• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      意大利蜜蜂幼蟲腸道在球囊菌侵染前期的差異表達(dá)microRNA及其調(diào)控網(wǎng)絡(luò)

      2019-01-09 10:48:12郭睿杜宇童新宇熊翠玲鄭燕珍徐國鈞王海朋耿四海周丁丁郭意龍吳素珍陳大福
      中國農(nóng)業(yè)科學(xué) 2019年1期
      關(guān)鍵詞:意蜂侵染宿主

      郭睿,杜宇,童新宇,熊翠玲,鄭燕珍,徐國鈞,王海朋,耿四海,周丁丁,郭意龍,吳素珍,陳大福

      ?

      意大利蜜蜂幼蟲腸道在球囊菌侵染前期的差異表達(dá)microRNA及其調(diào)控網(wǎng)絡(luò)

      郭睿,杜宇,童新宇,熊翠玲,鄭燕珍,徐國鈞,王海朋,耿四海,周丁丁,郭意龍,吳素珍,陳大福

      (福建農(nóng)林大學(xué)蜂學(xué)學(xué)院,福州 350002)

      【目的】微小RNA(microRNA,miRNA)是一類重要的基因表達(dá)調(diào)控因子,可影響宿主與病原間的互作過程。蜜蜂球囊菌()是一種特異性侵染蜜蜂幼蟲的致死性真菌病原。本研究旨在對(duì)意大利蜜蜂(,簡(jiǎn)稱意蜂)幼蟲腸道在球囊菌脅迫前期的差異表達(dá)miRNA(differentially expressed miRNA,DEmiRNA)及其靶基因進(jìn)行深入分析,在miRNA組學(xué)水平探究意蜂幼蟲在球囊菌侵染前期的脅迫應(yīng)答,并通過構(gòu)建顯著DEmiRNA的調(diào)控網(wǎng)絡(luò)篩選出與宿主應(yīng)答相關(guān)的關(guān)鍵miRNA?!痉椒ā坷胹mall RNA-seq(sRNA-seq)技術(shù)對(duì)正常及球囊菌侵染的意蜂4日齡幼蟲腸道(AmCK和AmT)進(jìn)行高通量測(cè)序,首先對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)控和評(píng)估,隨后將過濾后的數(shù)據(jù)與西方蜜蜂()參考基因組進(jìn)行比對(duì);將比對(duì)上的序列標(biāo)簽(tags)注釋到miRBase數(shù)據(jù)庫,得出已知miRNA的表達(dá)量;通過TPM(tags per million)算法對(duì)各樣本中miRNA的表達(dá)量進(jìn)行歸一化處理,以|log2fold change|≥1且≤0.05作為標(biāo)準(zhǔn)篩選得到顯著DEmiRNA;利用TargetFinder 軟件預(yù)測(cè)顯著DEmiRNA的靶基因,并對(duì)其進(jìn)行GO和KEGG代謝通路(pathway)富集分析。利用Cytoscape軟件對(duì)miRNA-mRNA調(diào)控網(wǎng)絡(luò)進(jìn)行可視化。最后,利用莖環(huán)反轉(zhuǎn)錄PCR(Stem-loop RT-PCR)和熒光定量PCR(qPCR)驗(yàn)證測(cè)序數(shù)據(jù)的可靠性?!窘Y(jié)果】AmCK和AmT樣品的測(cè)序分別得到13 553 302和10 777 534條原始讀段(raw reads),經(jīng)嚴(yán)格過濾后得到的有效讀段(clean reads)數(shù)分別為13 186 921和10 480 913條。各樣品的生物學(xué)重復(fù)間的Pearson相關(guān)性系數(shù)分別在0.9822和0.9508以上。共有10個(gè)顯著DEmiRNA,包括4個(gè)上調(diào)miRNA和6個(gè)下調(diào)miRNA。顯著DEmiRNA在AmT的整體表達(dá)水平低于AmCK。10個(gè)顯著DEmiRNA可靶向結(jié)合3 788個(gè)靶基因,其中上調(diào)miRNA的1 240個(gè)靶基因可注釋到GO數(shù)據(jù)庫中的39個(gè)GO條目,主要富集在結(jié)合、細(xì)胞進(jìn)程、代謝進(jìn)程和應(yīng)激反應(yīng)等;下調(diào)miRNA的749個(gè)靶基因可注釋到34個(gè)GO條目,主要富集在細(xì)胞進(jìn)程、結(jié)合、代謝進(jìn)程和應(yīng)激反應(yīng)等。KEGG數(shù)據(jù)庫注釋結(jié)果顯示,上調(diào)miRNA和下調(diào)miRNA的靶基因分別注釋到95和66條代謝通路,富集基因數(shù)最多的分別是Wnt信號(hào)通路、Hippo信號(hào)通路、光傳導(dǎo)以及內(nèi)吞作用、磷脂酰肌醇信號(hào)系統(tǒng)、嘌呤代謝。對(duì)于上調(diào)和下調(diào)miRNA,分別有31和52個(gè)靶基因注釋到內(nèi)吞作用,15和7個(gè)靶基因注釋到泛素介導(dǎo)的蛋白水解,11和5個(gè)靶基因注釋到Jak-STAT信號(hào)通路,1和3個(gè)靶基因注釋到MAPK信號(hào)通路。顯著DEmiRNA與靶mRNA之間形成復(fù)雜的調(diào)控網(wǎng)絡(luò),7個(gè)顯著DEmiRNA靶向結(jié)合96個(gè)與Wnt信號(hào)通路相關(guān)的mRNA,8個(gè)顯著DEmiRNA靶向結(jié)合55個(gè)與內(nèi)吞作用相關(guān)的mRNA。Stem-loop RT-PCR和qPCR結(jié)果驗(yàn)證了測(cè)序數(shù)據(jù)的可靠性?!窘Y(jié)論】對(duì)意蜂幼蟲腸道在球囊菌侵染前期的DEmiRNA及其靶基因進(jìn)行預(yù)測(cè)和分析,并構(gòu)建和分析了DEmiRNA-mRNA調(diào)控網(wǎng)絡(luò),研究結(jié)果提供了宿主miRNA的表達(dá)譜和差異表達(dá)信息,揭示了DEmiRNA通過調(diào)控細(xì)胞生命活動(dòng)、新陳代謝以及部分細(xì)胞和體液免疫等生物學(xué)過程參與宿主的脅迫應(yīng)答。miR-4331-y、miR-4968-y、miR-8440-y、novel-m0023-5p和novel-m0025-3p共同參與了宿主的Wnt信號(hào)通路和內(nèi)吞作用的調(diào)控,可作為白堊病治療的潛在分子靶標(biāo)。

      意大利蜜蜂;幼蟲腸道;發(fā)育;差異表達(dá)微小RNA;調(diào)控網(wǎng)絡(luò)

      0 引言

      【研究意義】意大利蜜蜂(,簡(jiǎn)稱意蜂)是我國養(yǎng)蜂生產(chǎn)中的主要蜂種,在農(nóng)業(yè)生產(chǎn)和生態(tài)保護(hù)等方面具有重要價(jià)值[1]。白堊病是蜜蜂球囊菌()特異性侵染蜜蜂幼蟲而引起的致死性真菌病害,對(duì)養(yǎng)蜂生產(chǎn)造成巨大損失。蜜蜂幼蟲食入被球囊菌孢子污染的食物,孢子進(jìn)入中腸后開始低水平萌發(fā),到了預(yù)蛹期隨著中腸和后腸的連通,孢子進(jìn)入后腸后在氧氣的刺激下劇烈萌發(fā),同時(shí)菌絲大量生長(zhǎng)并陸續(xù)穿透腸壁和體壁,從而導(dǎo)致幼蟲死亡[2]。目前,有關(guān)蜜蜂幼蟲響應(yīng)球囊菌脅迫應(yīng)答及分子調(diào)控機(jī)制的研究報(bào)道較少。微小RNA(microRNA,miRNA)是一類長(zhǎng)度約為18—25個(gè)核苷酸的非編碼RNA(non-coding RNA,ncRNA),通過與其靶基因3′ UTR(untranslated region)特異性結(jié)合,降解或抑制mRNA的蛋白質(zhì)翻譯過程[3]。作為基因表達(dá)的關(guān)鍵調(diào)控因子,miRNA可廣泛參與細(xì)胞增殖與分化[4]、生長(zhǎng)發(fā)育[5]、細(xì)胞凋亡[6]和抗病毒[7]等生物學(xué)過程。近年來,較多的研究結(jié)果表明miRNA參與對(duì)昆蟲及其病原互作的調(diào)控[8-9]。因此,解析蜜蜂幼蟲在球囊菌侵染前期的miRNA表達(dá)譜,深入研究差異表達(dá)miRNA(differentially expressed miRNA,DEmiRNA)及其調(diào)控網(wǎng)絡(luò),可為宿主響應(yīng)球囊菌脅迫的分子調(diào)控及宿主-病原互作機(jī)制提供必要基礎(chǔ),也能為宿主的關(guān)鍵調(diào)控miRNA的篩選和功能研究提供重要的信息和線索。【前人研究進(jìn)展】ZHANG等[10]研究發(fā)現(xiàn),攜帶登革病毒(DENV)的埃及伊蚊()被沃爾巴克氏體()侵染后,aae-miR-2940可特異性表達(dá),并顯著抑制了與登革病毒復(fù)制相關(guān)的DNA甲基化轉(zhuǎn)移酶基因()的表達(dá);李盛杰[11]研究發(fā)現(xiàn),果蠅()被革蘭氏陽性菌藤黃微球菌()侵染后,其miR-310家族和miR-958可通過抑制Toll信號(hào)通路產(chǎn)生的抗菌肽分子Drosomycin的表達(dá)而影響宿主的免疫應(yīng)答。但相比于果蠅和蚊類等模式昆蟲,蜜蜂與病原互作相關(guān)的miRNA研究較為滯后。LOUREN?O等[12]利用革蘭氏陰性菌粘質(zhì)沙雷氏菌()和侵染意蜂工蜂,發(fā)現(xiàn)miRNA可通過參與體液免疫中Toll、Imd、JNK以及Jak-STAT信號(hào)通路的調(diào)控,促進(jìn)抗菌肽與黑化反應(yīng)的激活來應(yīng)對(duì)細(xì)菌的侵染;HUANG等[13]研究發(fā)現(xiàn),東方蜜蜂微孢子蟲()可能通過影響西方蜜蜂()代謝調(diào)控相關(guān)的miRNA表達(dá)促進(jìn)自身的快速繁殖。筆者所在課題組前期已通過二代測(cè)序技術(shù)對(duì)球囊菌侵染的中華蜜蜂(,簡(jiǎn)稱中蜂)和意蜂4日齡幼蟲腸道進(jìn)行轉(zhuǎn)錄組分析,在mRNA組學(xué)水平解析了病原在侵染前期與宿主間的互作[14-15]。然而,蜜蜂幼蟲在球囊菌侵染過程的miRNA表達(dá)譜仍然缺失,miRNA在蜜蜂幼蟲的脅迫應(yīng)答中的作用仍未可知?!颈狙芯壳腥朦c(diǎn)】此前的相關(guān)研究主要集中在球囊菌侵染后期,即6日齡幼蟲到預(yù)蛹的過渡期,有關(guān)球囊菌侵染前期的研究還非常滯后。球囊菌在侵染前期已經(jīng)開始出現(xiàn)低水平的孢子萌發(fā)和菌絲生長(zhǎng),必然伴隨著復(fù)雜的基因表達(dá)和ncRNA調(diào)控。miRNA作為關(guān)鍵的轉(zhuǎn)錄后調(diào)控因子在昆蟲的免疫防御過程中發(fā)揮關(guān)鍵的作用[16]。本研究利用small RNA-seq(sRNA-seq)技術(shù)對(duì)正常及球囊菌脅迫的意蜂4日齡幼蟲腸道進(jìn)行高通量測(cè)序,對(duì)宿主miRNA的表達(dá)譜、顯著DEmiRNA及其調(diào)控網(wǎng)絡(luò)進(jìn)行探究,并篩選免疫防御相關(guān)的關(guān)鍵miRNA?!緮M解決的關(guān)鍵問題】通過深入分析顯著DEmiRNA及其調(diào)控網(wǎng)絡(luò),在miRNA組學(xué)水平解析意蜂幼蟲在球囊菌侵染前期的脅迫應(yīng)答,揭示顯著DEmiRNA在宿主-病原互作中的作用,為解析意蜂幼蟲-球囊菌的互作機(jī)制打下基礎(chǔ)。

      1 材料與方法

      試驗(yàn)于2017年9月至2018年7月在福建農(nóng)林大學(xué)蜂學(xué)學(xué)院蜜蜂保護(hù)實(shí)驗(yàn)室完成。

      1.1 供試生物材料

      供試意蜂幼蟲取自福建農(nóng)林大學(xué)蜂學(xué)學(xué)院教學(xué)蜂場(chǎng)。

      1.2 意蜂幼蟲人工飼養(yǎng)及樣品測(cè)序

      參照前期研究建立的方法[14]活化球囊菌、純化孢子以及人工飼養(yǎng)意蜂幼蟲,配制含球囊菌孢子的飼料(終濃度為1×107個(gè)孢子/mL),飼喂處理組3日齡幼蟲,24 h后待含孢子飼料被食盡,飼喂不含球囊菌的正常飼料;對(duì)照組幼蟲飼喂不含孢子的正常飼料。腸道是球囊菌與意蜂幼蟲互作的主要部位,因此選擇幼蟲腸道作為測(cè)序材料。分別解剖上述對(duì)照組和處理組4日齡幼蟲腸道組織,剖取的幼蟲腸道每9只放于1個(gè)RNA-Free的EP管中,液氮速凍后保存在-80℃的超低溫冰箱。進(jìn)行3次生物學(xué)重復(fù)。對(duì)照組的3個(gè)生物學(xué)重復(fù)分別為AmCK-1、AmCK-2和AmCK-3;處理組的3個(gè)生物學(xué)重復(fù)分別為AmT-1、AmT-2和AmT-3。委托廣州基迪奧生物科技有限公司對(duì)上述6個(gè)腸道樣品進(jìn)行單端測(cè)序,測(cè)序平臺(tái)為Illumina MiSeq。首先,利用Trizol法從意蜂幼蟲腸道樣本中提取total RNA,瓊脂糖凝膠電泳切膠選擇18—30 nt的片段,連接3′端接頭,連接產(chǎn)物以15%變性PAGE膠電泳分離,切膠選擇36—44 nt的目的條帶;將上述回收產(chǎn)物連接5′端接頭,進(jìn)而對(duì)兩側(cè)帶有接頭的small RNA樣本進(jìn)行RT-PCR,反轉(zhuǎn)錄產(chǎn)物以3.5%瓊脂糖凝膠電泳分離,切膠回收140—160 bp區(qū)域的目的條帶,回收產(chǎn)物即為終文庫,建好的文庫上機(jī)測(cè)序。原始數(shù)據(jù)已上傳NCBI SRA數(shù)據(jù)庫,BioProject號(hào):PRJNA408312。

      1.3 測(cè)序數(shù)據(jù)的質(zhì)控及DEmiRNA的預(yù)測(cè)

      參照前期研究建立的方法[17]對(duì)測(cè)序數(shù)據(jù)進(jìn)行質(zhì)控和定位,并將得到miRNA的非注釋標(biāo)簽序列(unannotated tags)。通過Bowit軟件將非注釋標(biāo)簽序列與西方蜜蜂的參考基因組(assembly Amel 4.5)序列進(jìn)行比對(duì),得到相關(guān)tags在參考基因組上的位置信息,即為mapped tags。利用miRDeep2軟件[18]將mapped tags與miRBase數(shù)據(jù)庫中已知miRNA前體序列進(jìn)行比對(duì),從而鑒定已知miRNA的表達(dá)。并通過TPM(tags per million)算法對(duì)各樣本中miRNA的表達(dá)量進(jìn)行歸一化處理。利用R軟件計(jì)算各樣品之間的相關(guān)性系數(shù)。以|log2fold change|≥1且≤0.05為篩選顯著DEmiRNA的標(biāo)準(zhǔn)。

      1.4 顯著DEmiRNA靶基因預(yù)測(cè)及分析

      利用TargetFinder軟件[19]對(duì)顯著DEmiRNA的靶基因進(jìn)行預(yù)測(cè),并通過BLAST軟件將預(yù)測(cè)的靶基因序列與Gene Ontology和KEGG數(shù)據(jù)庫比對(duì)。將顯著DEmiRNA的靶基因分別按照分子功能、細(xì)胞組分、生物學(xué)進(jìn)程進(jìn)行分類,并利用基迪奧OmicShare云平臺(tái)(http://www.omicshare.com/tools/Home/Index/index. html)對(duì)靶基因進(jìn)行KEGG pathway富集分析。最后,根據(jù)DEmiRNA與mRNA的靶向結(jié)合關(guān)系,利用Cytoscape軟件構(gòu)建miRNA-mRNA的調(diào)控網(wǎng)絡(luò)。

      1.5 DEmiRNA的莖環(huán)實(shí)時(shí)熒光定量PCR(Stem-loop RT-qPCR)驗(yàn)證

      通過Stem-loop RT-qPCR檢測(cè)4個(gè)隨機(jī)選取的miRNA(novel-m0031-3p、novel-m0034-5p、miR-3793-x和ame-miR-6000a-5p)在AmCK和AmT中的表達(dá)情況,以驗(yàn)證sRNA-seq數(shù)據(jù)的可靠性。根據(jù)所選miRNA的序列,參照CHEN等[20]的方法,利用DNAMAN軟件(Lynnon Biosoft公司,美國)設(shè)計(jì)特異性的Stem-loop引物、上游引物和通用的反向引物,委托上海生工生物工程有限公司進(jìn)行引物合成。選擇snRNA U6作為內(nèi)參。利用RNA抽提試劑盒(Axygen公司,美國)分別提取AmCK和AmT的總RNA,利用Stem-loop引物進(jìn)行反轉(zhuǎn)錄得到相應(yīng)的cDNA作為模板進(jìn)行PCR和qPCR。常規(guī)PCR體系為50 μL,包括PCR mix(TaKaRa公司,日本)25 μL、無菌水17.5 μL、正、反向引物及cDNA模板各2.5 μL。反應(yīng)程序如下:95℃ 5 min,95℃ 30 s,50℃ 30 s,72℃ 1 min,34個(gè)循環(huán),72℃ 5 min。隨后利用1.8%的瓊脂糖凝膠電泳檢測(cè)PCR的產(chǎn)物。qPCR反應(yīng)體系(20 μL):SYBR Green Dye 10 μL,正、反向引物各1 μL,cDNA模板1 μL,Rox 0.44 μL,DEPC水補(bǔ)至20 μL。在ABI 7500熒光定量PCR儀(ABI公司,美國)中進(jìn)行反應(yīng),反應(yīng)條件:95℃ 1 min,95℃ 15 s,49—60℃ 60 s,共40個(gè)循環(huán),熔解曲線默認(rèn)系統(tǒng)程序。所選miRNA的相對(duì)表達(dá)量采用2-ΔΔCt法計(jì)算。每個(gè)反應(yīng)進(jìn)行3次生物學(xué)重復(fù)和3次技術(shù)重復(fù)。最后利用GraphPad Prism 5軟件進(jìn)行qPCR結(jié)果的檢驗(yàn)及繪圖。本研究使用的引物序列信息詳見表1。

      表1 本研究使用的引物

      2 結(jié)果

      2.1 意蜂幼蟲腸道的測(cè)序數(shù)據(jù)的質(zhì)控與評(píng)估

      兩組幼蟲腸道樣品的sRNA-seq分別產(chǎn)生13 553 302和10 777 534條raw reads,經(jīng)嚴(yán)格過濾后得到的clean reads數(shù)分別為13 186 921和10 480 913條(表2);此外,AmCK、AmT組內(nèi)各生物學(xué)重復(fù)之間的Pearson相關(guān)性系數(shù)均在0.9822和0.9508以上,說明本研究的高通量測(cè)序數(shù)據(jù)質(zhì)量良好,可用于進(jìn)一步分析。

      2.2 意蜂幼蟲腸道的DEmiRNA分析

      AmCK vs AmT比較組中顯著差異和非顯著差異miRNA數(shù)為740個(gè)。其中,10個(gè)miRNA為顯著性差異表達(dá),包含4個(gè)上調(diào)miRNA和6個(gè)下調(diào)miRNA;顯著DEmiRNA中包括3個(gè)novel miRNA和7個(gè)已知miRNA(表3)。表達(dá)譜分析結(jié)果顯示,DEmiRNA的差異變化幅度差別明顯(圖1-A),DEmiRNA在AmT中的整體表達(dá)水平低于AmCK(圖1-B)。

      表2 sRNA-seq數(shù)據(jù)總覽

      A:DEmiRNA的表達(dá)量聚類Expression clustering of DEmiRNAs;B:不同樣品中DEmiRNA的表達(dá)量比較Comparison of DEmiRNAs expression in different samples

      表3 AmCK vs AmT 中DEmiRNA的信息統(tǒng)計(jì)

      2.3 意蜂幼蟲腸道DEmiRNA的靶基因預(yù)測(cè)及功能注釋

      對(duì)于AmCK vs AmT中的顯著DEmiRNA,共預(yù)測(cè)出3 788個(gè)靶基因。GO數(shù)據(jù)庫注釋結(jié)果顯示,上調(diào)miRNA的1 240個(gè)靶基因共涉及39個(gè)GO 條目(term),富集靶基因數(shù)最多的分別是結(jié)合(733個(gè))、細(xì)胞進(jìn)程(698個(gè))、代謝進(jìn)程(580個(gè))、單組織進(jìn)程(576個(gè))、催化活性(439個(gè))、細(xì)胞膜(387個(gè))、細(xì)胞膜組件(380個(gè))、細(xì)胞(286個(gè))、細(xì)胞組件(286個(gè))、定位(245個(gè))等(圖2-A);下調(diào)miRNA的749個(gè)靶基因可注釋到34個(gè)GO條目,富集靶基因數(shù)最多的分別是細(xì)胞進(jìn)程(533個(gè))、結(jié)合(517個(gè))、代謝進(jìn)程(394個(gè))、單組織進(jìn)程(373個(gè))、催化活性(240個(gè))、細(xì)胞膜(227個(gè))、細(xì)胞膜組件(226個(gè))、細(xì)胞(216個(gè))、細(xì)胞組件(216個(gè))、細(xì)胞器(192個(gè))等(圖2-B)。進(jìn)一步分析發(fā)現(xiàn),對(duì)于上調(diào)和下調(diào)miRNA,分別有204和113個(gè)靶基因注釋到應(yīng)激反應(yīng),說明顯著DEmiRNA參與宿主對(duì)球囊菌的脅迫應(yīng)答的調(diào)控。

      對(duì)顯著DEmiRNA的靶基因進(jìn)行KEGG數(shù)據(jù)庫注釋,結(jié)果顯示上調(diào)miRNA的靶基因可注釋到95條代謝通路(pathway),其中富集數(shù)最多的分別是Wnt信號(hào)通路(112個(gè))、Hippo信號(hào)通路(62個(gè))、光傳導(dǎo)(55個(gè))、嘌呤代謝(48個(gè))、Hedgehog信號(hào)通路(43個(gè))、神經(jīng)活性的配體-受體相互作用(19個(gè))、晝夜節(jié)律(41個(gè))、壽命調(diào)節(jié)途徑(35個(gè))、氨基糖與核苷酸糖代謝(32個(gè))和內(nèi)吞作用(31個(gè))(圖3-A);下調(diào)miRNA的靶基因注釋到66條代謝通路,其中富集數(shù)最多的分別是內(nèi)吞作用(52個(gè))、磷脂酰肌醇信號(hào)系統(tǒng)(30個(gè))、嘌呤代謝(28個(gè))、磷酸肌醇代謝(25個(gè))、Notch信號(hào)通路(20個(gè))、神經(jīng)活性的配體-受體相互作用(19個(gè))、葉酸合成(18個(gè))、背腹軸的形成(14個(gè))、Wnt信號(hào)通路(13個(gè))和mRNA監(jiān)視通路(12個(gè))(圖3-B)。進(jìn)一步分析結(jié)果顯示,在細(xì)胞免疫相關(guān)通路中,對(duì)于上調(diào)和下調(diào)的miRNA,分別有31和52個(gè)靶基因注釋到內(nèi)吞作用,15和7個(gè)靶基因注釋到泛素介導(dǎo)的蛋白水解;在體液免疫相關(guān)通路中,對(duì)于上調(diào)和下調(diào)的miRNA,分別有11和5個(gè)靶基因注釋到Jak-STAT信號(hào)通路,有1和3個(gè)靶基因注釋到MAPK信號(hào)通路。

      2.4 意蜂幼蟲腸道DEmiRNA的調(diào)控網(wǎng)絡(luò)構(gòu)建及分析

      篩選具有KEGG數(shù)據(jù)庫注釋的靶基因,并分別構(gòu)建上調(diào)miRNA和下調(diào)miRNA與靶基因的調(diào)控網(wǎng)絡(luò),結(jié)果顯示顯著DEmiRNA位于調(diào)控網(wǎng)絡(luò)的中心,其中4個(gè)上調(diào)miRNA可結(jié)合499個(gè)靶基因(圖4-A),277個(gè)靶基因可被6個(gè)下調(diào)miRNA調(diào)控(圖4-B),DEmiRNA與靶基因之間形成復(fù)雜的調(diào)控網(wǎng)絡(luò)。其中,上調(diào)miRNA中的miR-8440-y結(jié)合靶基因最多,達(dá)到419個(gè)(圖4-A);下調(diào)miRNA中的novel-m0034-3p可結(jié)合149個(gè)靶基因(圖4-B)。

      提取注釋到Wnt信號(hào)通路、內(nèi)吞作用的靶基因,構(gòu)建它們與相關(guān)顯著DEmiRNA的調(diào)控網(wǎng)絡(luò),分析結(jié)果顯示7個(gè)顯著DEmiRNA結(jié)合96個(gè)注釋到Wnt信號(hào)通路的靶基因,二者形成1個(gè)較大和3個(gè)較小的調(diào)控網(wǎng)絡(luò),其中結(jié)合靶基因數(shù)由多到少分別為miR-8440-y(78個(gè))、miR-3793-x(27個(gè))、miR-4968-y(9個(gè))、miR-7085-x(5個(gè))、novel-m0025-3p(3個(gè))、novel-m0023-5p(2個(gè))和miR-4331-y(1個(gè))(圖5-A);8個(gè)顯著DEmiRNA結(jié)合55個(gè)注釋到內(nèi)吞作用的靶基因,二者形成1個(gè)較大的和2個(gè)較小的調(diào)控網(wǎng)絡(luò),其中miR-8440-y、novel-m0034-3p、ame-miR-6000a- 5p、novel-m0025-3p、novel-m0023-5p、miR-4968-y、miR-4331-y和miR-971-y結(jié)合的靶基因數(shù)分別為26、26、12、10、5、2、1和1個(gè)(圖5-B)。進(jìn)一步分析發(fā)現(xiàn),miR-4331-y、miR-4968-y、miR-8440-y、novel-m0023-5p和novel-m0025-3p共同了參與上述2條代謝通路調(diào)控,而miR-3793-x和miR-7085-x僅參與對(duì)Wnt信號(hào)通路的調(diào)控,ame-miR-6000a-5p、miR-971-y和novel-m0034-3p僅涉及對(duì)內(nèi)吞作用的調(diào)控(圖5-A、5-B)。

      2.5 意蜂幼蟲腸道DEmiRNA的Stem-loop RT-PCR和qPCR驗(yàn)證

      為整體驗(yàn)證測(cè)序數(shù)據(jù)的準(zhǔn)確性,從所有顯著差異表達(dá)和非顯著差異表達(dá)的740個(gè)miRNA中隨機(jī)挑選2個(gè)非顯著差異表達(dá)miRNA(novel-m0031-3p和novel-m0034-5p)和2個(gè)顯著差異miRNA(miR-3793-x和ame-miR-6000a-5p)進(jìn)行Stem-loopRT-PCR驗(yàn)證,電泳結(jié)果顯示上述miRNA在AmCK和AmT中均可擴(kuò)增出符合預(yù)期的目的條帶(圖6-A)。進(jìn)一步對(duì)上述4個(gè)DEmiRNA進(jìn)行qPCR檢測(cè),結(jié)果顯示它們的表達(dá)水平的變化趨勢(shì)與sRNA-seq數(shù)據(jù)中的變化趨勢(shì)一致(圖6-B、6-C、6-D、6-E),證實(shí)了測(cè)序結(jié)果的可靠性。

      A:上調(diào)miRNA的靶基因Target genes of up-regulated miRNAs;B:下調(diào)miRNA的靶基因Target genes of down-regulated miRNAs

      A:上調(diào)miRNA的靶基因Target genes of up-regulated miRNAs;B:下調(diào)miRNA的靶基因Target genes of down-regulated miRNAs

      3 討論

      球囊菌是一種特異性侵染蜜蜂幼蟲腸道的真菌病原,能嚴(yán)重影響成年蜜蜂的數(shù)量和蜂群的生產(chǎn)力,造成較大的經(jīng)濟(jì)損失[21]。miRNA作為一種轉(zhuǎn)錄后調(diào)控的關(guān)鍵因子,通過調(diào)節(jié)宿主相關(guān)免疫信號(hào)通路[22],改變宿主基因的表達(dá)而影響病原復(fù)制[23],而在宿主與病原間的互作中扮演著特殊角色。筆者所在課題組前期已在mRNA組學(xué)水平全面解析意蜂及中蜂幼蟲與球囊菌間的互作[24-26]。然而在ncRNA組學(xué)層面,至今還沒有二者互作的相關(guān)研究報(bào)道。本研究利用sRNA-seq技術(shù)對(duì)正常及球囊菌侵染的意蜂4日齡幼蟲腸道進(jìn)行測(cè)序,預(yù)測(cè)出4個(gè)上調(diào)miRNA和6個(gè)下調(diào)miRNA,DEmiRNA在AmCK中的表達(dá)水平總體高于AmT(圖1-B),表明宿主在球囊菌侵染前期,通過下調(diào)相關(guān)miRNA的表達(dá)水平降低其對(duì)相應(yīng)靶基因的抑制作用,從而響應(yīng)對(duì)病原的應(yīng)答。

      3.1 球囊菌脅迫可影響與蜜蜂幼蟲腸道發(fā)育、代謝和免疫相關(guān)的miRNA的表達(dá)水平

      球囊菌在侵染意蜂幼蟲的前期,孢子處于低水平的萌發(fā)狀態(tài),幼蟲并不表現(xiàn)出明顯的白堊病癥狀,但宿主與病原之間存在復(fù)雜的互作[15]。Hippo信號(hào)通路參與腸道干細(xì)胞的增殖調(diào)控[27],并通過與Wnt、Notch等信號(hào)通路共同作用影響的器官大小[28]。郭睿等[29-30]研究發(fā)現(xiàn),意蜂工蜂中腸內(nèi)的長(zhǎng)鏈非編碼RNA和環(huán)狀RNA均可通過間接調(diào)控Hippo信號(hào)通路上的富集基因,影響蜜蜂腸道的發(fā)育過程。此外,該信號(hào)通路也被證明與蜜蜂的級(jí)型分化和卵巢發(fā)育狀態(tài)密切相關(guān)[31]。本研究中,對(duì)于意蜂幼蟲腸道的上調(diào)miRNA的靶基因,富集在Hippo信號(hào)通路的數(shù)量(62個(gè)),遠(yuǎn)高于下調(diào)miRNA的靶基因富集在該通路上的數(shù)量(6個(gè)),表明球囊菌在侵染前期通過調(diào)控Hippo信號(hào)通路對(duì)宿主的腸道發(fā)育產(chǎn)生影響。郝向偉[32]研究發(fā)現(xiàn),家蠶()被大腸桿菌()和蘇云金芽孢桿菌()侵染后,其腸道的表達(dá)量顯著上調(diào),作者推測(cè)Hedgehog信號(hào)通路可能參與腸干細(xì)胞的增殖和分化以及腸道損傷后的修復(fù)。本研究發(fā)現(xiàn),對(duì)于富集在Hedgehog信號(hào)通路的靶基因,上調(diào)miRNA的靶基因數(shù)(43個(gè))遠(yuǎn)多于下調(diào)miRNA的靶基因數(shù)(1個(gè)),說明多數(shù)該通路上的基因受到抑制,表明Hedgehog信號(hào)通路對(duì)不同的病原微生物存在應(yīng)答差異。本研究還發(fā)現(xiàn),對(duì)于上調(diào)miRNA的靶基因,富集在晝夜節(jié)律(41個(gè))、嘌呤代謝(48個(gè))、氨基糖與核苷酸糖代謝(32個(gè))和嘧啶代謝(5個(gè))等代謝通路上的數(shù)量均高于下調(diào)miRNA的靶基因富集在上述通路上的數(shù)量。HUANG等[13]研究發(fā)現(xiàn),東方蜜蜂微孢子蟲感染西方蜜蜂的前6 d內(nèi),宿主的17個(gè)DEmiRNA主要參與調(diào)控嘌呤代謝、嘧啶代謝和氧化磷酸化等9條代謝通路,作者推測(cè)這與通過改變宿主的代謝以促進(jìn)其更快速的繁殖機(jī)制有關(guān)。本研究表明在球囊菌侵染前期,意蜂幼蟲腸道的部分生命活動(dòng)、新陳代謝受到病原的抑制,推測(cè)球囊菌通過調(diào)節(jié)宿主的上述生物學(xué)過程為自身的孢子萌發(fā)創(chuàng)造有利條件。

      A:上調(diào)miRNA的調(diào)控網(wǎng)絡(luò)Regulation networks of up-regulated miRNAs; B:下調(diào)miRNA的調(diào)控網(wǎng)絡(luò)Regulation networks of down-regulated miRNAs。綠色圓形代表靶基因,紅色三角代表miRNA Green circles indicate target genes, red triangles indicate miRNAs

      A: Wnt信號(hào)通路相關(guān)DEmiRNA的調(diào)控網(wǎng)絡(luò)Regulation networks of DEmiRNAs related to Wnt signaling pathway; B:內(nèi)吞作用相關(guān)DEmiRNA的調(diào)控網(wǎng)絡(luò)Regulation networks of DEmiRNAs related to endocytosis。綠色圓形代表靶基因,紅色三角代表miRNA Green circles indicate target genes, red triangles indicate miRNAs

      圖6 DEmiRNA的Stem-loop RT-PCR(A)和qPCR驗(yàn)證(B—E)

      Wnt信號(hào)通路廣泛參與昆蟲的細(xì)胞增殖、組織分化、器官形成等過程[33-34]。該通路還可通過與TGF-beta、Hippo、Notch、MAPK、FoxO等信號(hào)通路的共同作用而參與蜂王卵巢激活和產(chǎn)卵過程[35]。本研究中,共有7個(gè)顯著DEmiRNA(miR-8440-y、miR-3793-x和miR-4968-y等)的96個(gè)靶基因注釋到Wnt信號(hào)通路,表明球囊菌侵染會(huì)影響宿主的Wnt信號(hào)通路基因的表達(dá)。此外,有研究表明Wnt信號(hào)通路參與了人類的先天免疫反應(yīng)[36-37],例如SMITH等[38]發(fā)現(xiàn)miR-34家族對(duì)Hela細(xì)胞內(nèi)的Wnt/-catenin信號(hào)通路具有抑制作用,并表現(xiàn)出強(qiáng)烈的抗黃病毒作用;喬瑩[39]發(fā)現(xiàn)被隱核蟲()感染的大黃魚()體內(nèi)miR-466-x、miR-1895-y和miR-8485-y等miRNA廣泛參與了對(duì)Wnt和Jak-STAT信號(hào)通路以及內(nèi)吞作用和溶酶體等免疫通路的調(diào)控。本研究中,miR-4331-y、miR-4968-y、miR-8440-y、novel-m0023-5p和novel-m0025-3p均參與了對(duì)Wnt信號(hào)通路和內(nèi)吞作用的調(diào)控,表明它們通過調(diào)控上述免疫通路對(duì)意蜂幼蟲腸道的免疫應(yīng)答進(jìn)行調(diào)節(jié)。

      3.2 miR-4331-y作為潛在的分子靶標(biāo)參與宿主與病原復(fù)雜的互作過程

      miRNA在物種間具有高度的保守性、表達(dá)時(shí)序性和組織特異性[40]。郭睿等[41]對(duì)意蜂幼蟲腸道發(fā)育過程中miRNA的表達(dá)譜進(jìn)行分析,發(fā)現(xiàn)miR-4331-y僅在4和5日齡幼蟲腸道內(nèi)差異表達(dá),并間接調(diào)控富集在Wnt、FoxO、TGF-beta、Notch和Jak-STAT等信號(hào)通路上的靶基因。ZHAO等[42]研究發(fā)現(xiàn),豬腎細(xì)胞(PK-15)被傳染性腸胃炎病毒(,TGEV)侵染后,其miR-4331的表達(dá)量顯著上調(diào),并通過靶向結(jié)合作用于p38 MAPK信號(hào)通路,從而調(diào)控TGEV誘導(dǎo)的PK-15線粒體損傷。此外,在患有H1N1流感病毒的病人以及感染低致病性H5N3流感病毒的雞的體內(nèi),均發(fā)現(xiàn)miR-204的表達(dá)顯著提高[43-44]。由于病原種類、侵染機(jī)制以及檢測(cè)時(shí)間點(diǎn)的差異,不同宿主的同源miRNA在響應(yīng)病原侵染過程中,其表達(dá)量變化趨勢(shì)可能并不完全一致。例如ZHANG等[45]發(fā)現(xiàn)甲型H1N1病毒(SIV-H1N1/2009)可通過抑制新生豬氣管細(xì)胞(NPTr)中ssc-miR-204和ssc-miR-4331的表達(dá)促進(jìn)自身在細(xì)胞內(nèi)的復(fù)制;ssc-miR-204和ssc-miR-4331可抑制病毒的HA表面糖蛋白和NS1干擾素拮抗劑蛋白的表達(dá),從而對(duì)病毒的復(fù)制進(jìn)行負(fù)調(diào)控。本研究中,miR-4331-y的表達(dá)量在球囊菌脅迫后呈顯著下調(diào),并通過對(duì)靶基因的調(diào)控同時(shí)參與對(duì)內(nèi)吞作用、吞噬體、Jak-STAT和Wnt信號(hào)通路等免疫通路的間接調(diào)控,表明宿主在球囊菌侵染前期通過下調(diào)miR-4331-y的表達(dá)水平降低對(duì)靶基因的抑制作用,從而激活相關(guān)免疫通路,以響應(yīng)球囊菌的脅迫;球囊菌也可能抑制宿主腸道內(nèi)miR-4331-y的表達(dá)量,以利于孢子的萌發(fā)。未來可通過合成相應(yīng)的miRNA mimic和miRNA inhibitor對(duì)miR-4331-y進(jìn)行過表達(dá)和敲減,從而深入研究其在宿主的脅迫應(yīng)答中的作用。

      3.3 意蜂幼蟲腸道響應(yīng)球囊菌脅迫前期過程中mRNA與miRNA組學(xué)比較

      為探究不同蜂種的蜜蜂幼蟲在球囊菌侵染前期的應(yīng)答及與病原間的互作,筆者課題組曾對(duì)正常及球囊菌脅迫的意蜂和中蜂4日齡幼蟲腸道進(jìn)行轉(zhuǎn)錄組測(cè)序和分析[14-15],發(fā)現(xiàn)意蜂幼蟲的差異表達(dá)基因涉及代謝進(jìn)程、免疫系統(tǒng)進(jìn)程和應(yīng)激反應(yīng)等19個(gè)功能分類,并有5個(gè)角質(zhì)層蛋白基因和2個(gè)抗菌肽編碼基因表達(dá)水平下調(diào),進(jìn)而在mRNA組學(xué)水平解析了宿主的脅迫應(yīng)答[15]。昆蟲腸道圍食膜是抵御經(jīng)口攝入病原的重要物理屏障,角質(zhì)層蛋白作為圍食膜的主要成分之一,在保護(hù)腸道健康過程中發(fā)揮重要作用[46]。本研究發(fā)現(xiàn),上調(diào)miRNA中的miR-8440-y靶向結(jié)合2個(gè)角質(zhì)層蛋白編碼基因,表明球囊菌可通過提高宿主的miR-8440-y的表達(dá)水平降低角質(zhì)層蛋白編碼基因的水平,以利于球囊菌的萌發(fā)和侵染過程,這與此前的研究結(jié)果一致。

      4 結(jié)論

      在miRNA組學(xué)水平對(duì)意蜂幼蟲腸道在球囊菌侵染前期的脅迫應(yīng)答及宿主-病原互作進(jìn)行研究,結(jié)果表明顯著DEmiRNA可通過調(diào)控細(xì)胞生命活動(dòng)、新陳代謝和部分細(xì)胞和體液免疫等生物學(xué)過程參與宿主的脅迫應(yīng)答。其中miR-4331-y、miR-8440-y、miR-4968-y、novel-m0023-5p和novel-m0025-3p共同參與了宿主的Wnt信號(hào)通路和內(nèi)吞作用的調(diào)控,且miR-8440-y結(jié)合靶基因的數(shù)量最多。篩選出的關(guān)鍵miRNA可用于后續(xù)的功能研究,有望為白堊病治療提供潛在的分子靶標(biāo)。

      [1] 羅術(shù)東, 王彪, 褚忠橋, 柳萌, 吳杰. 不同蜂為設(shè)施辣椒授粉的授粉效果比較. 環(huán)境昆蟲學(xué)報(bào), 2015, 37(2): 381-386.

      LUO S D, WANG B, CHU Z Q, LIU M, WU J. Comparison of the pollination effects for pepper between different bees in greenhouse., 2015, 37(2): 381-386. (in Chinese)

      [2] 李江紅, 鄭志陽, 陳大福, 梁勤. 影響蜜蜂球囊菌侵染蜜蜂幼蟲的因素及侵染過程觀察. 昆蟲學(xué)報(bào), 2012, 55(7): 790-797.

      LI J H, ZHENG Z Y, CHEN D F, LIANG Q. Factors influencinginfection on honeybee larvae and observation on the infection process., 2012, 55(7): 790-797. (in Chinese)

      [3] ASGARI S. MicroRNA functions in insects., 2013, 43(4): 388-397.

      [4] CHEN J F, MANDEL E M, THOMSON J M, WU Q, CALLIS T E, HAMMOND S M, CONLON F L, WANG D Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation., 2006, 38(2): 228-233.

      [5] ALVAREZ-GARCIA I, MISKA E A. MicroRNA functions in animal development and human disease., 2005, 132(21): 4653-4662.

      [6] GUO C J, PAN Q, LI D G, SUN H, LIU B W. MiR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis., 2009, 50(4): 766-778.

      [7] SCARIA V, HARIHARAN M, MAITI S, PILLAI B, BRAHMACHARI S K. Host-virus interaction: a new role for microRNAs., 2006, 3: 68.

      [8] LI S, SHEN L, SUN L, XU J, JIN P, CHEN L, MA F. Small RNA-Seq analysis reveals microRNA-regulation of the Imd pathway duringinfection in., 2017, 70: 80-87.

      [9] QIAN P, JIANG T, WANG X, SONG F, CHEN C, SHEN X. Bmo-miR-275 down-regulates expression ofsericin gene 2., 2018, 13(1): e0190464.

      [10] ZHANG G, HUSSAIN M, O’NEILL S L, ASGARI S.uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in., 2013, 110(25): 10276-10281.

      [11] 李盛杰. microRNA在果蠅Toll信號(hào)免疫響應(yīng)中的調(diào)控作用研究[D]. 南京: 南京師范大學(xué), 2017.

      Li S J. Regulation of microRNA on Toll signal immune response in[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese)

      [12] LOUREN?O A P, GUIDUGLILAZZARINI K R, FREITAS F C, BITONDI M M, Sim?es Z L. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees., 2013, 43(5): 474-482.

      [13] HUANG Q, CHEN Y P, Rui W W, SCHWARZ R S, EVANS J D. Honeybee microRNAs respond to infection by the microsporidian parasite., 2015, 5: Article number 17494.

      [14] 陳大福, 郭睿, 熊翠玲, 梁勤, 鄭燕珍, 徐細(xì)建, 張曌楠, 黃枳腱, 張璐, 王鴻權(quán), 解彥玲, 童新宇. 中華蜜蜂幼蟲腸道響應(yīng)球囊菌早期脅迫的轉(zhuǎn)錄組學(xué). 中國農(nóng)業(yè)科學(xué), 2017, 50(13): 2614-2623.

      CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, ZHANG Z N, HUANG Z J, ZHANG L, WANG H Q, XIE Y L, TONG X Y. Transcriptome oflarval gut under the stress of., 2017, 50(13): 2614-2623. (in Chinese)

      [15] 郭睿, 熊翠玲, 鄭燕珍, 張璐, 童新宇, 梁勤, 陳大福. 意大利蜜蜂幼蟲腸道響應(yīng)球囊菌早期脅迫的轉(zhuǎn)錄組學(xué)分析. 應(yīng)用昆蟲學(xué)報(bào), 2017, 54(4): 553-560.

      GUO R, XIONG C L, ZHENG Y Z, ZHANG L, TONG X Y, LIANG Q, CHEN D F. Transcriptome analysis oflarval gut during the early stage of stress induced by., 2017, 54(4): 553-560. (in Chinese)

      [16] HUSSAIN M, ASGARI S. MicroRNAs as mediators of insect host-pathogen interactions and immunity., 2014, 70: 151-158.

      [17] 郭睿, 王海朋, 陳華枝, 熊翠玲, 鄭燕珍, 付中民, 趙紅霞, 陳大福. 蜜蜂球囊菌的microRNA鑒定及其調(diào)控網(wǎng)絡(luò)分析. 微生物學(xué)報(bào), 2018, 58(6): 1077-1089.

      GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification ofmicroRNAs and investigation of their regulation networks., 2018, 58(6): 1077-1089. (in Chinese)

      [18] FRIEDL?NDER M R, MACKOWIAK S D, LI N, CHEN W, RAJEWSKY N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades., 2012, 40(1): 37-52.

      [19] ALLEN E, XIE Z, GUSTAFSON A M, Carrington J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants., 2005, 121(2): 207-221.

      [20] CHEN C, RIDZON D A, BROOMER A J, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR., 2005, 33(20): e179.

      [21] 趙紅霞, 梁勤, 羅岳雄, 李江紅, 張學(xué)鋒, 曾鑫年. 蜜蜂白堊病的研究進(jìn)展. 環(huán)境昆蟲學(xué)報(bào), 2014, 36(2): 233-239.

      ZHAO H X, LIANG Q, LUO Y X, LI J H, ZHANG X F, ZENG X N. Chalkbrood disease in honeybee., 2014, 36(2): 233-239. (in Chinese)

      [22] ZHAO L, ZHU J, ZHOU H, ZHAO Z, ZOU Z, LIU X, LIN X, ZHANG X, DENG X, WANG R, CHEN H, JIN M. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells., 2015, 5: Article number14991.

      [23] HU Y, JIANG L, LAI W, QIN Y, ZHANG T, WANG S, YE X. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity., 2016, 97(1): 27-38.

      [24] CHEN D, GUO R, XU X, XIONG C, LIANG Q, ZHENG Y, LUO Q, ZHANG Z, HUANG Z, KUMAR D, XI W, ZOU X, LIU M. Uncovering the immune responses oflarval gut toinfection utilizing transcriptome sequencing., 2017, 621: 40-50.

      [25] 陳大福, 郭睿, 熊翠玲, 梁勤, 鄭燕珍, 徐細(xì)建, 黃枳腱, 張曌楠, 張璐, 李汶東, 童新宇, 席偉軍. 脅迫意大利蜜蜂幼蟲腸道的球囊菌的轉(zhuǎn)錄組分析. 昆蟲學(xué)報(bào), 2017, 60(4): 401-411.

      CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis ofstressing larval gut of(Hyemenoptera: Apidae) ., 2017, 60(4): 401-411. (in Chinese)

      [26] 郭睿, 陳大福, 黃枳腱, 梁勤, 熊翠玲, 徐細(xì)建, 鄭燕珍, 張曌楠, 解彥玲, 童新宇, 候志賢, 江亮亮, 刀晨. 球囊菌脅迫中華蜜蜂幼蟲腸道過程中病原的轉(zhuǎn)錄組學(xué)研究. 微生物學(xué)報(bào), 2017, 57(12): 1865-1878.

      GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis ofstressing larval gut of., 2017, 57(12): 1865-1878. (in Chinese)

      [27] AYYAZ A, LI H, JASPER H. Hemocytes control stem cell activity in theintestine., 2015, 17(6): 736-748.

      [28] BARRY E R, CAMARGO F D. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development., 2013, 25(2): 247-253.

      [29] 郭睿, 耿四海, 熊翠玲, 鄭燕珍, 付中民, 王海朋, 杜宇, 童新宇, 趙紅霞, 陳大福. 意大利蜜蜂工蜂中腸發(fā)育過程中長(zhǎng)鏈非編碼RNA的差異表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(18): 3600-3613.

      GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F. Differential expression analysis of long non-coding RNAs during the developmental process ofworker’s midgut., 2018, 51(18): 3600-3613. (in Chinese)

      [30] 郭睿, 陳華枝, 熊翠玲, 鄭燕珍, 付中民, 徐國鈞, 杜宇, 王海朋, 耿四海, 周丁丁, 劉思亞, 陳大福. 意大利蜜蜂工蜂中腸發(fā)育過程中的差異表達(dá)環(huán)狀RNA及其調(diào)控網(wǎng)絡(luò)分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(23): 4575-4590.

      GUO R, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, XU G J, DU Y, WANG H P, GENG S H, ZHOU D D, LIU S Y, CHEN D F. Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process ofworker’s midgut., 2018, 51(23): 4575-4590. (in Chinese)

      [31] ASHBY R, FORêT S, SEARLE I, MALESZKA R. MicroRNAs in honeybee caste determination., 2016, 6: Article number18794.

      [32] 郝向偉. 家蠶Hedgehog信號(hào)通路相關(guān)基因的克隆、鑒定及其功能分析[D]. 重慶: 西南大學(xué), 2013.

      HAO X W. Cloning, characterization and functional analysis of genes in the hedgehog signaling pathway in the intestine of silkworm,[D]. Chongqing: Southwest University, 2013. (in Chinese)

      [33] CHA Y H, KIM N H, PARK C, LEE I, KIM H S, YOOK J I. MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling., 2012, 11(7): 1273-1281.

      [34] KIM N H, KIM H S, KIM N G, LEE I, CHOI H S, LI X Y, KANG S E, CHA S Y, RYU J K, NA J M, PARK C, KIM K, LEE S, GUMBINER B M, YOOK J I, WEISS S J. P53 and microRNA-34 are suppressors of canonical Wnt signaling., 2011, 4(197): ra71.

      [35] 陳曉. 蜜蜂卵巢激活和產(chǎn)卵過程差異表達(dá)的編碼RNA與非編碼RNA的篩選和鑒定[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2017.

      CHEN X. Identification of differentially expressed coding and noncoding RNAs during ovary activation and oviposition in honeybees[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

      [36] BARIL M, ES-SAAD S, CHATEL-CHAIX L, FINK K, PHAM T, RAYMOOD V A, AUDETTE K, GUENIER A S, DUCHAINE J, SERVANT M, BILODEAU M, COHEN E, GRANDVAUX N, LAMARRE D. Genome-wide RNAi screen reveals a new role of a Wnt/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses., 2013, 9(6): e1003416.

      [37] HACK K, REILLY L, PROBY C, FLEMING C, LEIGH I, FOERSTER J. Wnt5a inhibits the CpG oligodeoxynucleotide- triggered activation of human plasmacytoid dendritic cells., 2012, 37(5): 557-561.

      [38] SMITH J L, JENG S, MCWEENEY S K, HIRSCH A J. A microRNA screen identifies the Wnt signaling pathway as a regulator of the interferon response during flavivirus infection., 2017, 91(8): e02388-16.

      [39] 喬瑩. 刺激隱核蟲感染大黃魚的miRNA和mRNA組學(xué)測(cè)序及關(guān)聯(lián)分析[D]. 廈門: 廈門大學(xué), 2016.

      QIAO Y. Sequencing and correlation analysis of miRNAome and transcriptome ofinfected by[D]. Xiamen: Xiamen University, 2016. (in Chinese)

      [40] HE L, HANNON G J. MicroRNAs: small RNAs with a big role in gene regulation., 2004, 5(7): 522-531.

      [41] 郭睿, 杜宇, 熊翠玲, 鄭燕珍, 付中民, 徐國鈞, 王海朋, 陳華枝, 耿四海, 周丁丁, 石彩云, 趙紅霞, 陳大福. 意大利蜜蜂幼蟲腸道發(fā)育過程中的差異表達(dá)microRNA及其調(diào)控網(wǎng)絡(luò). 中國農(nóng)業(yè)科學(xué), 2018, 51(21): 4197-4209.

      GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process oflarval gut., 2018, 51(21): 4197-4209. (in Chinese)

      [42] ZHAO X, BAI X, GUAN L, LI J, SONG X, MA X, GUO J, ZHANG Z, DU Q, HUANG Y, TONG D. MicroRNA-4331 promotes Transmissible Gastroenteritis Virus (TGEV)-induced mitochondrial damage via targeting RB1, upregulating interleukin-1 receptor accessory protein (IL1RAP), and activating p38 MAPK Pathway., 2018, 17(2): 190-204.

      [43] WANG Y, BRAHMAKSHATRIYA V, LUPIANI B, REDDY S M, SOIBAM B, BENHAM A L, GUNARATNE P, LIU H C, TRAKOOLJUL N, ING N, OKIMOTO R, ZHOU H. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers., 2012, 13: 278.

      [44] TAMBYAH P A, SEPRAMANIAM S, MOHAMED ALI J, CHAI S C, SWAINATHAN P, ARMUGAM A, JEYASEELAN K. MicroRNAs in circulation are altered in response to influenza a virus infection in humans., 2013, 8(10): e76811.

      [45] ZHANG S, WANG R, SU H, WANG B, SIZHU S, LEI Z, JIN M, CHEN H, CAO J, ZHOU H.miR-204 and miR-4331 negatively regulate swine H1N1/2009 influenza a virus replication by targeting viral HA and NS, respectively., 2017, 18(4): E749.

      [46] WANG P, GRANADOS R R. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control., 2001, 47(2): 110-118.

      Differentially expressed microRNAs and their regulation networks inlarval gut during the early stage ofinfection

      GUO Rui, DU Yu, TONG XinYu, XIONG CuiLing, ZHENG YanZhen, XU GuoJun, WANG HaiPeng, GENG SiHai, ZHOU DingDing, GUO YiLong, WU SuZhen, CHEN DaFu

      (College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002)

      【Objective】MicroRNA (miRNA) is a kind of key gene expression regulator, which can affect the interactions between host and pathogen.is a lethal fungal pathogen that specifically infects honeybee larvae. The objective of this study is to analyze the differentially expressed miRNAs (DEmiRNAs) and their target genes in thelarval gut during the early infection stage of, reveal DEmiRNA’ roles in the stress responses of host at the miRNA omics level, and to screen the key miRNAs related to host response by constructing regulation networks of significant DEmiRNAs. 【Method】Normal and-infected 4-day-old larval gut of(AmCK and AmT) were deep-sequenced using small RNA-seq (sRNA-seq) technology, followed by quality-control of raw data and then mapping of the filtered data with the reference genome of. The mapped tags were compared to the miRBase database to identify the expression of known miRNAs. The expression of miRNAs in each sample was normalized by TPM (tags per million) algorithm and significant DEmiRNAs were gained according to the standard |log2fold change|≥1 and≤0.05. Target genes of significant DEmiRNAs were predicted utilizing TargetFinder, and then annotated to the GO and KEGG databases. Cytoscape was used to visualize the regulation networks between significant DEmiRNAs and target mRNAs. Finally, Stem-loop RT-PCR and qPCR were conducted to verify the reliability of the sequencing data.【Result】sRNA-seq of AmCK and AmT produced 13 553 302 and 10 777 534 raw reads, and after strict filtration, 13 186 921 and 10 480 913 clean reads were obtained, respectively. The Pearson correlation coefficients among different biological replicates in each sample were above 0.9822 and 0.9508. There were 10 significant DEmiRNAs including 4 up-regulated miRNAs and 6 down-regulated miRNAs, and the overall expression level of DEmiRNAs in AmT was lower than that in AmCK. In total, 10 significant DEmiRNAs could link 3 788 target genes. The 1 240 target genes of up-regulated miRNAs could be annotated to 39 GO terms, and the mostly enriched terms were binding, cellular processes, metabolic processes, and response to stimulus. The 749 target genes of down-regulated miRNAs could be annotated to 34 GO terms, and the mostly enriched terms were cellular processes, binding, metabolic processes, and response to stimulus. The result of KEGG database annotation suggested that the target genes of up- and down-regulated miRNAs were respectively annotated in 95 and 66 pathways, the most abundant pathways were Wnt signaling pathway, Hippo signaling pathway, phototransduction and endocytosis, phosphatidylinositol signaling system, as well as purine metabolism. For up- and down-regulated miRNAs, there were 31 and 52 target genes could be annotated to endocytosis, 15 and 7 target genes could be annotated to ubiquitin-mediated proteolysis, 11 and 5 target genes could be annotated to Jak-STAT signaling pathway, 1 and 3 target genes could be annotated to the MAPK signaling pathway, respectively. Complex regulation networks existed between significant DEmiRNAs and their target mRNAs, among them 7 significant DEmiRNAs targeted 96 mRNAs associated with Wnt signaling pathway, and 8 significant DEmiRNAs targeted 55 mRNAs involved in endocytosis. Finally, the results of Stem-loop RT-PCR and qPCR verified the reliability of the sequencing data.【Conclusion】larval gut’s DEmiRNAs and their target genes during the early infection stage ofwere predicted and analyzed. DEmiRNA-mRNA regulation networks in the host were constructed and investigated. The results provide the expression profile and differential expression information of host miRNAs, and reveal that these DEmiRNAs likely participate in the stress responses of host via regulating biological processes such as cellular activity, metabolism, and immune defense. miR-4331-y, miR-4968-y, miR-8440-y, novel-m0023-5p and novel-m0025-3p jointly regulate Wnt signaling pathway and endocytosis of host and can be used as potential molecular targets for chalkbrood control.

      ; larval gut; development; differentially expressed microRNA; regulation network

      10.3864/j.issn.0578-1752.2019.01.015

      2018-08-02;

      2018-10-01

      國家自然科學(xué)基金(31702190)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-44-KXJ7)、福建省科技計(jì)劃(2018J05042)、福建省教育廳中青年教師教育科研項(xiàng)目(JAT170158)、福建農(nóng)林大學(xué)科技創(chuàng)新專項(xiàng)基金(CXZX2017343)、福建省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201710389058,201810389082)

      郭睿,E-mail:ruiguo@fafu.edu.cn。杜宇,E-mail:m18505700830@163.com。郭睿和杜宇為同等貢獻(xiàn)作者。通信作者陳大福,E-mail:dfchen826@fafu.edu.cn

      (責(zé)任編輯 岳梅)

      猜你喜歡
      意蜂侵染宿主
      揭示水霉菌繁殖和侵染過程
      如何處理意蜂盜取中蜂群
      蜜蜂雜志(2021年6期)2021-12-05 09:57:44
      詳解意蜂盜劫中蜂之過程
      蜜蜂雜志(2020年6期)2020-12-02 08:07:09
      病原體與自然宿主和人的生態(tài)關(guān)系
      科學(xué)(2020年3期)2020-11-26 08:18:22
      龜鱉類不可能是新冠病毒的中間宿主
      意蜂蜂蜜和中蜂蜂蜜的區(qū)別
      蜜蜂雜志(2019年3期)2019-12-30 10:25:52
      蕓薹根腫菌侵染過程及影響因子研究
      甘藍(lán)根腫病菌休眠孢子的生物學(xué)特性及侵染寄主的顯微觀察
      表現(xiàn)為扁平苔蘚樣的慢性移植物抗宿主病一例
      人乳頭瘤病毒感染與宿主免疫機(jī)制
      北川| 长顺县| 老河口市| 荃湾区| 遵化市| 崇文区| 清流县| 鄂伦春自治旗| 紫金县| 屯昌县| 云南省| 民县| 常山县| 江安县| 北宁市| 扎鲁特旗| 咸宁市| 石河子市| 轮台县| 徐水县| 石泉县| 双牌县| 安宁市| 漠河县| 陇川县| 长丰县| 山阳县| 沂源县| 临湘市| 灵寿县| 西乌珠穆沁旗| 福泉市| 中宁县| 靖边县| 碌曲县| 竹山县| 尼木县| 娄烦县| 五指山市| 雅安市| 云林县|