• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      蘋(píng)果炭疽葉枯病菌與寄主互作分子致病機(jī)理研究進(jìn)展

      2018-12-31 17:56:00李曉軍余賢美王海波馬亞男
      安徽農(nóng)業(yè)科學(xué) 2018年12期
      關(guān)鍵詞:炭疽葉枯病侵染

      翟 浩,李曉軍,余賢美,王海波,馬亞男

      (山東省果樹(shù)研究所,山東泰安 271000)

      植物真菌病害可造成巨大的產(chǎn)量損失,且一直威脅全球的食品安全[1-2]。培育和種植抗病品種是控制植物真菌病害較為有效且環(huán)保的方法[3]。目前,從分子和遺傳學(xué)角度對(duì)植物病原真菌進(jìn)行了較為深入的研究,揭示了大量真菌的分子致病機(jī)理[4-5]。

      蘋(píng)果炭疽葉枯病(Glomerellaleaf spot,GLS)是由刺盤(pán)孢屬(Colletotrichum)真菌引起的蘋(píng)果部分栽培品種的葉部病害,近年來(lái)該病害在我國(guó)各蘋(píng)果產(chǎn)區(qū)普遍發(fā)生,可造成蘋(píng)果樹(shù)葉片大量脫落和果實(shí)腐爛,進(jìn)而削弱樹(shù)勢(shì),引起次年果實(shí)減產(chǎn)甚至絕產(chǎn),嚴(yán)重制約了蘋(píng)果產(chǎn)業(yè)的健康可持續(xù)發(fā)展[6]。深入研究蘋(píng)果炭疽葉枯病菌的分子致病機(jī)理,有助于分析蘋(píng)果炭疽葉枯病發(fā)展迅速、危害嚴(yán)重的原因,為針對(duì)該病害的藥劑研發(fā)和果園管理措施優(yōu)化提供參考,同時(shí)為研究其他病原菌與植物的互作機(jī)制提供理論依據(jù)。

      1 蘋(píng)果炭疽葉枯病研究現(xiàn)狀

      蘋(píng)果炭疽葉枯病是我國(guó)近年來(lái)新發(fā)現(xiàn)的一種流行性病害,主要危害嘎啦和金冠系列蘋(píng)果品種。Wang 等[7]對(duì)我國(guó)蘋(píng)果炭疽葉枯病的癥狀和病原進(jìn)行了首次報(bào)道。目前,該病害逐漸蔓延,在山東、陜西、遼寧、河南和河北等主要蘋(píng)果生產(chǎn)省份已普遍發(fā)生[6]。

      蘋(píng)果炭疽葉枯病最初被認(rèn)為由圍小叢殼(Glomerellacingulata,無(wú)性態(tài)為膠孢炭疽菌C.gloeosporioides)引起[8]。后經(jīng)研究發(fā)現(xiàn),尖胞炭疽菌(C.acutatum)[9]和喀斯特炭疽菌(C.karstii)[10]也可引起蘋(píng)果炭疽葉枯病。王薇等[11]根據(jù)新的刺盤(pán)孢分類(lèi)系統(tǒng)[12],利用形態(tài)學(xué)、培養(yǎng)特性、多基因系統(tǒng)發(fā)育及致病性等特征,明確了河南省和陜西省部分蘋(píng)果產(chǎn)區(qū)蘋(píng)果炭疽葉枯病的病原為果生刺盤(pán)孢(C.fructicola)和隱秘刺盤(pán)孢(C.aenigma)2種。通過(guò)對(duì)山東省蘋(píng)果主產(chǎn)區(qū)蘋(píng)果炭疽葉枯病病原的形態(tài)學(xué)研究和多基因系統(tǒng)發(fā)育分析,認(rèn)為引起該地區(qū)蘋(píng)果炭疽葉枯病的病原為果生刺盤(pán)孢(C.fructicola)。

      近年來(lái),國(guó)內(nèi)外對(duì)于蘋(píng)果炭疽葉枯病的研究集中于病原群體結(jié)構(gòu)、病原侵染機(jī)制、病害發(fā)生規(guī)律和藥劑防治等。符丹丹等[13]利用優(yōu)化后的ISSR-PCR反應(yīng)體系對(duì)蘋(píng)果炭疽葉枯病菌遺傳多樣性進(jìn)行分析。任斌等[14]利用光學(xué)顯微鏡和掃描電鏡對(duì)圍小叢殼(G.cingulata)在嘎啦蘋(píng)果葉片上的侵染過(guò)程進(jìn)行了研究,認(rèn)為該菌發(fā)育和侵染過(guò)程中的一些特點(diǎn)可能是造成病害暴發(fā)的原因。王冰等[15-16]檢測(cè)了6種藥劑對(duì)圍小叢殼的內(nèi)吸治療效果和8種藥劑的保護(hù)效果,并測(cè)試了溫度、濕度和光照對(duì)該菌產(chǎn)生分生孢子和子囊孢子的影響。王海艷等[17]和張俊祥等[18]建立并優(yōu)化了農(nóng)桿菌介導(dǎo)的圍小叢殼的遺傳轉(zhuǎn)化體系,吳建圓等[19]利用農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化技術(shù)將nptⅡ(新霉素磷酸轉(zhuǎn)移酶基因)基因盒整合到圍小叢殼基因組中,韓小路等[20]建立了聚乙二醇介導(dǎo)的果生刺盤(pán)孢(C.fructicola)原生質(zhì)體的轉(zhuǎn)化體系。

      目前,從分子角度對(duì)蘋(píng)果炭疽葉枯病菌與寄主互作機(jī)制的研究相對(duì)較少。Perfect等[21]認(rèn)為刺盤(pán)孢屬(Colletotrichum)真菌是研究植物病原真菌與寄主互作非常理想的模式菌之一。Sygmund等[22-23]對(duì)圍小叢殼的一個(gè)依賴(lài)于FAD的葡萄糖脫氫酶基因進(jìn)行了真核和原核表達(dá),該酶被認(rèn)為可以抑制植物漆酶、酚氧化酶和過(guò)氧化氫酶的活性,在侵染植物過(guò)程中可能起促進(jìn)作用。Seman等[24]利用畢赤酵母對(duì)圍小叢殼的角質(zhì)酶基因進(jìn)行了高效表達(dá)。Wang等[25-26]研究認(rèn)為,茉莉酸、脫落酸和一些芳香揮發(fā)物的協(xié)同作用在葡萄果實(shí)抵御圍小叢殼的侵染過(guò)程中發(fā)揮著重要作用。Velho等[27]研究發(fā)現(xiàn)果生刺盤(pán)孢可以通過(guò)抑制植物的氧化防衛(wèi)反應(yīng)來(lái)達(dá)到在蘋(píng)果葉片上成功定殖和侵染的目的。雖然這些研究均為蘋(píng)果炭疽葉枯病菌的研究奠定了一定基礎(chǔ),但對(duì)于蘋(píng)果炭疽葉枯病菌-蘋(píng)果葉片這個(gè)病害系統(tǒng),病原表達(dá)在互作過(guò)程中發(fā)揮關(guān)鍵作用的蛋白質(zhì)分子尚未做出明確判斷和功能驗(yàn)證。因此,從互作蛋白著手,探討蘋(píng)果炭疽葉枯病的分子致病機(jī)理,從根本上解析該病害發(fā)展迅速、危害嚴(yán)重的原因是十分必要的。

      2 植物的先天免疫系統(tǒng)與互作蛋白

      植物的先天免疫反應(yīng)包含2個(gè)層面[28],其中第1個(gè)層面是由病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)觸發(fā)的免疫反應(yīng)(PAMPs triggered immunity,PTI)。PTI通過(guò)植物跨膜的模式識(shí)別受體(pattern-recognition receptors,PRRs)來(lái)實(shí)現(xiàn),PRRs可以識(shí)別保守的病原相關(guān)分子模式,激活寄主植物的第一層免疫反應(yīng)來(lái)抵御入侵微生物的定殖[3,29-30]。植物的PRRs感知PAMPs,會(huì)快速啟動(dòng)與PTI相關(guān)的一系列反應(yīng),包括絲裂原活性蛋白的級(jí)聯(lián)、防衛(wèi)反應(yīng)相關(guān)基因的響應(yīng)和細(xì)胞死亡等[5,31-32]。植物先天免疫系統(tǒng)的第2個(gè)層面是以高度多樣化的抗性蛋白(R蛋白)為基礎(chǔ),這些R蛋白可以識(shí)別各種病原效應(yīng)蛋白(effector),激活植物的免疫反應(yīng),即蛋白觸發(fā)的免疫反應(yīng)(effector-triggered immunity,ETI)[33-34]。ETI大多在細(xì)胞內(nèi)進(jìn)行,往往十分迅速和強(qiáng)烈,常會(huì)伴隨著植物的過(guò)敏性壞死反應(yīng)(hypersensitive reaction,HR)[3]。不同種類(lèi)炭疽菌的體外基因敲出和回補(bǔ)課題的開(kāi)展促進(jìn)了對(duì)這類(lèi)模式病原物的研究和利用[21],目前已對(duì)可侵染模式植物擬南芥(Arabidopsisthaliana)和十字花科蔬菜的菜炭疽菌(C.higginsianum)[35-37]和可侵染本氏煙(Nicotianabenthamiana)和煙草(N.tabacum)以及西瓜炭疽菌(C.orbiculare)[38]進(jìn)行了深入研究。然而,對(duì)重要經(jīng)濟(jì)作物炭疽病菌的PAMPs和效應(yīng)蛋白的研究,還遠(yuǎn)滯后于對(duì)這些真菌的次生代謝分析等生物化學(xué)方面,到目前為止僅少數(shù)幾種效應(yīng)蛋白得到驗(yàn)證[39-42]。

      PAMPs能在植物組織表面、植物細(xì)胞間隙或植物細(xì)胞內(nèi)起作用[43-44],通過(guò)與寄主細(xì)胞的靶蛋白結(jié)合,刺激植物快速產(chǎn)生Ca2+、NO和H2O2等早期免疫防御反應(yīng)信號(hào)分子[45],這些信號(hào)分子通過(guò)復(fù)雜的信號(hào)網(wǎng)絡(luò)進(jìn)行逐級(jí)傳遞放大,產(chǎn)生乙烯、水楊酸、吲哚乙酸、茉莉酸、植保素和病程相關(guān)蛋白等,最終使植物獲得系統(tǒng)抗病性[46]。PAMPs與植物靶蛋白的結(jié)合在誘導(dǎo)植物抗病信號(hào)轉(zhuǎn)導(dǎo)途徑中發(fā)揮著重要作用,是揭示激發(fā)子誘導(dǎo)植物抗病分子機(jī)制的關(guān)鍵環(huán)節(jié)。研究發(fā)現(xiàn),植物病原真菌的一個(gè)內(nèi)切纖維素酶,具有PAMPs功能,可以誘導(dǎo)植物的防衛(wèi)反應(yīng)(植物細(xì)胞過(guò)敏性壞死反應(yīng)、植物防衛(wèi)反應(yīng)基因表達(dá)、活性氧產(chǎn)生、培養(yǎng)基堿化、鈣離子積累、乙烯合成等),并其激發(fā)活性與催化活性不相關(guān)[32]。具有激發(fā)子功能的真菌木聚糖酶、果膠酶和內(nèi)切纖維素酶等被稱(chēng)為PAMPs分子[5,47-49]。PAMPs涉及各種結(jié)構(gòu)的分子,并在病原種屬間保守。較為典型的PAMPs有細(xì)菌中的鞭毛蛋白、延伸因子EF-Tu、肽聚糖和脂多糖等,真菌中有細(xì)胞壁多聚糖和幾丁質(zhì)等,卵菌中有葡聚糖[50-52]。一般認(rèn)為PAMPs在微生物適應(yīng)與生存過(guò)程中發(fā)揮重要作用[53]。

      效應(yīng)蛋白方面,目前研究證實(shí)可以利用病原效應(yīng)蛋白作為分子探針,篩選鑒定寄主的感病基因(S基因)[54]。感病基因編碼蛋白被病原真菌識(shí)別,引起病原菌擴(kuò)散并最終導(dǎo)致植物組織病害。如果使植物感病基因失活,則可以降低病原菌的致病能力,誘導(dǎo)寄主產(chǎn)生持久的抗病性[55]。近10年來(lái),多項(xiàng)研究也證實(shí)了這一點(diǎn),以植物感病基因?qū)Σ≡婢?yīng)蛋白的識(shí)別為基礎(chǔ)產(chǎn)生的免疫反應(yīng),可以抵御多種病原菌的侵染[54]。

      包括蘋(píng)果炭疽葉枯病菌在內(nèi)的植物病原真菌都會(huì)在侵染寄主過(guò)程中表達(dá)分泌互作蛋白,尤其是PAMPa和效應(yīng)蛋白。期望通過(guò)對(duì)蘋(píng)果炭疽葉枯病菌-蘋(píng)果葉片這個(gè)病害系統(tǒng)中互作蛋白的篩選與功能驗(yàn)證,尋找保守的PAMPs和效應(yīng)蛋白分子,分析和討論蘋(píng)果炭疽葉枯病菌的分子致病機(jī)理。

      3 展望

      我國(guó)是世界蘋(píng)果生產(chǎn)大國(guó),種植面積和產(chǎn)量均居世界前列。近年來(lái),蘋(píng)果炭疽葉枯病在全國(guó)各蘋(píng)果產(chǎn)區(qū)大范圍暴發(fā),嚴(yán)重影響了果實(shí)的產(chǎn)量和品質(zhì),制約了蘋(píng)果產(chǎn)業(yè)的健康可持續(xù)發(fā)展。目前對(duì)蘋(píng)果炭疽葉枯病菌分子致病機(jī)理和蘋(píng)果抗病機(jī)理的研究尚不充分。以蘋(píng)果炭疽葉枯病菌為研究對(duì)象,從病原-寄主互作蛋白著手,闡述該病菌的分子致病機(jī)理,可以為防控藥劑研發(fā)和管理措施優(yōu)化提供參考,為該病害防治及抗病品種培育提供新思路。

      [1] PENNISI E.Armed and dangerous[J].Science,2010,327(5970):804-805.

      [2] FISHER M C,HENK D A,BRIGGS C J,et al.Emerging fungal threats to animal,plant and ecosystem health[J].Nature,2012,484(7393):186-194.

      [3] DODDS P N,RATHJEN J P.Plant immunity:Towards an integrated view of plant-pathogen interactions[J].Nature reviews genetics,2010,11(8):539-548.

      [4] BOLLER T,FELIX G.A renaissance of elicitors:Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J].Annual review of plant biology,2009,60(1):379-406.

      [5] BOLLER T,HE S Y.Innate immunity in plants:An arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J].Science,2009,324(5928):742-744.

      [6] 李保華,王彩霞,董向麗.我國(guó)蘋(píng)果主要病害研究進(jìn)展與病害防治中的問(wèn)題[J].植物保護(hù),2013,39(5):46-54.

      [7] WANG C X,ZHANG Z F,LI B H,et al.First report ofGlomerellaleaf spot of apple caused byGlomerellacingulatain China[J].Plant disease,2012,96(6):912.

      [8] SUTTON T B,SANHUEZA R M.Necrotic leaf blotch of Golden Delicious-Glomerellaleaf spot:A resolution of common names[J].Plant disease,1998,82(3):267-268.

      [10] VELHO A C,STADNIK M J,CASANOVA L,et al.First report ofColletotrichumkarstiicausing glomerella leaf spot on apple in Santa Catarina State,Brazil[J].Plant disease,2014,98(1):157.

      [11] 王薇,符丹丹,張榮,等.蘋(píng)果炭疽葉枯病病原學(xué)研究[J].菌物學(xué)報(bào),2015,34(1):13-25.

      [12] CANNON P F,DAMM U,JOHNSTON P R,et al.Colletotrichum-current status and future directions[J].Studies in mycology,2012,73(1):181-213.

      [13] 符丹丹,莊杰麗,張榮,等.蘋(píng)果炭疽病病原菌ISSR-PCR反應(yīng)體系的優(yōu)化及遺傳多樣性分析[J].植物保護(hù)學(xué)報(bào),2013,40(3):231-236.

      [14] 任斌,高小寧,韓青梅,等.蘋(píng)果炭疽葉枯病病原Glomerellacingulata及其侵染過(guò)程[J].植物保護(hù)學(xué)報(bào),2014,41(5):608-614.

      [15] 王冰,王彩霞,史祥鵬,等.不同殺菌劑對(duì)蘋(píng)果炭疽葉枯病的防治效果[J].植物保護(hù),2014,40(6):176-180.

      [16] 王冰,張路,李保華,等.溫度、濕度和光照對(duì)蘋(píng)果炭疽葉枯病菌(Glomerellacingulata)產(chǎn)孢的影響[J].植物病理學(xué)報(bào),2015,45(5):530-540.

      [17] 王海艷,李保華,張清明,等.農(nóng)桿菌介導(dǎo)蘋(píng)果炭疽病菌的遺傳轉(zhuǎn)化及轉(zhuǎn)化子鑒定[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(9):1799-1807.

      [18] 張俊祥,吳建圓,冀志蕊,等.農(nóng)桿菌介導(dǎo)的蘋(píng)果炭疽葉枯病菌遺傳轉(zhuǎn)化及插入突變體的篩選[J].基因組學(xué)與應(yīng)用生物學(xué),2014,33(6):1261-1267.

      [19] 吳建圓,冀志蕊,李壯,等.nptII基因真菌表達(dá)載體的構(gòu)建及在蘋(píng)果炭疽葉枯病菌遺傳轉(zhuǎn)化中的應(yīng)用[J].基因組學(xué)與應(yīng)用生物學(xué),2015,34(10):2156-2160.

      [20] 韓小路,白靜科,張瑋,等.PEG介導(dǎo)的蘋(píng)果果生刺盤(pán)孢Colletotrichumfructicola原生質(zhì)體轉(zhuǎn)化[J].西北農(nóng)業(yè)學(xué)報(bào),2016,25(3):442-449.

      [21] PERFECT S E,HUGHES H B,O'CONNELL R J,et al.Colletotrichum:A model genus for studies on pathology and fungal-plant interactions[J].Fungal genetics and biology,1999,27(2/3):186-198.

      [22] SYGMUND C,STAUDIGL P,KLAUSBERGER M,et al.Heterologous overexpression ofGlomerellacingulataFAD-dependent glucose dehydrogenase inEscherichiacoliandPichiapastoris[J].Microbial cell factories,2011,10(1):1-9.

      [23] SYGMUND C,KLAUSBERGER M,FELICE A K,et al.Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase fromGlomerellacingulatasuggests a role in plant pathogenicity[J].Microbiology,2011,157(Pt11):3203-3212.

      [24] SEMAN W M,BAKAR S A,BUKHARI N A,et al.High level expression ofGlomerellacingulatacutinase in dense cultures ofPichiapastorisgrown under fed-batch conditions[J].Journal of biotechnology,2014,184:219-228.

      [25] WANG S S,SAITO T,OHKAWA K.α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid,jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerellacingulata)[J].Journal of plant hysiology,2016,192:90-97.

      [26] WANG S S,TAKAHASHI H,SAITO T,et al.Jasmonate application influences endogenous abscisic acid,jasmonic acid and aroma volatiles in grapes infected by a pathogen (Glomerellacingulata)[J].Scientia horticulturae,2015,192:166-172.

      [27] VELHO A C,ROCKENBACH M F,MONDINO P,et al.Modulation of oxidative responses by a virulent isolate ofColletotrichumfructicolain apple leaves[J].Fungal biology ,2016,120(10):1184-1193.

      [28] SCHWESSINGER B,RONALD P C.Plant innate immunity:Perception of conserved microbial signatures[J].Annual review of plant biology,2012,63(3):451-482.

      [29] JONES J D,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329.

      [30] ZIPFEL C.Pattern-recognition receptors in plant innate immunity[J].Current opinion in immunology,2008,20(1):10-16.

      [31] ALTENBACH D,ROBATZEK S.Pattern recognition receptors:From the cell surface to intracellular dynamics[J].Molecular plant-microbe interactions,2007,20(20):1031-1039.

      [32] ZIPFEL C.Early molecular events in PAMP-triggered immunity[J].Current opinion in plant biology,2009,12(4):414-420.

      [33] ABRAMOVITCH R B,ANDERSON J C,MARTIN G B,et al.Bacterial elicitation and evasion of plant innate immunity[J].Nature reviews molecular cell biology,2006,7:601-611.

      [34] CHISHOLM S T,COAKER G,DAY B,et al.Host-microbe interactions:Shaping the evolution of the plant immune response[J].Cell,2006,124(4):803-814.

      [35] NARUSAKA Y,NARUSAKA M,PARK P,et al.RCH1,a locus inArabidopsisthat confers resistance to the hemibiotrophic fungal pathogenColletotrichumhigginsianum[J].Molecular plant-microbe interactions,2004,17:749-762.

      [36] NARUSAKA M,SHIRASU K,NOUTOSHI Y,et al.RRS1 andRPS4 provide a dualResistance-gene system against fungal and bacterial pathogens[J].Plant journal,2009,60(2):218-226.

      [37] O’CONNELL R,HERBERT C,SREENIVASAPRASAD S,et al.A novelArabidopsis-Colletotrichumpathosystem for the molecular dissection of plant-fungal interactions[J].Molecular plant-microbe interactions,2004,17:272-282.

      [38] SHEN S,GOODWIN P H,HSIANG T.Infection ofNicotianaspecies by the anthracnose fungus,Colletotrichumorbiculare[J].European journal of plant pathology,2001,107:767-773.

      [39] KIM Y K,LIU Z M,LI D,et al.Two novel genes induced by hard-surface contact ofColletotrichumgloeosporioidesconidia[J].Journal of bacteriology,2000,182:4688-4695.

      [40] STEPHENSON S A,HATFIELD J,RUSU A G,et al.CgDN3:An essential pathogenicity gene ofColletotrichumgloeosporioidesnecessary to avert a hypersensitive-like response in the hostStylosanthesguianensis[J].Molecular plant-microbe interactions,2000,13:929-941.

      [41] KLEEMANN J,RINCON-RIVERA L J,TAKAHARA H,et al.Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogenColletotrichumhigginsianum[J].PLoS Pathogens,2012,8(4):1-15.

      [42] YOSHINO K,IRIEDA H,SUGIMOTO F,et al.Cell death ofNicotianabenthamianais induced by secreted protein NIS1 ofColletotrichumorbiculareand is suppressed by a homologue of CgDN3[J].Molecular plant-microbe interactions,2012,25:625-636.

      [43] HOGENHOUT S A,VAN DER HOORN R A L,TERAUCHI R,et al.Emerging concepts in effector biology of plant-associated organisms[J].Molecular plant-microbe interactions,2009,22(2):115-122.

      [44] LIU J L,WANG X J,MITCHELL T,et al.Recent progress and understanding of the molecular mechanisms of the rice-Magnaportheoryzaeinteraction[J].Molecular plant pathology,2010,11(3):419-427.

      [45] GARCIABRUGGER A,LAMOTTE O,VANDELLE E,et al.Early signaling events induced by elicitors of plant defenses[J].Molecular plant-microbe interactions,2006,19(7):711-724.

      [46] OLIVA R,WIN J,RAFFAELE S,et al.Recent developments in effector biology of filamentous plant pathogens[J].Cellular microbiology,2010,12(6):705-715.

      [47] MA Y N,HAN C,CHEN J Y,et al.Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity[J].Molecular plant pathology,2015,16(1):14-26.

      [48] POSTEL S,KEMMERLING B.Plant systems for recognition of pathogenassociated molecular patterns[J].Seminars in cell & developmental biology,2009,20(9):1025-1031.

      [49] ZHANG L H,KARS I,ESSENSTAM B,et al.Fungal endopolygalacturonases are recognized as MAMPs by theArabidopsisreceptor-like protein RBPG1[J].Plant physiology,2013,164:352-364.

      [50] FELIX G,DURAN J D,VOLKO S,et al.Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J].The plant journal,1999,18(3):265-276.

      [51] DOW M,NEWMAN M A,ROEPENACK E.The induction and modulation of plant defense responses by bacterial lipopolysaccharides[J].Annual review of phytopathology,2000,38:241-261.

      [52] ERBS G,SILIPO A,ASLAM S,et al.Peptidoglycan and muropeptides from pathogensAgrobacteriumandXanthomonaselicit plant innate immunity:Structure and activity[J].Chemistry & biology,2008,15(5):438-448.

      [53] THOMMA B P,NURNBERGER T,JOOSTEN M H.Of PAMPs and effectors:The blurred PTI-ETI dichotomy[J].Plant cell,2011,23(1):4-15.

      [54] GAWEHNS F,CORNELISSEN B J C,TAKKEN F L W.The potential of effector-target genes in breeding for plant innate immunity[J].Microb biotechnol,2013,6:223-229.

      [55] PAVAN S,JACOBSEN E,VISSER R G F,et al.Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance[J].Molecular breeding,2010,25:1-12.

      猜你喜歡
      炭疽葉枯病侵染
      揭示水霉菌繁殖和侵染過(guò)程
      帶你走進(jìn)炭疽的世界(下)
      帶你走進(jìn)炭疽的世界(上)
      2005-2018年中衛(wèi)市炭疽流行因素分析
      油茶炭疽病菌拮抗木霉菌的分離與篩選
      蕓薹根腫菌侵染過(guò)程及影響因子研究
      甘藍(lán)根腫病菌休眠孢子的生物學(xué)特性及侵染寄主的顯微觀察
      大蒜葉枯病重發(fā)原因分析與綠色防控技術(shù)
      上海蔬菜(2016年5期)2016-02-28 13:18:08
      水稻白葉枯病菌Ⅲ型效應(yīng)物基因hpaF與毒力相關(guān)
      煙草靶斑病(Thanatephorus cucumeris)侵染特性研究
      404 Not Found

      404 Not Found


      nginx
      巩留县| 蓬莱市| 扎囊县| 榆社县| 墨玉县| 沾化县| 石门县| 宁晋县| 容城县| 双桥区| 化隆| 苏尼特左旗| 台北市| 柳林县| 凤凰县| 莒南县| 正阳县| 平果县| 云南省| 伊川县| 高要市| 鸡东县| 开鲁县| 孝感市| 丘北县| 石屏县| 马尔康县| 东港市| 郯城县| 怀柔区| 郎溪县| 拜城县| 紫阳县| 土默特左旗| 江华| 永顺县| 左云县| 慈溪市| 定南县| 巩留县| 灵璧县|