何沙娥,歐陽林男,朱林生,陳少雄
?
桉樹大徑材培育技術(shù)研究概述
何沙娥,歐陽林男,朱林生,陳少雄*
(國家林業(yè)局桉樹研究開發(fā)中心,廣東 湛江 524022)
培育大徑材用于實木加工是桉樹人工林發(fā)展的趨勢,但桉樹人工林大徑級原木的培育尚缺乏經(jīng)驗。本文綜述了國內(nèi)外在桉樹大徑材樹種選擇、初植密度控制、間伐、修枝和施肥管理方面的現(xiàn)狀及其對大徑材生長和材性的影響,以期為桉樹資源高效利用及大徑材人工林的可持續(xù)發(fā)展提供借鑒和依據(jù)。
桉樹;大徑材;實木;培育模式
桉樹()是世界三大速生豐產(chǎn)樹種之一,也是世界人工林的重要組成部分。截至2012年,全球桉樹人工林面積超過2×108hm2,其中大部分為紙漿用材林[1]。據(jù)統(tǒng)計,2005年全球桉樹大徑材人工林面積僅為1.2×107hm2[2]。天然林保護(hù)政策的實施和桉樹木材良好的硬度、穩(wěn)定性、加工性和耐久性等特征,使桉樹成為高質(zhì)量大徑材的培育對象[3]。目前,熱帶和亞熱帶多個國家和地區(qū)均建立了桉樹大徑材人工林,其所占份額還在逐年增加,大徑材培育成為桉樹人工林發(fā)展的趨勢[4-7]。但是,與短輪伐期的紙漿用材林相比,大徑材人工林培育起步晚,輪伐期長,利用桉樹人工林木材生產(chǎn)高端實木產(chǎn)品目前經(jīng)驗不足,桉樹大徑材人工林培育面臨嚴(yán)峻挑戰(zhàn):首先是樹種選擇,實木用材與紙漿用材對木材材性的要求不同。對于實木用材而言,樹木必須直徑大,強(qiáng)度和穩(wěn)定性好,紙漿材則主要著重于纖維品質(zhì),已有紙漿用材桉樹樹種并不能直接滿足大徑材培育目標(biāo)。同時,不同樹種和不同培育條件下生長的樹木材性存在差異[8-9],已有紙漿材人工林培育模式也不能直接用于大徑材培育。其次是培育過程中節(jié)子的產(chǎn)生、腐爛以及病蟲害侵襲造成木材缺陷和生長量損失,并且在快速生長過程中形成高的生長應(yīng)力,使得加工過程中容易出現(xiàn)開裂、變形等缺陷,嚴(yán)重影響了桉樹的實木利用價值[10]。因此,重新評估樹種特性,選擇合適的樹種,提高大徑材出材率,消除木材缺陷,建立適地適樹的大徑材培育模式是桉樹大徑材培育亟待解決的問題。本文綜述了國內(nèi)外在桉樹大徑材人工林培育技術(shù)方面的現(xiàn)狀,以期為桉樹資源高效利用及大徑材人工林的可持續(xù)發(fā)展提供借鑒和依據(jù)。
材性決定了木材的加工利用方向。對于實木用材而言,樹木必須速生且具有大的直徑、良好的通直度、均勻性、強(qiáng)度、穩(wěn)定性和加工性質(zhì)等。樹種生長和材性的表現(xiàn)是樹種本身的遺傳基因及其所處的土壤、氣候等環(huán)境因素相互作用的結(jié)果,因而不同樹種甚至同一樹種的不同個體之間,木材材性存在差異[11-12]。為了獲得適合當(dāng)?shù)貙嵞居貌牡蔫駱淦贩N,各地區(qū)和國家在樹種、種源及無性系選擇方面開展了廣泛研究[8,13-17]。在此基礎(chǔ)上,目前澳大利亞、阿根廷、巴西、中國、印度、南非、烏拉圭、越南、智利、葡萄牙和西班牙等國家均建立了大徑材人工林:如澳大利亞地區(qū)種植的彈凡桉()、巨桉(E.grandis)、斑皮桉()、檸檬桉()、鄧恩桉(E. dunnii)[5]、柳桉()、亮果桉()、高桉()[4],巴西的巨桉和大花序桉()、智利的王桉()等[4-5,18-20]。我國也對多種桉樹的材性和生長性狀做了評估,認(rèn)為粗皮桉()、赤桉()、史密斯桉()、直桿桉()、大花序桉、尾巨桉()、尾葉桉()等適合在我國中西部地區(qū)種植,具有較好的開發(fā)潛力[14,21]。
初始種植密度改變了樹木之間的光照和養(yǎng)分等資源的競爭關(guān)系,影響植株的生長和木材材性。大多數(shù)研究表明較低的種植密度對樹高影響較小,但能顯著促進(jìn)胸徑生長[22-25]。在廣西地區(qū)進(jìn)行的不同初植密度對巨尾桉(E.)生長影響的試驗表明,造林密度越小,大、中徑材出材比例越大[26]。除影響樹木生長速率之外,種植密度還影響樹形和分枝性狀。將彈凡桉和大花序桉密度由1 250株·hm-2增大到1 667株·hm-2,其主干直徑、枝條直徑及分枝角均減小,而下部枝條死亡率增加[25]。對7年生亮果桉的密度控制試驗得到了類似的結(jié)果,同時干形和尖削度也受到影響[24]。對木材材性的研究表明,種植密度對木材的力學(xué)性能(如氣干密度、抗彎強(qiáng)度和抗壓強(qiáng)度)和皺縮特性等性狀具有顯著影響[27-28]。較小的種植密度能夠改善木材內(nèi)部密度變異,增加成熟材的均一性,提高高質(zhì)量木材產(chǎn)量[29]。因此,控制初植密度可滿足大徑材對生長、樹形和力學(xué)性能的要求。一般認(rèn)為用于實木生產(chǎn)的桉樹人工林種植密度以1 000株·hm-2比較合適,在亞熱帶地區(qū)推薦的初始種植密度為833 ~ 1 250株·hm-2,這樣可以保證在標(biāo)準(zhǔn)的修枝和間伐情況下有足夠的收獲單株[30]。
間伐是人工林培育的重要措施,通過密間伐可以及時調(diào)整林分密度,減少植株對光、水、肥等資源的競爭,充分發(fā)揮桉樹早期速生的特性,對改善樹木生長(表1)[31]、材質(zhì)性狀[29,32]具有重要作用。這種作用與間伐的時間和強(qiáng)度有關(guān)[30]。間伐強(qiáng)度越大,直徑增大越顯著。Medhurst等[33]對澳大利亞塔斯馬尼亞的亮果桉進(jìn)行間伐,結(jié)果表明:在6年生時將林分密度分別間伐至100株·hm-2,200株·hm-2,300株·hm-2和400株·hm-2,6 a后各處理的總干面積增長量均顯著高于對照(未間伐,890株·hm-2),且100株·hm-2和200株·hm-2處理的增長量高于300株·hm-2和400株·hm-2處理[33]。其他試驗也得到了類似的結(jié)果[34]。目前對間伐時間的意見不一。在樹冠郁閉之后,林分生長開始下降[35]。因此,建議在冠層郁閉之前進(jìn)行間伐,將林分密度稀疏到150 ~ 250株·hm-2 [36]。比較早間伐(第8年)與晚間伐(第10年)對藍(lán)桉()材性的影響表明,早間伐形成的應(yīng)力木少,鋸材變形小[37]。而Candy等[38]認(rèn)為晚間伐有利于控制樹木與雜草之間的競爭、改善樹形。由此可見,不同桉樹對同一間伐措施具有不同的反應(yīng),這可能與樹種對光、水、肥的敏感性以及立地質(zhì)量的差異有關(guān)[39-40]。
由分枝造成的木材缺陷如節(jié)子(尤其是死節(jié))會嚴(yán)重影響木材的結(jié)構(gòu)和外觀,是導(dǎo)致實木品質(zhì)下降的主要原因[41]。人工修剪活枝能夠有效減少死節(jié)的發(fā)生,是提高實木用材質(zhì)量和凈木生產(chǎn)量的重要途徑(表1)[31]。例如,修枝顯著加快了大花序桉、彈凡桉、鄧恩桉和巨桉的分枝閉塞速率,減少死節(jié)形成[43];經(jīng)修枝處理的亮果桉的枝條傷口腐爛被限制在節(jié)核部位,凈木生產(chǎn)量提高[43]。修枝時間十分重要,不適當(dāng)?shù)男拗绊懼仓晟L,這主要是因為修枝改變了樹木冠層結(jié)構(gòu)和葉片分布,削弱了植株碳同化作用[44-45]。試驗結(jié)果表明,在冠層郁閉之前修枝對植株生長的影響較大,而以亮果桉為試驗,在冠層郁閉之后即使進(jìn)行75%強(qiáng)度的修枝,2 ~ 3 a后大直徑原木收獲量也不會受到影響[46]。一般認(rèn)為,在樹冠郁閉的時候進(jìn)行修枝比較合適。這是因為樹冠郁閉之后,下層枝葉因養(yǎng)分供應(yīng)不足而死亡和脫落[47],容易形成死節(jié),甚至發(fā)生腐爛[48],而修剪死枝并不能控制死節(jié)的發(fā)生[42]。并且,如果冠層郁閉后不及時修枝,枝條生長過大,會造成修枝傷口塞困難,易引發(fā)腐病[43]。節(jié)子大小也會隨枝條直徑和樹木直徑生長而增加[49-50],因此,在樹冠郁閉后及時修剪活枝,才能有效減少死節(jié),提高木材材質(zhì)。但是,不同樹種的冠層生長及對光的敏感性不同,如:在相同生長條件下,4年生彈凡桉的活冠枝高顯著高于同齡大花序桉的[51]。因此,只要枝條直徑未生長過大,大花序桉的修枝時間要晚于彈凡桉。而對于巨桉這類冠升迅速的樹種,其修枝時間則較早,如在巴西種植的巨桉,修枝一般在1.5年生前進(jìn)行[52]。此外,分枝老化速率以及立地等因素也會影響修枝措施,如中低等立地條件下大花序桉的修枝時間主要受分枝老化速率控制;而在高質(zhì)量立地條件下,大花序桉的修枝時間則由分枝直徑生長速率主導(dǎo)[53]。修枝強(qiáng)度對植株的影響也很明顯,如修枝強(qiáng)度小于50%時,對藍(lán)桉的生長無顯著影響,而大于50%時會顯著影響樹干材積和立木材積[45]。除此之外,修剪上冠層的枝葉對莖干生長的影響比下冠層的更加明顯,并且頻繁修剪會加劇這種作用[54]。
注:該表格內(nèi)容引自文獻(xiàn)[31]。
桉樹為速生樹種,生長量大,對養(yǎng)分的需求量多,加之長期連作,土壤肥力下降嚴(yán)重。施肥能夠增加土壤肥力,提高林木養(yǎng)分利用情況,促進(jìn)林分幼林生長,對早期生長甚速的桉樹人工林培育尤為重要。研究表明,對3.2年生的亮果桉施加氮肥(300 kg·hm-2),在8年生時直徑為200原木的地上生物量、光合有效輻射和光利用率分別比對照(不施肥)增加了23%、6%和13%[46]。大量施加氮肥和磷肥促進(jìn)亮果桉枝條增粗和枝條壽命延長[56]。但對巴西無性系人工林施肥試驗表明,在一定范圍內(nèi)施肥和灌溉處理顯著增加干材年均生長量,而過量施肥對生長的影響并不明顯[56]。肥料配比對樹木生長十分重要。如Cromer等[57]發(fā)現(xiàn)同時施加氮肥和磷肥對桉樹生長的影響比單一施肥效果更加明顯,認(rèn)為是肥料配比而不是施肥量影響桉樹莖葉種氮元素含量,具體的肥料配比因樹種而異。對我國閩南山區(qū)尾葉桉、巨桉的施肥試驗也表明,不同的氮肥和磷肥品種對桉樹生長具有不同影響[58]。除影響生長之外,施肥對木材材質(zhì)性狀也有一定影響。有研究表明,大徑材木材材性與追肥量的關(guān)系密切,增大施肥量能顯著降低木材的抗彎強(qiáng)度和徑面硬度,并在一定程度上增加彈性模量和木材含水率,降低端、弦面硬度和基本密度[59]。對13年生藍(lán)桉進(jìn)行高強(qiáng)度間伐后輔以施肥,可以減少應(yīng)拉木的形成[60]。
在實際生產(chǎn)中,通常將施肥與間伐和修枝措施同時進(jìn)行,能夠獲得更好的資源利用效益。如不施肥,修剪赤桉樹冠25%的葉面積后20個月內(nèi),植株樹高和胸徑生長均受影響;只施肥不修剪,植株生長無明顯變化;而在修枝前或者修枝后施加氮肥則能促進(jìn)生長,并且修枝后施肥對生長的促進(jìn)作用比修枝前的效果更加明顯[54]。上述提到的對藍(lán)桉的試驗也表明,高強(qiáng)度的間伐會增加應(yīng)拉木的形成,如果在間伐后進(jìn)行施肥則能夠有效減小這種負(fù)面影響[60]。對3.2年生亮果桉同時進(jìn)行施肥、間伐和修枝試驗表明,三者之間具有交互作用,施肥和間伐促進(jìn)下冠層或者枝條大小和長度的增長,可能影響原木質(zhì)量,但如果同時進(jìn)行修枝就可以在促進(jìn)植株生長的前提下改善這種情況[61]。
國內(nèi)外在桉樹人工林培育方面已有許多研究,但大多為紙漿材培育,與之相比,大徑材培育起步晚,輪伐期較長,在栽植密度控制、間伐、修枝和施肥等方面有著特殊的要求,已有對各項技術(shù)措施的研究大多局限在較短的培育期內(nèi),對大徑材培育的長期影響還很難評估,目前在桉樹大徑材人工林管理和技術(shù)上仍然缺乏經(jīng)驗。
原木木材材性特征是決定實木價值的重要因素。如前所述,目前在如何解決桉樹木材皺縮和收縮、應(yīng)力木與生長應(yīng)力、開裂等問題上存在巨大的挑戰(zhàn)。這些特征由樹種本身的遺傳和所處的環(huán)境共同決定。目前在澳大利亞、巴西和智利等國家較成功地選育了適合當(dāng)?shù)貧夂颦h(huán)境的大徑材桉樹樹種,但包括我國在內(nèi)的大部分地區(qū)仍然處于探索階段。國內(nèi)外在利用密度控制、修枝、間伐以及施肥等培育措施改善木材特性上取得了一些成效,但相對大徑材較長的輪伐期而言,這些研究均比較片面,改善效果有限,并且,這些技術(shù)措施的實施均需考慮樹種特性、立地等多方面的因素,桉樹大徑材培育不能依賴于一套固定的培育模式,必須針對不同樹種和栽培區(qū)域開展系統(tǒng)的樹種選擇和大徑材培育模式研究,結(jié)合木材形成機(jī)理研究和后期加工處理方法改進(jìn)來解決桉樹實木用材存在的問題,以推進(jìn)桉樹人工林資源高效、可持續(xù)的實木化利用。
[1] Forrester D I, Rgb S. Faster growth ofandin mixed?species stands than monocultures [J].Forest Ecology and Management,2012, 286(1): 81?86.
[2] James R, Del Lungo A.The potential for fast?growing commercial forest plantations to supply high value roundwood[J].Planted Forests and Trees Working Paper, 2005,33:1?49.
[3] Sedjo R A. The potential of high?yield plantation forestry for meeting timber needs [J].New Forests, 1999,17(1/3): 339?360.
[4] Mckenzie H M, Shelbourne C J A, Kimberley M O, et al. Processing young plantation?grown Eucalyptus nitens for solid?wood products. 2: Predicting product quality from tree, increment core, disc, and 1?M billet properties [J]. New Zealand Journal of Forestry Science, 2003, 33(1): 79?113.
[5] Beadle C, Volker P, Bird T, et al. Solid?wood production from temperate eucalypt plantations: a Tasmanian case study [J]. Southern Forests A Journal of Forest Science, 2008, 70(1): 45?57.
[6] Hung T D, Brawner J T, Meder R, et al. Estimates of genetic parameters for growth and wood properties inF. Muell. to support tree breeding in Vietnam [J]. Annals of Forest Science, 2015,72(2):205?217.
[7] Malan F S. The wood properties and sawn board quality of the×hybrid[J].Southern African Forestry Journal, 2000,188(1): 29?35.
[8] Trugilho P F, Bianchi M L, Rosado S C D S, et al. Wood quality of natural hybrid and species ofclones [J]. Scientia Forestalis, 2007,73: 55?62.
[9] Henson M, Vanclay J K. The Value of good sites and good genotypes: an analysis ofplantations in NSW[Z]//IUFRO.The Economics and Management of High Productivity Plantations. Lugo, Spain, 2004.
[10] Ananías R A, Sepúlveda?Villarroel V, Pérez?Pe?a N, et al. Collapse ofwood after drying depending on the radial location within the stem [J]. Drying Technology, 2014, 32(14): 1699?1705.
[11] Hamilton M G, Greaves B L, Potts B M, et al. Patterns of longitudinal within?tree variation in pulpwood and solidwood traits differ amonggenotypes [J]. Annals of Forest Science, 2007, 64(8): 831?837.
[12] Nicholson J E. Growth stress differences in Eucalypts [J]. Forest Science,1973, 9(3):169?74.
[13] Forrester D I, Medhurst J L, Wood M, et al. Growth and physiological responses to silviculture for producing solid?wood products fromplantations: An Australian perspective [J].Forest Ecology and Management, 2010, 259(9): 1819?1835.
[14] Chen S X, Wu Z H, Li Z H, et al. Selection of species for solid wood production in southern China[J].Journal of Tropical Forest Science, 2010, 22(3): 308?316.
[15] Chauhan S S, Aggarwal P. Segregation ofSm. clones for properties relevant to solid wood products [J].Annals of Forest Science, 2011, 68(3): 511?521.
[16] Alzate B A, Bibiana S. Wood characterization of,andclones [D].Brazil, Universidade de S?o Paulo,2007.
[17] Hii S Y, Ha K S, Ngui M L, et al.Assessment of plantation?grownin Borneo,Malaysia for solid wood utilisation [J]. Australian Forestry, 2017, 80(1):1?8.
[18] Clarke B, Mcleod I, Vercoe T. Trees for farm forestry: 22 promising species [R].Canberra:Rural Industries Research and Development Corporation, 2009.
[19] Gavran M. Canberra, Australian plantation statistics 2014 update [R].Canberra:Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), 2014.
[20] Kennedy S K, Dungey H, Yanchuk A D, et al.: Its current status in New Zealand and breeding objectives for the future [J]. Silvae Genetica,2011,60(6): 259?266.
[21] 陳少雄.桉樹大徑材培育??桉樹培育的新方向[J].桉樹科技,2002(1): 6?10.
[22] Cassidy M, Palmer G, Rgb S. The effect of wide initial spacing on wood properties in plantation grown[J].New Forests,2013,44(6): 919?936.
[23] Neilsen W A, Gerrand A M. Growth and branching habit ofat different spacing and the effect on final crop selection [J]. Forest Ecology and Management, 1999, 123(2/3): 217?229.
[24] Pinkard E A, Neilsen W A. Crown and stand characteristics ofin response to initial spacing: implications for thinning [J].Forest Ecology and Management, 2003, 172(2/3): 215?227.
[25] Alcorn P J, Pyttel P, Bauhus J, et al. Effects of initial planting density on branch development in 4?year?old plantation grownandtrees [J]. Forest Ecology and Management, 2007, 252(1/3): 41?51.
[26] 陳少雄,李志輝,李天會,等.不同初植密度的桉樹人工林經(jīng)濟(jì)效益分析[J].林業(yè)科學(xué)研究,2008,21(1):1?6.
[27] Michael H. Influence of planting spacing on mechanical properties of×planted in China[J].Chinese Forestry Science and Technology,2008, 17(1):57-63.
[28] 張華林,李天會,吳志華,等.不同林分密度對桉樹幼林木材材性的影響[J].中南林業(yè)科技大學(xué)學(xué)報,2010,30(6):85?91.
[29] Malan F S, Hoon M. Effect of initial spacing and thinning on some wood properties of[J].South African Forestry Journal, 1993, 163(1): 13?20.
[30] Smith R G B,Brennan P D.First thinning in sub?tropical eucalypt plantations grown for high?value solid?wood products:a review[J].Australian Forestry,2006,69(4):305?312.
[31] Forrester D I, Medhurst J L, Wood M, et al., The effect of solid?wood silviculture on growth, form and wood properties inplantations: an Australian perspective [R].Victoria:Forest and Wood Products Limited Australia,2013.
[32] Wilkins A P, Kitahara R. Silvicultural treatments and associated growth rates, growth strains and wood properties in 12.5?year?old[J]. Australian Forestry, 1991,54(1/2): 99?104.
[33] Medhurst J L, Beadle C L, Neilsen W A. Early?age and later?age thinning affects growth, dominance, and intras [J]. Canadian Journal of Forest Research, 2001, 31(2): 187?197.
[34] Forrester D I, Baker T G. Growth responses to thinning and pruning in,, andplantations in southeastern Australia [J]. Canadian Journal of Forest Research, 2012, 42(1): 75?87.
[35] Smith F W, Long J N. Age?related decline in forest growth: an emergent property [J]. Forest Ecology and Management, 2001, 144(1): 175?181.
[36] Nolan G B, Greaves B L, Washusen R, et al.Eucalypt Plantations for Solid Wood Products in Australia?A Review ‘If you don’t prune it, we can’t use it’[J].Journal of Animal Clinical Research Foundation, 2005, 6:7?21.
[37] Washusen R. Silvicultural effects on tension wood occurrence in[R].Canberra:CSIRO?FFP Client,2002.
[38] Candy S G, Gerrand A M.Comparison of financial returns from sawlog regimes forplantations in Tasmania[J].Tasforests,1997,9:35?50.
[39] Glencross K, Palmer G, Pelletier M C, et al.Basal area increment is unaffected by thinning intensity in youngandplantations across different quality sites [J].Forest Ecology and Management,2014, 318:326?333.
[40] Medhurst J L, Beadle C L. Crown structure and leaf area index development in thinned and unthinnedplantations [J]. Tree Physiology, 2001, 21(12?13): 989?9/9.
[41] Washusen R, Waugh G, Hudson I, et al. Appearance product potential of plantation hardwoods from medium rainfall areas of the southern Murray?Darling Basin. Green product recovery [J]. Australian Forestry, 2000, 63(1): 66?71.
[42] Smith R G B, Dingle J, Kearney D, et al. Branch occlusion after pruning in four contrasting sub?tropical eucalypt species [J].Journal of Tropical Forest Science, 2016, 18(2): 117?123.
[43] Barry K M, Hall M F, Mohammed C L. The effect of time and site on incidence and spread of pruning?related decay in plantationgrown[J]. Canadian Journal of Forest Research, 2005, 35(3): 495?502.
[44] Sch?nau A P G. The effect of planting espacement and pruning on growth, yield and timber density of[J]. South African Forestry Journal, 1974,88(1):16?23.
[45] Pinkard E A, Mohammed C, Beadle C L, et al. Growth responses, physiology and decay associated with pruning plantation?grownLabill. and(Deane and Maiden) Maiden [J]. Forest Ecology
and Management, 2004, 200(1/3): 263?277.
[46] Forrester D I, Collopy J J, Beadle C L, et al. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light?use efficiency in a youngplantation [J]. Forest Ecology and Management, 2013, 288(Supplement C): 21?30.
[47] Field C, Mooney H A. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a[J]. Oecologia, 1983, 56(2/3): 348?355.
[48] Marks G C, Incoll W D, Long I R. Effects of crown development, branch shed and competition on wood defect inand[J]. Australian Forest Research, 1986, 16(2):117?129.
[49] Wang C S, Zhao Z G, Hein S, et al. Effect of planting density on knot attributes and branch occlusion ofunder natural pruning in Southern China [J]. Forests, 2015, 6(4): 1343?1361.
[50] Hein S. Knot attributes and occlusion of naturally pruned branches of[J].Forest Ecology and Management,2008,256(12): 2046?2057.
[51] Alcorn P J, Forrester D I, Smith R G B, et al. Crown structure and vertical foliage distribution in 4?year?old plantation?grownand[J].Trees,2013,27(3): 555?566.
[52] Nutto L, Malinovski R, Dobner Júnior M, et al. Branch development of eucalypts managed for sawlogs [J]. Rontgenpraxis, 2016, 21(3): 413?421.
[53] Alcorn P J, Forrester D I, Smith R G B, et al. The influence of site quality on timing of pruning inandplantations [J]. Australian Forestry, 2013,76(1): 25?36.
[54] Pinkard E A, Baillie C C,Patel V, et al.Growth responses ofLabill.to nitrogen application and severity,pattern and frequency of artificial defoliation [J].Forest Ecology and Management,2006,229(1/3):378?387.
[55] Wiseman D, Smethurst P, Pinkard L, et al. Pruning and fertiliser effects on branch size and decay in twoplantations[J].Forest Ecology and Management,2006, 225(1): 123?133.
[56] Joseluiz S, Dan B, Michaelg R, et al. The BrazilPotential Productivity Project: Influence of water, nutrients and stand uniformity on wood production[J].Forest Ecology and Management,2010,259(9):1684?1694.
[57] Cromer R N, Cameron D, Cameron J N, et al. Response of eucalypt species to fertiliser applied soon after planting at several sites [J].Australian Forestry, 1981,44(1): 3?13.
[58] 李寶福.不同肥料等養(yǎng)分量施肥對桉樹生長的影響[J]. 河北林果研究,2001,16(3):219?225.
[59] 陳少雄,彭彥,Arnold R,等.施肥對尾巨桉生長及大徑材材性的影響分析[J].桉樹科技,2017,34(1):17?21.
[60] Washusen R, Baker T, Menz D, et al. Effect of thinning and fertilizer on the cellulose crystallite width of[J]. Wood Science and Technology, 2005, 39(7): 569?578.
[61] Forrester D I, Collopy J J, Beadle C L, et al. Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a youngplantation [J]. Forest Ecology and Management, 2012, 267(3): 104?116.
A Review of Silviculture for Solid-wood Production fromPlantations
HE Sha-e, OUYANG Lin-nan, ZHU Lin-sheng, CHEN Shao-xiong
()
The area of plantations in China dedicated to production of larger diameterlogs to supply higher value solid-wood products has expanded over recent years. However, the knowledge of appropriate silvicultural management for such plantations is lacking. To provide a basis for efficient utilization ofresources and sustainable development of plantations targeting larger diameter log production, we present a review of the silvicultural treatments and regimes used for management of such plantations around the world, including: tree species selection, stand density, thinning, pruning and fertilization. The effects of the silvicultural management on tree growth and wood quality were also summarized.
; large diameter timber; solid-wood; silvicultural regimes
S753
A
國家重點研發(fā)計劃課題“桉樹大徑材定向培育技術(shù)”(2016YFD0600502);廣東省林業(yè)科技創(chuàng)新項目“桉樹大徑材與林下經(jīng)濟(jì)培育技術(shù)研究與示范”(2016KJCX005)。
何沙娥(1983— ),女,博士,主要從事人工林定向培育技術(shù)研究,E-mail:cerchese@caf.ac.cn.
陳少雄(1965— ),男,博士,研究員,主要從事桉樹定向培育研究,E-mail:sxchen01@163.com.