模型

      中圖分類號(hào):U416.1文獻(xiàn)標(biāo)志碼:A

      Dependence Analysis and Prediction Model

      of Dynamic Resilient Modulus of Remodeledloess

      RAN Wuping1,LI Ling1,ZHANG Xiao2,ZHANG Xiang1

      (1. School of Civil Engineering &Architecture;, Xinjiang University, Urumqi830047, China;

      2.Key Laboratory of Highway Construction and Maintenance Technology in Loess Region, Shanxi

      Transportation Research Institute,Taiyuan030006, China)

      Abstract:To investigate the stress dependency of the dynamic resilient modulus (MR) of remodeledloess, the dynamic triaxial tests were conducted under 16 stress paths, 3 degree of compactions and 4 water contents. The research results show that the effect of deviatoric stress and confining pressure are more significant than the bulk stress when the water content is higher, while the effect of deviatoric stress and bulk stress are more significant than confining pressure when the water content is lower. For the loess with low compaction degree, MR is significantly affected by the water content under low deviatoric stress conditions, while for loess with high compaction degree, MR is significantly affected by the water content under high deviatoric stress conditions. MR is significantly affected by deviator stress and bulk stress when ω<ωopt, while, it is significantly affected by deviator stress and confining pressure when ω≥ωopt. In view of this, a twophase prediction model of MR is proposed based on the Ni mode which adopts different stress control parameters at different humidity stages, so as to express the performance parameters of loess subgrade accurately.

      Key words:remodeledloess;dynamic resilient modulus;repeated loading triaxial test;dependence analysis;phased prediction model

      路基動(dòng)態(tài)回彈模量既是反映路基承載力的力學(xué)指標(biāo),亦是路面結(jié)構(gòu)設(shè)計(jì)的重要參數(shù).自1962年由 Seed等[1]在研究受路基應(yīng)力應(yīng)變特性影響的瀝青路面疲勞損壞過程中,首次提出這一概念以來,國內(nèi)外很多學(xué)者就路基土動(dòng)態(tài)回彈模量展開全面深入研究.而在道路結(jié)構(gòu)設(shè)計(jì)中采用路基土動(dòng)態(tài)模量無論從體現(xiàn)荷載作用效應(yīng)還是反映路基工作狀態(tài),都較靜態(tài)模量更科學(xué).目前,工程應(yīng)用已逐漸實(shí)現(xiàn)了由靜態(tài)模量向動(dòng)態(tài)模量的轉(zhuǎn)變,包括我國《公路路基設(shè)計(jì)規(guī)范》(JTG D30-2015)也首次提出以動(dòng)態(tài)回彈模量作為路基設(shè)計(jì)的設(shè)計(jì)指標(biāo).

      路基動(dòng)態(tài)回彈模量研究主要集中于影響因素、試驗(yàn)方法、預(yù)估模型等幾方面.Li[2]、楊樹榮[3]和陳聲凱[4]等學(xué)者認(rèn)為僅在一定圍壓范圍內(nèi),隨偏應(yīng)力提高路基土的動(dòng)態(tài)回彈模量呈非線性的減小.Daehyeon等[5]認(rèn)為偏應(yīng)力對(duì)回彈模量的影響存在一個(gè)臨界點(diǎn),偏應(yīng)力小于該臨界點(diǎn)回彈模量隨偏應(yīng)力的增大而急劇減??;反之,回彈模量則無明顯變化.Muhanna等[6]研究表明,圍壓較小時(shí)對(duì)回彈模量影響較小,但當(dāng)圍壓超過100 kPa后,對(duì)回彈模量影響顯著增大.凌建明等[7]則認(rèn)為路基動(dòng)態(tài)回彈模量隨壓實(shí)度的提高而增大,但含水量越大,壓實(shí)度對(duì)回彈模量的影響越小.李志勇等[8]分析了紅黏土動(dòng)態(tài)模量,認(rèn)為動(dòng)態(tài)回彈模量在最佳含水量附近達(dá)到最大值.Allen等[9]通過對(duì)靜態(tài)三軸儀和動(dòng)態(tài)三軸儀兩種加載方式的對(duì)比,分析了常圍壓對(duì)脈沖荷載和靜載試樣條件下的回彈模量影響.Arthur等[10]克服傳統(tǒng)方向剪切儀中主應(yīng)力軸僅能按固定角度旋轉(zhuǎn)的不足,研制了考慮應(yīng)力引起的各向異性的定向剪切儀.凌天清[11]采用HX2100伺服三軸儀研究了路基細(xì)料土的回彈特性.陳樂求等[12]通過大型動(dòng)三軸壓縮試驗(yàn)開展了受干濕循環(huán)影響的水泥改良粗粒土的動(dòng)彈性模量等力學(xué)特征參數(shù)的研究;曹文貴等[13]采用三軸剪切試驗(yàn)機(jī)研究了不同應(yīng)力路徑條件下土石混填體剪切強(qiáng)度指標(biāo)變化規(guī)律.回彈模量預(yù)估模型主要包括基于經(jīng)驗(yàn)關(guān)系的回歸模型(基于物性參數(shù)的經(jīng)驗(yàn)?zāi)P秃突诹W(xué)指標(biāo)的經(jīng)驗(yàn)?zāi)P停┖突趹?yīng)力狀態(tài)的本構(gòu)模型兩大類.

      已有研究結(jié)果表明,路基回彈模量的依賴參數(shù)較多,主要有荷載參數(shù)(應(yīng)力路徑)、物性參數(shù)(密度、含水量)和材料參數(shù)(土質(zhì)狀況、級(jí)配組成)影響顯著.考慮到黃土一方面在我國分布區(qū)域廣、厚度大,并已在公路路基建設(shè)中得到廣泛應(yīng)用;另一方面由于其特殊的物理、力學(xué)和工程性質(zhì),對(duì)荷載和濕度具有更顯著的依賴性,因此,有必要針對(duì)黃土路基動(dòng)態(tài)回彈模量開展系統(tǒng)研究,以期為我國廣泛分布的黃土地區(qū)公路設(shè)計(jì)提供合理的設(shè)計(jì)參數(shù).鑒于此,本文以山西太原黃土為研究對(duì)象,通過室內(nèi)動(dòng)態(tài)三軸試驗(yàn),展開3種壓實(shí)狀態(tài)、4種濕度狀態(tài)以及16種應(yīng)力狀態(tài)的黃土動(dòng)態(tài)回彈模量試驗(yàn)研究,從而全面評(píng)價(jià)和分析黃土動(dòng)態(tài)回彈模量特性,并在此基礎(chǔ)上甄選和優(yōu)化回彈模量預(yù)估模型,從而為黃土地區(qū)路基設(shè)計(jì)提供理論依據(jù)和經(jīng)驗(yàn)參數(shù).

      1試驗(yàn)方案

      1.1試樣制備

      試驗(yàn)所用黃土土樣為重塑土,其基本物性參數(shù)如表1所示.為全面分析重塑黃土動(dòng)態(tài)回彈模量的依賴性,試樣選擇不同壓實(shí)度和含水量狀況成型.考慮路基不同層位壓實(shí)度要求標(biāo)準(zhǔn),選擇90%、93%和96% 3個(gè)壓實(shí)度,且每個(gè)壓實(shí)度的試件按照8.5%、

      2試驗(yàn)結(jié)果分析

      2.1應(yīng)力狀態(tài)對(duì)回彈模量影響

      選用目標(biāo)壓實(shí)度分別為90%、93%和96%,濕度均為最佳含水量的試樣,試驗(yàn)結(jié)果如圖1和圖2所示.為便于表達(dá),文中k、ω、MR分別為土樣壓實(shí)度、含水量和動(dòng)態(tài)回彈模量.由圖1可知,在各種圍壓條件下,隨著偏應(yīng)力增加,回彈模量減小,當(dāng)圍壓從15 kPa增長至60 kPa,k=90%時(shí),其衰減量分別為23%、36%、39%和47%;k=93%時(shí),其衰減量分別為19%、25%、29%和43%;而k=96%時(shí),其衰減量分別為18%、28%、30%和36%.由圖2可知,在不同壓實(shí)度條件下,黃土動(dòng)態(tài)回彈模量隨體應(yīng)力增加而增加,當(dāng)偏應(yīng)力從30 kPa增長至105 kPa,k=90%時(shí),回彈模量增幅分別為45%、56%、79%和121%;k=93%時(shí),增幅分別為42%、51%、67%和100%;k=96%時(shí),增幅分別為41%、51%、65%和81%.偏應(yīng)力越小增幅越大,這說明壓實(shí)度越小,偏應(yīng)力和體應(yīng)力對(duì)回彈模量影響越顯著.

      由圖3可知,圍壓為45 kPa時(shí),在各濕度條件下,不同壓實(shí)度黃土隨偏應(yīng)力增加回彈模量不斷減小.當(dāng)含水量從8.5%增長到16.5%時(shí),隨偏應(yīng)力增加黃土動(dòng)態(tài)回彈模量衰減幅度由15%增長到30%左右,這說明含水量越小偏應(yīng)力影響越微弱,而隨含水量不斷增加,偏應(yīng)力影響也逐漸顯著,尤其是對(duì)高壓實(shí)度土樣的回彈模量影響更顯著.由此可知偏應(yīng)力對(duì)低含水量下低壓實(shí)度和高含水量下高壓實(shí)度的黃土回彈模量影響顯著.

      由圖4可知,當(dāng)偏應(yīng)力為75 kPa時(shí),隨含水量變化,不同壓實(shí)度土樣回彈模量與體應(yīng)力曲線簇在ωopt附近逐漸由低壓實(shí)度土樣密集向高壓實(shí)度土樣密集轉(zhuǎn)變,由此表明當(dāng)含水量較小時(shí),高壓實(shí)度土樣回彈模量對(duì)體應(yīng)力更敏感;而當(dāng)含水量越大時(shí),低壓實(shí)度土樣回彈模量對(duì)體應(yīng)力則更敏感.含水量為8.5%和11.5%時(shí),隨體應(yīng)力增加各壓實(shí)度條件下的黃土回彈模量增長幅度為20%~30%;而含水量為13.5%和16.5%時(shí),各壓實(shí)度下的黃土回彈模量增長幅度則為50%~60%.鑒于偏應(yīng)力一定,土樣濕度越大,體應(yīng)力增加所引起的回彈模量增加幅度越顯著,因此可認(rèn)為高含水量條件下,隨體應(yīng)力增加引起的回彈模量增加主要是由于圍壓所致.故而再次驗(yàn)證圍壓變化對(duì)高含水量黃土試樣較低含水量試樣的回彈模量影響顯著.

      2.2壓實(shí)度和含水量對(duì)動(dòng)態(tài)回彈模量影響

      由圖3可知,在不同濕度和應(yīng)力條件下,隨壓實(shí)度增加黃土動(dòng)態(tài)回彈模量持續(xù)增加;而曲線斜率則反映影響程度,當(dāng)含水量在ωopt附近時(shí),曲線斜率相對(duì)較大,由此可知濕度在ωopt附近波動(dòng),壓實(shí)度對(duì)回彈模量的影響最顯著,而含水量較ωopt大或是小時(shí),曲線斜率有所減小,說明壓實(shí)度對(duì)回彈模量影響有所減弱.

      而由圖5可知,圍壓為45 kPa時(shí),在不同偏應(yīng)力條件下,黃土動(dòng)態(tài)回彈模量隨含水量增加和壓實(shí)度減小則不斷衰減;在不同偏應(yīng)力和壓實(shí)度條件下,隨含水量變化的回彈模量曲線分布疏密不同,疏密變化最顯著則在ωopt附近.當(dāng)偏應(yīng)力較小時(shí),壓實(shí)度越大回彈模量曲線越密;而當(dāng)偏應(yīng)力較大時(shí),壓實(shí)度愈小回彈模量曲線越密.這也再次表明低偏應(yīng)力條件下,含水量對(duì)低壓實(shí)度黃土的回彈模量影響顯著;而在高偏應(yīng)力條件下含水量則對(duì)高壓實(shí)度黃土回彈模量影響顯著.在低偏應(yīng)力條件下,各壓實(shí)度的黃土動(dòng)態(tài)回彈模量隨含水量變化曲線,隨偏應(yīng)力不同而不同,但曲線反彎點(diǎn)出現(xiàn)在ωopt附近.這說明含水量大于或小于ωopt,黃土回彈模量對(duì)各應(yīng)力的敏感性不同;低偏應(yīng)力條件下,在ωopt附近的濕度變化對(duì)回彈模量影響顯著.但當(dāng)偏應(yīng)力很大時(shí),較大的含水量對(duì)回彈模量的影響逐漸減弱.

      3回彈模量預(yù)估分析

      3.1回彈模量預(yù)估模型

      路基回彈模量主要與材料狀態(tài)參數(shù)(材料的性質(zhì)、密實(shí)度和含水量)以及工作狀態(tài)參數(shù)(主要是應(yīng)力狀態(tài))密切相關(guān).因此構(gòu)建路基土動(dòng)態(tài)回彈模量預(yù)估模型,基于對(duì)影響回彈模量的應(yīng)力條件相關(guān)性分析研究.根據(jù)國內(nèi)外學(xué)者的研究成果可知,回彈模量預(yù)估模型已從初始的經(jīng)驗(yàn)回歸公式逐步發(fā)展為具有本構(gòu)意義的力學(xué)模型,這些預(yù)估模型主要包含僅考慮剪切影響的模型、僅考慮側(cè)限影響的模型、綜合考慮剪切與側(cè)限影響的復(fù)合模型以及將應(yīng)力和應(yīng)變分解為體積與剪切兩部分的預(yù)估模型.具有代表性的典型回彈模量預(yù)估模型如表3所示.

      3.2重塑黃土回彈模量預(yù)估模型建立

      3.2.1預(yù)估模型指標(biāo)分析

      由前述分析可知,盡管重塑黃土動(dòng)態(tài)回彈對(duì)應(yīng)力條件有顯著的依賴性,但在不同的濕度條件下對(duì)不同應(yīng)力狀態(tài)的敏感程度不同.當(dāng)含水量大于最佳含水量時(shí),由于濕化作用,其整體強(qiáng)度和剛度較小,對(duì)圍壓和偏應(yīng)力敏感程度較體應(yīng)力顯著;而當(dāng)含水量較小時(shí),則因其較高的粘聚性使其具有較大的抗變形能力,對(duì)圍壓影響的敏感性則較體應(yīng)力和偏應(yīng)力要小.同時(shí)黃土路基的實(shí)際工作狀態(tài)一方面受環(huán)境影響較大,在干旱地區(qū)路基內(nèi)部尤其是路基工作區(qū)范圍內(nèi)濕度較小,路基的平衡濕度小于最佳含水量,在潮濕多雨地區(qū),路基平衡濕度則會(huì)大于最佳含水量;另一方面在同一地區(qū)沿路基深度濕度分布不均衡.鑒于上述分析,黃土路基動(dòng)態(tài)回彈模量的預(yù)估模型控制參數(shù)建議分階段考慮:當(dāng)ω<ωopt時(shí),采用體應(yīng)力和剪應(yīng)力作為控制變量;而當(dāng)ω≥ωopt時(shí),則選擇圍壓和體應(yīng)力作為控制變量,這樣既可體現(xiàn)出應(yīng)力依賴性,同時(shí)也體現(xiàn)出濕度變化的影響.

      3.2.2預(yù)估模型構(gòu)建

      由上述分析可知,黃土路基回彈模量對(duì)多種應(yīng)力條件都有較高的敏感性.而由表3可知,前4種僅考慮單應(yīng)力條件的預(yù)估模型顯然不能真實(shí)反映黃土回彈模量的多應(yīng)力依賴性;Uzan模型盡管克服了前4種預(yù)估模型僅考慮單一應(yīng)力的缺陷,但仍存在量綱問題和模量不定值問題,與Uzan模型相比較,八面體剪應(yīng)力模型具有相同的擬合精度(σd與τoct成比例),消除了量綱問題,但仍存在模量不定值問題.NCHRP 128A模型和Ni模型與之前的模型相比較,不僅精度大大提高,而且還解決了量綱和模量不定值的問題.但對(duì)比兩個(gè)預(yù)估模型,不難發(fā)現(xiàn)Ni模型在第一項(xiàng)中多了一個(gè)常數(shù)項(xiàng),同時(shí)選用了圍壓作為控制變量,這就說明在應(yīng)力級(jí)位較低時(shí),Ni模型有更高的模量定值性,故而也可提高其在低應(yīng)力級(jí)位下的數(shù)值的穩(wěn)定性.考慮到黃土自身強(qiáng)度較低,且受濕度影響,強(qiáng)度衰變更快,故為提高在低應(yīng)力條件下的回彈模量預(yù)估精度,本文選擇Ni模型作為黃土路基回彈模量預(yù)估模型.但考慮到不同濕度狀態(tài)下,黃土動(dòng)態(tài)回彈模量對(duì)應(yīng)力路徑的依賴性和應(yīng)力狀態(tài)敏感程度不同,故在基于Ni預(yù)估模型的基礎(chǔ)上,將應(yīng)力參數(shù)按照濕度條件做出調(diào)整,當(dāng)ω<ωopt時(shí),采用體應(yīng)力和偏應(yīng)力作為控制變量;而當(dāng)ω≥ωopt時(shí),則選擇圍壓和體應(yīng)力作為控制變量,構(gòu)建重塑黃土回彈模量的預(yù)估模型如式(2)和式(3)所示:

      2)在圍壓一定時(shí),低含水量低壓實(shí)度重塑黃土和高含水量高壓實(shí)度黃土動(dòng)態(tài)回彈模量對(duì)偏應(yīng)力敏感性較強(qiáng);而在偏應(yīng)力一定時(shí),低含水量高壓實(shí)度和高含水量低壓實(shí)度黃土動(dòng)態(tài)回彈模量對(duì)體應(yīng)力較敏感.

      3)在不同偏應(yīng)力條件下,黃土動(dòng)態(tài)回彈模量隨含水量增加和壓實(shí)度減小則不斷衰減.低偏應(yīng)力條件下,含水量對(duì)低壓實(shí)度黃土的回彈模量影響顯著;而高偏應(yīng)力條件下含水量則對(duì)高壓實(shí)度黃土回彈模量影響顯著.但從影響程度來看,當(dāng)在最佳含水量附近時(shí),壓實(shí)度對(duì)回彈模量的影響最顯著;當(dāng)含水量較大或含水量較小時(shí)則壓實(shí)度對(duì)回彈模量影響最小.

      4)針對(duì)黃土在不同濕度條件下對(duì)不同應(yīng)力條件的依賴性不同,以Ni模型為基礎(chǔ),當(dāng)黃土路基ω<ωopt時(shí)采用偏應(yīng)力和體應(yīng)力為預(yù)估模型的控制變量;當(dāng)黃土路基ω≥ωopt時(shí)采用偏應(yīng)力和圍壓為預(yù)估模型的控制變量.

      5)研究結(jié)果充分反映了重塑黃土動(dòng)態(tài)回彈特性,從而可為黃土地區(qū)路基結(jié)構(gòu)設(shè)計(jì)提供理論依據(jù)和設(shè)計(jì)參數(shù).鑒于本文僅對(duì)正常狀態(tài)下重塑黃土動(dòng)態(tài)回彈模量對(duì)含水量、壓實(shí)度以及應(yīng)力路徑的依賴性展開研究,后續(xù)有必要針對(duì)凍融循環(huán)和干濕循環(huán)情況下重塑黃土動(dòng)態(tài)回彈特性展開進(jìn)一步研究.

      參考文獻(xiàn)

      [1]SEED H B, CHAN C K, LEE C E. Resilience characteristics of subgrade soils and their relations to fatigue failures in asphalt pavements[C]//Proceedings International Conference on Structural Design of Asphalt Pavement. Michigan:University of Michigan, 1962:611-636.

      [2]LI D,SELIG E T.Resilient modulus for finegrained subgrade soil[J]. Journal of Geotechnical Engineering, ASCE, 1994,120(6): 939-957.

      [3]楊樹榮,拱祥生,黃偉慶. 非飽和粘性路基土回彈模量之研究[J]. 巖土工程學(xué)報(bào), 2006, 28(2): 225-229.

      YANG S R, GONG X S, HUANG W Q. Resilient modulus of unsaturated cohesive subgrade soils[J].Chinese Journal of Geotechnical Engineering, 2006, 28(2): 225-229.(In Chinese)

      [4]陳聲凱,凌建明,羅志剛. 路基土回彈模量應(yīng)力依賴性分析及預(yù)估模型[J].土木工程學(xué)報(bào), 2007,40(6):95-97.

      CHEN S K, LING J M, LUO Z G. Stressdependent characteristics and prediction model of the resilient modulus of subgrade soils[J].China Civil Engineering Journal, 2007,40(6):95-97.(In Chinese)

      [5]KIM D, KIM J R. Resilient behavior of compacted subgrade soils under the repeated triaxial test[J]. Construction and Building MaterialsElsevier,2007,21:1470-1479.

      [6]MUHANNA A, RAHMAN M, LAMBE P. Resilient modulus measurement of finegrained subgrade soils[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1687(1):3-12.

      [7]凌建明, 蘇華才,謝華昌,等. 路基土動(dòng)態(tài)回彈模量的試驗(yàn)研究[J]. 地下空間與工程學(xué)報(bào),2010,6(5):919-925.

      LING J M , SU H C , XIE H C, et al. Laboratory research on dynamic resilient modulus of subgrade soil[J]. Chinese Journal of Underground Space and Engineering, 2010,6(5):919-925. (In Chinese)

      [8]李志勇, 董城, 鄒靜蓉, 等. 湘南地區(qū)紅黏土動(dòng)態(tài)回彈模量試驗(yàn)與預(yù)估模型研究[J]. 巖土力學(xué), 2015, 36(7): 1840-1846.

      LI Z Y , DONG C , ZOU J R, et al. Research on experiment and prediction model of dynamic resilient modulus of laterite soil in Southern Hunan[J]. Rock and Soil Mechanics, 2015, 36(7):1840-1846. (In Chinese)

      [9]ALLEN J J, THOMPSON M R. Resilient response of granular materials subjected to timedependent lateral stresses[J].Transportation Research Record,1974,510(1):1-13

      [10]ARTHUR J, BEKENSTEIN S, GERMAINE J T, et al. Stress path tests with controlled rotation of principal stress directions[J]. Astm Special Technical Publication, 1981, 21: 516-540.

      [11]凌天清. 柔性路面結(jié)構(gòu)非線性分析研究[D]. 上海: 同濟(jì)大學(xué)交通運(yùn)輸工程學(xué)院, 1995:20-40.

      LING T Q. Study on nonlinear analysis of flexible pavement structure [D].Shanghai: College of Transportation Engineering, Tongji University, 1995:20-40.(In Chinese)

      [12]陳樂求, 陳俊樺, 張家生. 干濕循環(huán)作用下水泥改良泥質(zhì)板巖粗粒土動(dòng)力特性[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 44(9):107-113.

      CHEN L Q, CHEN J H, ZHANG J S. Dynamic properties of cement improved argilliteslate coarsegrained soil under dryingwetting cycles [J]. Journal of Hunan University(Natural Sciences), 2017, 44 (9):107-113.(In Chinese)

      [13]曹文貴, 黃文健, 王江營,等. 土石混填體變形力學(xué)特性大型三軸試驗(yàn)研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 43(3):142-148.

      CAO W G, HUANG W J, WANG J Y, et al. Largescale triaxial test study on deformation and intensity characteristics of soilrock aggregate mixture[J].Journal of Hunan University(Natural Sciences),2016, 43(3):142-148. (In Chinese)

      [14]AASHTO T29297(R2000)Standard method of test for resilient modulus of subgrade soils and untreated base/subbase materials[S]. Washington DC:American Association of State Highway and Transportation Officials, 2000:156-183.

      [15]LTTP Protocol P46Resilient modulus of unbound granular base/subbase materials and subgrde soil[S]. Washington DC: Strategic Highway Research Program, Federal Highway Administration, 1996:54-84.

      [16]NCHRP Project 128Laboratory determination of resilient modulus for flexible pavement designfinal report[R]. Washington DC: National Cooperative Highway Research Program, Transportation Research Board, National Research Council, 1997:34-56.

      [17]羅志剛. 路基與粒料層動(dòng)態(tài)模量參數(shù)研究[D]. 上海:同濟(jì)大學(xué)交通運(yùn)輸工程學(xué)院, 2007:60-72.

      LUO Z G. Research on dynamic modulus parameters of subgrade and granular layers [D]. Shanghai: College of Transportation Engineering, Tongji University, 2007:60-72. (In Chinese)

      [18]SEED H B, MITRY F G, MONOSMITH C L, et al. Prediction of pavement deflection from laboratory repeated load tests(NCHRP report 35)[R]. Washington DC: Transportation Research Board, 1967:22-43.

      [19]THOMPSON M R, ELLIOTT R P. ILLIPAVEbased response algorithms for design of conventional flexible pavements[R]. Washington DC:Transportation Research Record, 1985:31-42.

      [20]MOOSSAZADEH J, WITCZAK M W. Prediction of subgrade moduli for soil that exhibits nonlinear behavior[R]. Washington DC: Transportation Research Record, 1981:23-35.

      [21]DRUMM E C, BOATENGPOKU Y, JOHNSON P T. Estimation of subgrade resilient modulus from standard tests[J]. Journal of Geotechnical Engineering, 1990, 116(5): 774-789.

      [22]RAHIM A M. Subgrade soil index properties to estimate resilient modulus for pavement design[J]. International Journal of Pavement Engineering, 2005, 6(3): 163-169.

      [23]WITCZAK M W, UZAN J. The universal airport pavement design system, Report I of V: Granular material characterization[R]. Washington DC:Department of Civil Engineering, University of Maryland, 1988:67-85.

      [24]NI B, HOPKINS T C, SUN L, et al. Modeling the resilient modulus of soils[C]//Proceedings of the 6th International Conference on the Bearing Capacity of Roads, railways and airfields.Lisbon,Portugal:A A Balkema Publishers,2002: 1131-1142.

      视频| 锡林浩特市| 五家渠市| 枝江市| 澄江县| 吉安市| 武汉市| 林州市| 阿图什市| 英吉沙县| 随州市| 通城县| 房山区| 安远县| 嘉禾县| 疏附县| 新巴尔虎左旗| 齐齐哈尔市| 贡觉县| 三河市| 济南市| 灌阳县| 潞西市| 宜兰县| 海城市| 富川| 英吉沙县| 思南县| 斗六市| 喀什市| 稻城县| 中方县| 开平市| 日照市| 无棣县| 寿宁县| 集贤县| 永年县| 浑源县| 黄龙县| 禹州市|