周劍敏,尹方平,于晨,湯曉智
?
擠壓協(xié)同酶法制備高粱蛋白ACE抑制肽及其穩(wěn)定性
周劍敏,尹方平,于晨,湯曉智
(南京財(cái)經(jīng)大學(xué)食品科學(xué)與工程學(xué)院/江蘇省現(xiàn)代糧食流通與安全協(xié)同創(chuàng)新中心/江蘇高校糧油質(zhì)量安全控制及深加工重點(diǎn)實(shí)驗(yàn)室,南京 210023)
【目的】利用擠壓協(xié)同酶法制備高粱蛋白ACE抑制肽,為提高高粱蛋白資源的利用效率提供參考?!痉椒ā恳愿吡环蹫樵希冉?jīng)擠壓處理,再經(jīng)淀粉酶酶解,最后通過堿性蛋白酶酶解,獲得高粱蛋白ACE抑制肽。研究物料水分、擠壓溫度和淀粉酶活力對(duì)高粱蛋白酶解液的水解度和ACE抑制活性的影響,并探討高粱蛋白ACE抑制肽的穩(wěn)定性。【結(jié)果】隨著物料水分含量和擠壓溫度的增加,擠壓過程中單位機(jī)械能耗()逐漸降低。在擠壓環(huán)境下,高粱中淀粉和蛋白質(zhì)的相互結(jié)合變得松散,淀粉-蛋白質(zhì)包埋體系被破壞;同時(shí)高粱中球形蛋白質(zhì)體被打破,提高所獲得高粱蛋白的酶敏感性,在堿性蛋白酶的作用下生成更多具有抑制活性的短肽。擠壓過程中物料水分含量和擠壓溫度以及α-淀粉酶活力對(duì)高粱蛋白酶解液的水解度和ACE抑制率有顯著影響。隨著物料水分的增加,蛋白質(zhì)分子的聚合程度下降,使得高粱蛋白酶解液的水解度和ACE抑制率隨之增加,當(dāng)物料水分增加至19%后,擠壓過程對(duì)蛋白質(zhì)周圍的淀粉分子的破壞作用降低,水解度和ACE抑制率的上升趨勢趨于平緩;當(dāng)擠壓溫度從120℃增加至180℃時(shí),高粱內(nèi)部的蛋白質(zhì)-淀粉包埋體系破壞加劇,同時(shí)蛋白質(zhì)的空間結(jié)構(gòu)在高溫作用下的變性程度加大,高粱蛋白酶解液的水解度由7.42%增加至11.06%,同時(shí)高粱蛋白ACE抑制肽的抑制率也由46.57%增加至53.41%;擠壓后高粱粉經(jīng)α-淀粉酶處理,進(jìn)一步去除包裹在蛋白質(zhì)周圍的淀粉,發(fā)現(xiàn)隨著α-淀粉酶活力的增加,高粱內(nèi)部的蛋白質(zhì)-淀粉包埋體系破壞程度加劇,為制備高粱蛋白ACE抑制肽提供更多原料,導(dǎo)致高粱蛋白酶解液的水解度和ACE抑制率隨之增加,當(dāng)α-淀粉酶活力增加至2.0 U·g-1時(shí),淀粉酶與淀粉結(jié)合達(dá)到飽和狀態(tài),水解度和ACE抑制率趨于穩(wěn)定。高粱蛋白ACE抑制肽經(jīng)溫度和酸堿處理后,ACE抑制活性在68.1%—71.31%,保持了良好的抑制活性;高粱蛋白ACE抑制肽在體外經(jīng)胃腸道酶系消化酶解后,ACE抑制活性均高于73%,依然保持了較強(qiáng)的ACE抑制活性,說明擠壓協(xié)同酶法制備的高粱蛋白ACE抑制肽具有長期保存有效性,同時(shí)能夠在胃腸道消化后保持生物活性?!窘Y(jié)論】采用擠壓協(xié)同酶法可以顯著提高高粱蛋白酶解液的水解度和ACE抑制肽的活性,同時(shí)制備的高粱蛋白ACE抑制肽具有良好的穩(wěn)定性,為拓寬高粱的利用和制備功能性食品配料提供了一條新途徑。
擠壓;淀粉酶;高粱蛋白ACE抑制肽;穩(wěn)定性
【研究意義】高粱是人類栽種的重要谷類作物之一。高粱種植面積和總產(chǎn)量位居世界第五。高粱的淀粉和蛋白質(zhì)含量比例高于玉米、小麥和水稻等其他谷物[1]。其中淀粉含量約為65%—70%,蛋白質(zhì)含量約為8%—11%[2]。此外,高粱還含有多種生理活性組分,如多酚、類黃酮等,這些組分有很強(qiáng)的抗氧化能力[3-4],有助于降低某些慢性非傳染疾病的發(fā)病風(fēng)險(xiǎn),如肥胖癥、糖尿病、心血管疾病、高血壓、癌癥等。所以對(duì)于消費(fèi)者而言,高粱可以作為能量、蛋白質(zhì)、維生素和礦物質(zhì)等營養(yǎng)物質(zhì)的主要來源。然而,與其他禾谷類作物相比,高粱中存在單寧等抗?fàn)I養(yǎng)因子,使高粱的營養(yǎng)價(jià)值降低,感官質(zhì)量變差[5]。同時(shí),蛋白質(zhì)之間的二硫鍵和蛋白質(zhì)與淀粉基質(zhì)之間的相互作用使高粱的蛋白質(zhì)消化率降低[6],特別是經(jīng)過蒸煮后變得更加不易消化[7-8],這也降低了高粱的營養(yǎng)價(jià)值。高營養(yǎng)含量、低營養(yǎng)價(jià)值這一特點(diǎn)限制了高粱的食用及在食品工業(yè)和動(dòng)物飼料工業(yè)中的應(yīng)用。目前,在我國高粱生產(chǎn)主要應(yīng)用于釀酒,在食品工業(yè)其他領(lǐng)域中的應(yīng)用幾乎處于空白。這就可能造成高粱種質(zhì)資源尤其是蛋白質(zhì)資源的極大浪費(fèi)?!厩叭搜芯窟M(jìn)展】長期以來,食源性活性肽的研究與開發(fā)一直受到科學(xué)家們的高度關(guān)注[9-12],特別是食源性血管緊張素轉(zhuǎn)換酶(ACE)抑制肽[13-15]。與合成的ACE抑制肽相比,食源性ACE抑制肽具備食用安全性高、低毒副作用、降壓效果溫和專一以及對(duì)血壓正常者無任何不良影響等優(yōu)勢,受到研究者的廣泛關(guān)注,成為控制和治療高血壓研究的熱點(diǎn)[16]。食源性ACE抑制肽主要分為乳蛋白源[17-19]、水產(chǎn)品蛋白源[20-22]和植物蛋白源[13,23,24]三種。最近有部分研究者從雞肌肉[25]和蠶蛹[26]中分離純化出ACE抑制肽。用于制備ACE抑制肽的植物蛋白源主要有花生[27]、菜籽[28]、棉籽[29]、米糠[30]和玉米[31]等,其中玉米被認(rèn)為是制備ACE抑制肽的良好來源。高粱蛋白和玉米蛋白在結(jié)構(gòu)和組成上具有高度相似性[32],因此,以高粱蛋白作為原材料制備活性多肽具有一定可行度,也已經(jīng)有了一定的研究基礎(chǔ)。Kamath等[33]用胰凝乳蛋白酶水解高粱醇溶蛋白后,從水解液中分離得到4種具有ACE抑制活性的組分;杜金娟[34]以甜高粱為原料提取蛋白質(zhì)分離純化得到ACE 抑制肽,發(fā)現(xiàn)甜高粱ACE抑制肽中含量和活性最高的肽鏈氨基酸序列為Thr-Ile-Ser或Thr-Leu-Ser;Wu等[35]以甜高粱蛋白為原料酶解制備ACE抑制肽并認(rèn)為ACE抑制活性主要來源于肽鏈段末端的絲氨酸(Ser);Camargo等[36]從高粱蛋白中分離純化出一種分子量為2 kD的抗病毒肽。我國豐富的高粱蛋白資源為高粱活性肽的研究提供了條件,但由于高粱蛋白提取困難,使關(guān)于高粱蛋白活性多肽的報(bào)道也相對(duì)較少。擠壓加工是在熱能和機(jī)械能的作用下,連續(xù)的壓擠、剪切、混合、蒸煮、物料塑性化的加工方式,是一項(xiàng)占地空間少,生產(chǎn)周期短,能源利用率高,廢棄物和副產(chǎn)品少,易于實(shí)現(xiàn)連續(xù)化作業(yè)的節(jié)能環(huán)保綠色技術(shù)[37]。Batterman等[38]研究了擠壓加工與玉米蛋白質(zhì)體的關(guān)系,發(fā)現(xiàn)當(dāng)直接機(jī)械能達(dá)到165 kJ·kg-1時(shí),球形的蛋白質(zhì)體能夠被打破。由于玉米蛋白與高粱蛋白結(jié)構(gòu)有一定的相似性,這項(xiàng)研究對(duì)于高粱蛋白的擠壓加工特性及其提取制備具有指導(dǎo)意義。已有研究表明在一定條件下,經(jīng)過擠壓加工后的高粱蛋白的酶敏感性得到極大的提高[39-41]。此外,ZHAN等[42]用擠壓技術(shù)預(yù)處理高粱粉用于酒精發(fā)酵,發(fā)現(xiàn)擠壓預(yù)處理可以使淀粉更容易液化,從另一個(gè)側(cè)面證明通過擠壓處理可以使高粱中淀粉和蛋白質(zhì)的結(jié)合變得松散?!颈狙芯壳腥朦c(diǎn)】擠壓過程中由于高溫、高壓和高剪切力的作用可能使高粱中淀粉和蛋白質(zhì)的相互結(jié)合變得松散;同時(shí)在擠壓機(jī)械能的作用下,高粱中球形的蛋白質(zhì)體有可能被打破,從而提高所獲得高粱蛋白的酶敏感性,更利于生成生物活性短肽。本研究通過擠壓協(xié)同酶法制備高粱蛋白ACE活性肽,通過適度擠壓加工破壞淀粉-蛋白質(zhì)包埋體系,為蛋白酶的水解提供更多原料,同時(shí)擠壓過程破壞蛋白質(zhì)結(jié)構(gòu)有利于蛋白酶的進(jìn)一步水解,提升了高粱蛋白ACE抑制肽的制備效率?!緮M解決的關(guān)鍵問題】研究擠壓過程中物料水分含量、擠壓溫度及高溫α-淀粉酶活力對(duì)蛋白酶解液的水解度和ACE抑制活性的影響,同時(shí)研究所獲得ACE抑制肽的穩(wěn)定性,提供一種更為高效、無污染的高粱蛋白活性肽的制備方法,為高效合理利用高粱蛋白提供參考。
試驗(yàn)于2017年在南京財(cái)經(jīng)大學(xué)食品科學(xué)與工程樓進(jìn)行。
脫殼高粱米:淀粉含量71.61%,蛋白質(zhì)含量10.17%,脂肪含量2.34%,灰分含量2.1%;高溫α-淀粉酶(40 000 U·g-1,最適pH 5.5—7.0):購于北京索萊寶科技有限公司;Alcase 堿性蛋白酶(液態(tài)):購于諾維信公司;胃蛋白酶(250 000 U·g-1,最適pH 2.0)、胰蛋白酶(250 000 U·g-1,最適pH 7.0)、血管緊張素轉(zhuǎn)換酶(2 000 U·g-1,最適pH 7.0;ACE)、N-[3-(2-呋喃基)丙烯酰]-L-苯丙氨酰-甘氨酰-甘氨酸(FAPGG):購于Sigma-Aldrich公司;其他試劑均購于國藥集團(tuán)化學(xué)試劑有限公司。
DSE-20型雙螺桿擠壓機(jī):德國Brabender公司;酶標(biāo)儀:美國 Molecular公司;高速冷凍離心機(jī):湖南湘儀公司;pHS-3C精密數(shù)顯pH計(jì):上海精密科學(xué)儀器廠;水浴恒溫磁力攪拌器:予華儀器公司;凱氏定氮儀:瑞士Buchi公司;D-3紫外檢測儀:上海滬西儀器廠。
1.3.1 擠壓協(xié)同淀粉酶法制備高粱蛋白
(1)擠壓試驗(yàn)
將過60目篩后的微細(xì)高粱粉分裝后,分別調(diào)水分含量至15%、17%、19%、21%、23%,混合均勻,放入自封袋中平衡過夜。
采用DSE-20雙螺桿擠壓機(jī),長徑比30﹕1,螺桿直徑20 mm,??字睆? mm。擠壓機(jī)套筒溫度分別設(shè)定為I區(qū)40℃、II區(qū)60℃、III區(qū)100℃、IV區(qū)120℃,V區(qū)溫度分別設(shè)定為120℃、135℃、150℃、165℃和180℃,喂料器轉(zhuǎn)速恒定為14 r/min,螺桿轉(zhuǎn)速恒定為150 r/min。擠壓機(jī)啟動(dòng)30 min穩(wěn)定后,按設(shè)定的條件對(duì)上述混合樣品進(jìn)行試驗(yàn)。擠出樣品放置于40℃烘箱干燥24 h,分別磨粉過60目篩用于后續(xù)試驗(yàn)。
(2)直接機(jī)械能
擠壓試驗(yàn)過程中,整個(gè)設(shè)備由計(jì)算機(jī)程序控制和記錄,可直接讀取擠壓加工過程中的扭矩等參數(shù),數(shù)據(jù)采集頻率為每分鐘6次。根據(jù)式(1)計(jì)算出直接機(jī)械能():
其中為直接機(jī)械能(kJ·kg-1),n為螺桿轉(zhuǎn)速(r/min),T為扭矩(Nm),MFR為擠壓機(jī)穩(wěn)定時(shí)的產(chǎn)量(g·min-1)。
(3)淀粉酶法制備高粱蛋白
將未經(jīng)擠壓的高粱粉和擠壓后的高粱粉按照料液比1﹕6(高粱粉:超純水)于90℃恒溫水浴鍋中攪拌,添加適量的耐高溫α-淀粉酶(0.4、0.8、1.2、1.6、2.0、2.4和2.8 U·g-1),反應(yīng)2 h后,5 000 r/min,4℃下離心15 min,傾倒上清液后取沉淀,反復(fù)水洗沉淀并離心3次,直至上清液澄清,將沉淀冷凍干燥即得高粱蛋白粉。
1.3.2 ACE抑制肽的制備及活性測定
(1)酶解工藝流程
根據(jù)預(yù)試驗(yàn)結(jié)果確定反應(yīng)條件:取5 mg的上述高粱蛋白粉分散于1 mL的pH 7.9緩沖液中。置于恒溫加熱磁力攪拌器上,反應(yīng)溫度為55℃,加入2 360 U酶活力的堿性蛋白酶后低速攪拌反應(yīng)2 h,沸水浴滅酶15 min。待溶液冷卻后于5 000 r/min,4℃條件下離心20 min,取上清液即酶解液。
(2)水解度的測定
取完全水解液0.1—1.0 mL于25 mL比色管中,蒸餾水稀釋至4.0 mL,加pH 8緩沖溶液1.0 mL,茚三酮溶液1.0 mL,混勻,沸水浴加熱15 min,冷卻,蒸餾水稀釋至25 mL。570 nm測吸光度(以水作參比)。另取100 mg蛋白,加水100 mL,振蕩均勻后過濾,取相應(yīng)體積的濾液,按上述方法測光密度值。相同體積樣品的光密度之差與蛋白質(zhì)量做工作曲線,取線性部分做標(biāo)準(zhǔn)曲線。
取1.0 mL酶解液,稀釋至100 mL,取稀釋后水解液4.0 mL,加pH 8緩沖溶液1.0 mL,茚三酮溶液1.0 mL,沸水浴加熱15 min,冷卻,蒸餾水稀釋至25 mL,于570 nm下測吸光度。另取相同濃度未水解蛋白溶液3 mL,按上述方法測吸光度,以二者光密度之差從標(biāo)準(zhǔn)曲線上查蛋白質(zhì)含量。按下式計(jì)算水解度[43]:
式中:-由標(biāo)準(zhǔn)曲線得蛋白毫克數(shù),-高粱蛋白粉質(zhì)量(g),1-水解液總體積(mL),2-顯色時(shí)所用稀釋液體積(mL)。
(3)ACE抑制活性測定 將1.0 mmol·L-1FAPGG 溶解于pH為7.5、包含0.3 mol·L-1NaCl的的Tris-HCl(50 mmol·L-1)中配置底物溶液,置于37℃水浴鍋中保溫。取10 μL酶解液加入96孔板中,然后加入150 μL的底物溶液,迅速將孔板放入酶標(biāo)儀中,于340 nm下測定吸光值,每30 s記錄一次,共30 min。空白組以10 μL的緩沖液代替酶解液,對(duì)照組以10 μL的0.25 U·mL-1的ACE溶液代替酶解液。以吸光值變化() 對(duì)時(shí)間作出曲線,計(jì)算斜率。計(jì)算公式如下[44]:
1.3.3 高粱蛋白ACE抑制肽的穩(wěn)定性測定 依據(jù)上述擠壓條件擇優(yōu)制備高粱蛋白并通過堿性蛋白酶水解制備高粱蛋白ACE抑制肽粗肽粉,配制5 mg·mL-1的高粱蛋白ACE抑制肽溶液,置于不同的環(huán)境中,以蛋白質(zhì)水解液的ACE抑制率為考察指標(biāo),分別考察溫度、pH和體外模擬胃腸道酶系對(duì)ACE抑制穩(wěn)定性的影響。具體條件如下:
(1)將高粱蛋白溶液分別置于 20℃、40℃、60℃、80℃和100℃水浴中保溫2 h,冰水浴冷卻,測定ACE抑制率。
(2)將高粱蛋白溶液的pH分別調(diào)至2.0、4.0、6.0、8.0和10.0,在4℃條件下冷藏保存24 h后,調(diào)節(jié) pH 為 7.0,測定ACE抑制率。
(3)將高粱ACE抑制肽溶解于0.1 mol·L-1的HCl緩沖液(pH 2.0)中,配制成5%(w/v)溶液并加入適量的胃蛋白酶。在37℃水浴條件下水解3 h,然后沸水浴滅酶10 min,冷卻后用2 mol·L-1NaOH調(diào)pH至7.0。5 000 r/min離心15 min,測定上清液的ACE抑制率。
(4)取(3)中pH為7.0的溶液,加入適量胰蛋白酶,37℃水浴條件下繼續(xù)水解3 h,然后沸水浴滅酶10 min,冷卻后,5 000 r/min離心15 min,測定上清液的ACE抑制率。
1.3.4 統(tǒng)計(jì)分析 采用Origin 8.0數(shù)據(jù)處理軟件對(duì)數(shù)據(jù)進(jìn)行分析,并用Tukey法進(jìn)行顯著性分析(<0.05)。
由圖1可以看出隨著物料水分含量、擠壓溫度的升高而降低。是扭矩、轉(zhuǎn)速和產(chǎn)量的綜合反映[45]。物料水分含量對(duì)的影響見圖1-a。隨著物料水分含量(15%—23%)的增大,單位機(jī)械能耗呈下降的趨勢。這與物料在機(jī)桶內(nèi)流動(dòng)性相關(guān)[46],物料水分含量低時(shí),在機(jī)筒內(nèi)受強(qiáng)制性流動(dòng)的阻力增大,擠壓螺桿需要較大的機(jī)械能輸入來保持轉(zhuǎn)速穩(wěn)定。水分在擠壓膨化過程中起到塑化劑的作用[47],隨著物料水分含量的增大,物料的流動(dòng)性增強(qiáng),使得隨之降低。擠壓??赩區(qū)溫度對(duì)的影響見圖1-b。隨著擠壓溫度(120℃—180℃)的升高,單位機(jī)械能耗呈下降的趨勢。物料在擠壓機(jī)內(nèi)受剪切力和高溫影響在擠壓機(jī)??谔幊嗜廴跔顟B(tài)。當(dāng)溫度升高時(shí),熔融體的黏度降低,扭矩下降,物料的滯留時(shí)間減少,導(dǎo)致降低[38]。
圖1 物料水分含量和擠壓溫度對(duì)單位機(jī)械能耗的影響
由圖2可以看出當(dāng)擠壓溫度為150℃,淀粉酶活為2.0 U·g-1淀粉時(shí),擠壓預(yù)處理過程中物料水分含量對(duì)蛋白酶酶解液的水解度和ACE抑制率有顯著影響。隨著物料水分含量的增加(15%—19%),蛋白質(zhì)酶解液的水解度和ACE抑制率大幅提高,水分含量達(dá)到19%后,水解度和ACE抑制率的上升趨勢變得平緩。表明使用擠壓預(yù)處理提取高粱蛋白有利于最終蛋白酶水解,高粱蛋白的酶敏感性得到極大的提高,從而提升了水解度和ACE抑制率。
圖2 物料水分含量對(duì)蛋白酶酶解液的水解度和ACE抑制率的影響
擠壓溫度作為擠壓工藝的一個(gè)重要參數(shù),其對(duì)蛋白酶酶解液的水解度和ACE抑制率同樣具有顯著影響,如圖3所示,物料水分為17%,淀粉酶活為2.0 U·g-1淀粉時(shí),隨擠壓溫度的升高,蛋白質(zhì)酶解液的水解度和ACE 抑制率隨之持續(xù)上升。在180℃時(shí)水解度和ACE抑制率分別達(dá)到11.07%和53.41%。
圖3 擠壓溫度對(duì)蛋白酶酶解液的水解度和ACE抑制率的影響
α-淀粉酶的添加可以破壞淀粉分子結(jié)構(gòu)以及淀粉與蛋白質(zhì)的包埋結(jié)構(gòu),所以酶活力的改變對(duì)蛋白質(zhì)提取率、蛋白質(zhì)純度、蛋白酶酶解液的水解度和ACE抑制率具有重要意義,如圖4所示,物料水分為17%,擠壓溫度為150℃時(shí)。隨α-淀粉酶活力的上升,蛋白質(zhì)酶解液的抑制率和水解度持續(xù)增加,當(dāng)酶活力達(dá)到2.0 U·g-1淀粉后,水解度、ACE 抑制率趨于穩(wěn)定,變化幅度不大。
2.5.1 溫度 儲(chǔ)存溫度對(duì)ACE抑制活性的影響見圖5-a。儲(chǔ)存溫度在20℃—100℃變化時(shí),ACE抑制肽的ACE抑制率在66.94%—68.16%內(nèi)小范圍波動(dòng),80℃和 100℃時(shí)略有下降,下降幅度很小,說明ACE抑制肽的抑制活性受溫度影響不大,ACE抑制肽在一定范圍內(nèi)具有良好的溫度穩(wěn)定性。
2.5.2 pH pH對(duì)ACE抑制活性的影響見圖5-b。在pH 2—10內(nèi),ACE抑制肽的ACE抑制率在66.84%—67.59%波動(dòng),變化不顯著(<0.05)。總體來看,ACE抑制肽在酸性和堿性條件下都能夠保持良好的穩(wěn)定性。
2.5.3 體外模擬胃腸消化道酶系 胃腸消化道酶系對(duì)ACE抑制活性的影響見圖5-c。ACE抑制肽經(jīng)過胃蛋白酶消化后,ACE抑制率較未消化處理的多肽有所提高,再經(jīng)胰蛋白酶消化后,ACE 抑制率繼續(xù)增大。這可能是由于在胃腸消化道酶系的水解作用下,ACE抑制肽進(jìn)一步降解產(chǎn)生更多活性多肽,抑制率上升,說明ACE抑制肽具有良好的體外消化穩(wěn)定性。
圖4 α-淀粉酶活力對(duì)蛋白酶酶解液的水解度和ACE抑制率的影響
圖5 ACE抑制肽的溫度穩(wěn)定性、酸堿穩(wěn)定性和體外消化穩(wěn)定性
Fig. 5 Effects of temperature, pH and gastrointestinal digestive enzyme system on ACE inhibition rate
高粱貯藏蛋白(包括谷蛋白和醇溶谷蛋白)占高粱總蛋白質(zhì)的90%,其中醇溶谷蛋白約占高粱蛋白的80%。高粱醇溶谷蛋白主要分為α-醇溶蛋白,β-醇溶蛋白和γ-醇溶蛋白3個(gè)部分。其中α-醇溶蛋白占比最高,占總量的66%—84%,β-醇溶蛋白占7%—8%,γ-醇溶蛋白占9%—12%。對(duì)于α-醇溶蛋白分子而言,二硫鍵主要存在于分子內(nèi)部;但β-及γ-醇溶蛋白除了分子內(nèi)存在二硫鍵外,還有許多亞基通過分子間二硫鍵聯(lián)結(jié)并高度交聯(lián)。同時(shí)有大量研究指出高粱醇溶蛋白位于球形的蛋白質(zhì)體內(nèi),該蛋白質(zhì)體包埋在谷蛋白基質(zhì)內(nèi),同時(shí)周圍環(huán)繞著淀粉顆粒[48-50]。這種結(jié)構(gòu)十分堅(jiān)固,在食品加工中阻礙了蛋白質(zhì)連續(xù)性網(wǎng)絡(luò)結(jié)構(gòu)的形成。WONG等[6]發(fā)現(xiàn)蛋白質(zhì)之間的二硫鍵和蛋白質(zhì)與淀粉基質(zhì)之間的相互作用使高粱的蛋白質(zhì)消化率降低。由于ACE活性位點(diǎn)不能容納大分子肽,因此,ACE抑制肽的氨基酸殘基數(shù)量通常為2—12個(gè)[51],這說明在制備高粱蛋白ACE抑制肽的過程中,蛋白質(zhì)之間的二硫鍵和蛋白質(zhì)與淀粉基質(zhì)之間的相互作用同時(shí)也限制ACE的獲得率、生物活性和生物穩(wěn)定性。
在擠壓過程中,物料中各個(gè)組分受到高壓、高溫和剪切力的作用,結(jié)構(gòu)和存在形式發(fā)生了不同程度的改變,主要體現(xiàn)在淀粉糊化和蛋白質(zhì)變性等方面。MAHASUKHONTHACHAT等[52]采用不同的擠壓參數(shù)對(duì)高粱粉進(jìn)行擠壓處理,發(fā)現(xiàn)擠壓后高粱中的淀粉糊化度在88%—99%。這說明擠壓過程中的高溫高壓使得氫鍵斷裂,使得蛋白質(zhì)-淀粉包埋結(jié)構(gòu)遭到破壞,同時(shí)淀粉由原來的致密結(jié)構(gòu)變得松散無序,α化度提高[53]。其糊化程度與擠壓機(jī)的螺桿轉(zhuǎn)速、擠壓溫度和物料水分含量等工藝參數(shù)密切相關(guān)。BHATTACHARYA等[54]研究了擠壓工藝參數(shù)對(duì)糊化程度的影響,結(jié)果表明物料水分含量和擠壓溫度的升高可提高產(chǎn)品的糊化度。同時(shí)也有研究指出在高溫高壓剪切條件下,淀粉分子鏈部分被打斷,還會(huì)發(fā)生降解現(xiàn)象,生成小分子寡糖,淀粉鏈裸露,更利于淀粉酶的分解作用[55]。隨著物料水分和擠壓溫度的增加,淀粉糊化程度增加,淀粉-蛋白質(zhì)包埋體被破壞[56],經(jīng)過α-淀粉酶酶解后分離出更多的高粱蛋白作為制備ACE抑制肽的原料,相應(yīng)的得到了更多具有抑制活性的短肽。
在擠壓過程中,原料中蛋白質(zhì)的變化也十分明顯。高溫和剪切作用破壞了維持蛋白質(zhì)結(jié)構(gòu)的作用力,使蛋白質(zhì)分子結(jié)構(gòu)伸展,分子間部分氫鍵、二硫鍵發(fā)生斷裂[57],蛋白質(zhì)變性。據(jù)報(bào)道,蛋白質(zhì)變性程度隨擠壓溫度上升而增加,同時(shí)改善了蛋白質(zhì)的組織化程度[58]。一般經(jīng)過擠壓會(huì)改善蛋白質(zhì)的消化率,相對(duì)于未擠壓原料消化率明顯提高,一方面是因?yàn)閿D壓作用會(huì)使產(chǎn)品中的游離氨基酸含量增加;另外擠壓作用可以使蛋白質(zhì)分子適度的變性伸展,酶作用位點(diǎn)的暴露增加了蛋白質(zhì)對(duì)酶的敏感性,加快了酶水解速度,蛋白質(zhì)的消化率提高[59-60]。陳鋒亮等[61]在擠壓大豆蛋白的過程中發(fā)現(xiàn)增加物料水分含量,有助于蛋白質(zhì)的伸展變性,顯著降低了蛋白質(zhì)分子的聚合程度。房巖強(qiáng)等[62]在研究擠壓溫度對(duì)于蛋白結(jié)構(gòu)的影響時(shí)指出溫度與蛋白質(zhì)中二硫鍵的含量成反比,同時(shí)溫度的升高,蛋白質(zhì)中的有序結(jié)構(gòu)減少。同樣,JAFARIA等[63]研究指出高粱蛋白在擠壓后其結(jié)構(gòu)向無規(guī)則卷曲轉(zhuǎn)化。隨著物料水分和擠壓溫度的增加,蛋白質(zhì)的內(nèi)部結(jié)構(gòu)打開,暴露出更多的酶作用位點(diǎn),在蛋白酶的作用下生成更多具有抑制活性的短肽,提升了蛋白酶解液的水解度。
據(jù)報(bào)道,ACE抑制肽的抑制能力與是否存在疏水性氨基酸存在強(qiáng)關(guān)聯(lián)性[64-65],高粱蛋白中含有較高含量的疏水性氨基酸基團(tuán)[66],擠壓過程中高粱蛋白中疏水性氨基酸基團(tuán)隨著結(jié)構(gòu)的轉(zhuǎn)變而暴露出來,因此,高粱蛋白水解后呈現(xiàn)出較好的ACE抑制活性。
經(jīng)過擠壓后的物料在淀粉酶的作用下進(jìn)一步破壞淀粉-蛋白質(zhì)包埋結(jié)構(gòu),為制備ACE抑制肽的提供更多的原料,提升制備高粱蛋白ACE抑制肽的效率。當(dāng)?shù)矸勖噶枯^少時(shí),蛋白質(zhì)產(chǎn)物純度低,淀粉水解不徹底,且淀粉與蛋白質(zhì)之間的包埋結(jié)構(gòu)破壞不完全,酶作用的位點(diǎn)暴露少,不利于蛋白酶的水解作用。此時(shí),酶解液的水解度較低,不能有效生成具有抑制活性的短肽,ACE抑制率低。隨著淀粉酶量增加,水解度和ACE抑制率都得到改善。當(dāng)酶量增加到一定值時(shí),淀粉酶與底物結(jié)合達(dá)到飽和狀態(tài),酶解液的水解度、ACE抑制率變化趨勢平緩。
本研究采用擠壓協(xié)同酶法制備高粱蛋白ACE抑制肽。擠壓過程中淀粉發(fā)生糊化、降解等行為,破壞了淀粉-蛋白質(zhì)包埋體,為后續(xù)通過α淀粉酶水解淀粉提供便利,同時(shí)蛋白質(zhì)在高溫高剪切力作用下,高粱蛋白質(zhì)變性,分子結(jié)構(gòu)被破壞,暴露出更多的酶作用位點(diǎn)因和疏水性氨基酸基團(tuán),在蛋白酶作用下生成更多具有抑制活性的短肽,提升蛋白酶解液的水解度,從而獲得具備良好ACE抑制活性的高粱蛋白肽。通過此法制備的高粱蛋白ACE抑制肽具有良好的熱穩(wěn)定性、酸堿穩(wěn)定性和體外消化穩(wěn)定性。這為開發(fā)高粱資源和制備功能性食品配料提供了一條新途徑。
[1] WHITE J W, ALAGARSWAMY G, OTTMAN M J, PORTER C H, SINGH U, HOOGENBOOM G. An overview of CERES-sorghum as implemented in the cropping system model version 4.5., 2015, 107(6): 1987-2002.
[2] LINGLE S E, TEW T L, RUKAVINA H, Boykin D L. Post-harvest changes in sweet sorghum II: pH, acidity, protein, starch, and mannitol., 2013, 6(1): 178-187.
[3] VERGARA-BARBERáN M, MOMPó-ROSELLó O, LERMA- GARCíA M J, HERRERO-MARTíNEZ J M, SIMO-ALFONSO E F. Enzyme-assisted extraction of proteins from citrus, fruits and prediction of their cultivar using protein profiles obtained by capillary gel electrophoresis., 2017, 72: 14-19.
[4] 陳子涵, 蔣繼宏, 鞠秀云, 劉金娟. 各食用米中活性成分及其抗氧化活性. 食品工業(yè)科技, 2018(3): 71-75.
CHEN Z H, JIANG J H, JU X Y, LIU J J. The bioactive compounds and their antioxidant activity of kinds of edible rice.2018(3): 71-75. (in Chinese)
[5] MKANDAWIRE N L, KAUFMAN R C, BEAN S R, WELLER C L, JACKSON D S, ROSE D J. Effects of sorghum ((L.) moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours., 2013, 61(18): 4448-4454.
[6] WONG J H, LAU T, CAI N, SINGH J, PEDERSEN J F, VENSEL W H, HURKMAN W J, WILSON J D, LEMAUX P G, BUCHANAN B B. Digestibility of protein and starch from sorghum () is linked to biochemical and structural features of grain endosperm., 2009, 49(1): 73-82.
[7] EZEOGU L I, DUODU K G, JRN T. Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours., 2005, 42(1): 33-44.
[8] TAYLOR J, TAYLOR J R N. Alleviation of the adverse effect of cooking on sorghum protein digestibility through fermentation in traditional African porridges., 2010, 37(2): 129-137.
[9] 阮曉慧, 韓軍岐, 張潤光, 張有林. 食源性生物活性肽制備工藝、功能特性及應(yīng)用研究進(jìn)展. 食品與發(fā)酵工業(yè), 2016, 42(6): 248-253.
RUAN X H,HAN J Q,ZHANG R G,ZHANG Y L. Progress in the preparation, functional properties and applications of food-derived bioactive peptides., 2016, 42(6): 248-253. (in Chinese)
[10] BAH C S, CARNE A, MCCONNELL M A, MROS S, BEKHIT A E A. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations.2016, 202: 458-466.
[11] PIOVESANA S, CAPRIOTTI A L, CAVALIERE C, BARBERA G L, MONTONE C M, CHIOZZI R Z, LAGANà A. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation.2018, 410(15): 1-20.
[12] RUTHERFURD-MARKWICK K J, MOUGHAN P J. Bioactive peptides derived from food., 2005, 88(3): 955-966.
[13] DASKAYADIKMEN C, YUCETEPE A, KARBANCIOGLUGULER F, DASKAYA H, OZCELIK B. Angiotensin-I-converting enzyme (ACE)-Inhibitory peptides from plants2017, 9(4): 316-335.
[14] RUDOLPH S, LUNOW D, KAISER S, HENLE T. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins.2017, 224: 19-25.
[15] 梁婷婷, 佟立濤, 蒲華寅,王麗麗, 周閑容, 鞠志遠(yuǎn), 周素梅, 黃峻榕. 動(dòng)植物源蛋白體外消化產(chǎn)物結(jié)構(gòu)性質(zhì)及ACE抑制活性. 食品科學(xué), 2018, 39(4): 6-12.
LIANG T T, TONG L T, PU H Y, WANG L L, ZHOU X R, JU Z Y, ZHOU S M, HUANG J R. Structures and angiotensin converting enzyme (ACE) inhibitory activity of in vitro digests of animal and plant proteins., 2018, 39(4): 6-12. (in Chinese)
[16] IWANIAK A, MINKIEWICZ P, DAREWICZ M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction., 2014, 13(2): 114-134.
[17] PAN D, GUO Y. Optimization of sour milk fermentation for the production
of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate., 2010, 20(7): 472-479.
[18] MOSLEHISHAD M, EHSANI M R, SALAMI M, MIRDAMADI S, EZZATPANAH H, NASLAJI A N, MOOSAVI-MOVAHEDI A A. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk byPTCC 1637., 2013, 29(2): 82-87.
[19] LóPEZFANDI?O R, OTTE J, JVAN C. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity.2006, 16(11): 1277-1293.
[20] WU S, FENG X, LAN X, XU Y, & LIAO D. Purification and identification of angiotensin-I converting enzyme (ACE) inhibitory peptide from lizard fish () hydrolysate., 2015, 13: 295-299.
[21] GARCíA-MORENO P J, ESPEJO-CARPIO F J, GUADIX A, GUADIX E M. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards., 2015, 18: 95-105.
[22] BHAT I, KARUNASAGAR I. Antihypertensive activity of fish protein hydrolysates and its peptides., 2018: 1-12.
[23] 翟愛華, 袁文帥. 米糠蛋白ACE抑制肽在大鼠體內(nèi)降壓效果的研究. 食品工業(yè)科技, 2015, 36(23): 348-352.
ZHAI A H, YUAN W S. Study on antihypertensive effect of the rice bran protein ace inhibitory peptides on rats., 2015, 36(23): 348-352. (in Chinese)
[24] LIU X, MIAO X, WU D, LIU C, FANG L, LIU J, MIN W. Purification and identification of ACE-inhibiting peptides from wild pine nut peptide fractions (PNPF).2017, 244(6): 1-10.
[25] TERASHIMA M, BABA T, IKEMOTO N, KATAYAMA M, MORIMOTO T, MATSUMURA S. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat., 2010, 58(12): 7432-7436.
[26] LI X, LI Y, HUANG X, ZHENG J, ZHANG F, KAN J. Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa., 2014, 23(4): 1017-1023.
[27] WHITE B L, SANDERS T H, DAVIS J P. Potential ACE-inhibitory activity and nanoLC-MS/MS sequencing of peptides derived from aflatoxin contaminated peanut meal., 2014, 56(2): 537-542.
[28] RONG H, GIRGIH A T, ELODIE R, LAURENT B, XING-RONG J, ALUKO R E. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes., 2016, 197(Pt A): 1008-1014.
[29] GAO D, CHANG T, LI H, & CAO Y. Angiotensin I-converting enzyme inhibitor derived from cottonseed protein hydrolysate., 2010, 9(53): 8977-8983.
[30] SHOBAKO N, OGAWA Y, ISHIKADO A, HARADA K, KOBAYASHI E, SUIDO H, KUSAKARI T, MAEDA M, SUWA M, MATSUMOTO M, KANAMOTO R, OHINATA K. A novel anti-hypertensive peptide identified in thermolysin-digested rice bran., 2017: 1700-1732.
[31] HUANG W H, SUN J, HE H, DONG H W, LI J T. Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats., 2011, 128(4): 968-973.
[32] BELTON P S, DELGADILLO I, HALFORD N G, SHEWRY P R. Kafirin structure and functionality., 2006, 44(3): 272-286.
[33] KAMATH V, NIKETH S, CHANDRASHEKAR A, RAJINI P S. Chymotryptic hydrolysates of α-kafirin, the storage protein of sorghum () exhibited angiotensin converting enzyme inhibitory activity., 2007, 100(1): 306-311.
[34] 杜金娟. 甜高粱ACE抑制肽的制備及其特性研究[D]. 鎮(zhèn)江: 江蘇科技大學(xué), 2013.
DU J J. Preparation and physicochemical properties of ACE-inhibitory peptides from sweet sorghum protein [D]. Zhenjiang: Jiangsu University of Science and Technology, 2013. (in Chinese)
[35] WU Q Y, DU J J, JIA J Q, KUANG C. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study., 2016, 199: 140-149.
[36] CAMARGO F I, CORTEZ D A, UEDA-NAKAMURA T, NAKAMURA C V, DIAS FILHO B P. Antiviral activity and mode of action of a peptide isolated from sorghum bicolor., 2008, 15(3): 202-208.
[37] RIAZ M N.. USA: CRC Press, 2000.
[38] SHERI J. BATTERMAN‐AZCONA, LAWTON J W, BRUCE R. HAMAKER. Effect of specific mechanical energy on protein bodies and α‐zeins in corn flour extrudates., 1999, 76(2): 316-320.
[39] FAPOJUWO O, MAGA J A, JANSEN G R. Effect of extrusion cooking on in vitro protein digestibility of sorghum., 2010, 52(1): 218-219.
[40] DAHLIN K, LORENZ K. Protein digestibility of extruded cereal grains., 1993, 48(1): 13-18.
[41] HAMAKER B R, MERTZ E T, AXTELL J D. Effect of extrusion on sorghum kafirin solubility., 1994, 71(5): 515-517.
[42] ZHAN X, WANG D, BEAN S R, MO X, SUN X S, BOYLE D. Ethanol production from supercritical-fluid-extrusion cooked sorghum., 2006, 23(3): 304-310.
[43] 郭興鳳. 蛋白質(zhì)水解度的測定. 中國油脂, 2000, 25(6): 176-177.
GUO X F. Determination of hydrolysis degree of protein.2000, 25(6): 176-177. (in Chinese)
[44] SHALABY S M, ZAKORA M, OTTE J. Performance of two commonly used angiotensin-I-converting enzyme inhibition assays using FAPGG and HHL as substrates., 2006, 73: 178-186.
[45] 解鐵民, 高揚(yáng), 張英蕾, 李哲濱. 擠壓參數(shù)對(duì)薏米擠出產(chǎn)品物理特性的影響. 食品與機(jī)械, 2013, 29(1): 18-22.
XIE T M, GAO Y, ZHANG Y L, LI Z B. Extrusion cooking suitability of job's tears and properties of extrudate., 2013, 29(1): 18-22. (in Chinese)
[46] YU C, LIU J, TANG X, SHEN X, LIU S. Correlations between the physical properties and chemical bonds of extruded corn starch enriched with whey protein concentrate., 2017, 7(20):11979-11986.
[47] LI M, HASJIM J, XIE F, HALLEY P J, GILBERT R G. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion., 2014, 66(7/8): 595-605.
[48] DUODU K G, NUNES A, DELGADILLO I, PARKER M L, MILLS E N C, BELTON P S, TAYLOR J R N. Effect of grain structure and cooking on sorghum and maize in vitro, protein digestibility., 2002, 35(2): 161-174.
[49] SCHOBER T J, BEAN S R, BOYLE D L. Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background., 2007, 55(13): 5137-5146.
[50] HAMAKER B R, BUGUSU B A. Overview: sorghum proteins and food quality//Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa. Pretoria: South Africa, 2003.
[51] HERNáNDEZ-LEDESMA B, CONTRERAS M D M, RECIO I. Antihypertensive peptides: production, bioavailability and incorporation into foods., 2010, 165(1): 23-35.
[52] MAHASUKHONTHACHAT K, SOPADE P A, GIDLEY M J. Kinetics of starch digestion and functional properties of twin- screw extruded sorghum., 2010, 51(3): 392-401.
[53] 杜雙奎, 魏益民, 張波. 擠壓膨化過程中物料組分的變化分析. 中國糧油學(xué)報(bào), 2005, 20(3): 39-43.
DU S K, WEI Y M, ZHANG B. Changes of material components during extrusion., 2005, 20(3): 39-43. (in Chinese)
[54] BHATTACHARYA M, HANNA M A. kinetics of starch gelatinization during extrusion cooking., 2010, 52(3): 764-766.
[55] LI M, HASJIM J, XIE F W, HALLEY P J, GILBERT R G. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion., 2014, 66(7/8): 595-605.
[56] GROPPER M, MORARU C I, KOKINI J L. Effect of specific mechanical energy on properties of extruded protein-starch mixtures., 2002, 79(3): 429-433.
[57] YURYEV V P, ZASYPKIN D V, ALEXEYEV V V, GENIN Y V, EZERNITSKAYA M G, TOLSTOGUZOV V B. Structure of protein texturates obtained by thermoplastic extrusion., 1990, 34(7): 607-613.
[58] MAURICE T J, STANLEY D W. Texture-structure relationships in texturized soy protein iv. influence of process variables on extrusion texturization., 1978, 11(1): 1-6.
[59] LI Y, SOPADE P A. Kinetics of protein digestion and molecular weight profiles in a model sorghum-barley blend as affected by extrusion conditions//Cereal Chemistry Conference, 2012.
[60] 方勇, 王紅盼, 裴斐, 馬寧, 湯曉智, 楊文建, 胡秋輝. 擠壓膨化對(duì)金針菇-發(fā)芽糙米復(fù)配粉的消化特性及揮發(fā)性物質(zhì)的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(23): 4606-4618.
FANG Y, WANG H P, PEI F, M NING, TANG X Z, YANG W J, HU Q H. Effect of extrusion on digestion properties and volatile compounds in germinated brown rice compounded of flammulina velutipes flour., 2016, 49(23): 4606-4618. (in Chinese)
[61] 陳鋒亮, 魏益民, 張波. 物料含水率對(duì)大豆蛋白擠壓產(chǎn)品組織化質(zhì)量的影響. 中國農(nóng)業(yè)科學(xué), 2010, 43(4): 805-811.
Chen F L, Wei Y M, Zhang B. Effect of moisture content on quality of texturization of product extruded from soy protein isolate., 2010, 43(4): 805-811. (in Chinese)
[62] 房巖強(qiáng), 魏益民, 張波. 蛋白質(zhì)結(jié)構(gòu)在擠壓過程中的變化. 中國糧油學(xué)報(bào), 2013, 28(5): 100-104, 111.
Fang Y, Wei Y M, Zhang B. Transformations of protein structure in extrusion, 2013, 28(5), 100-104, 111. (in Chinese)
[63] JAFARI M, KOOCHEKI A, MILANI E. Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates., 2017, 75: 324-331.
[64] 梁婷婷, 佟立濤, 蒲華寅, 王麗麗, 周閑容, 鞠志遠(yuǎn), 周素梅, 黃峻榕. 動(dòng)植物源蛋白體外消化產(chǎn)物結(jié)構(gòu)性質(zhì)及ACE抑制活性. 食品科學(xué), 2018, 39(4):6-12.
LIANG T T, TONG L T, PU H Y, WANG L L, ZHOU X R, JU Z Y, ZHOU S M, HUANG J R. Structures and angiotensin converting enzyme (ACE) inhibitory activity ofdigests of animal and plant proteins., 2018, 39(4): 6-12. (in Chinese)
[65] TOOPCHAM T, ROYTRAKUL S, YONGSAWATDIGUL J. Characterization and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from tilapia using, SK1-3-7 proteinases., 2015, 14: 435-444.
[66] WOOD A J, GOLDSBROUGH P B. Characterization and expression of dehydrins in water-stressed sorghum bicolor., 2010, 99(1): 144-152.
Preparation and Stability of Sorghum ACE Inhibitory Peptides by Extrusion-Enzyme Synergistic Method
ZHOU JianMin, YIN FangPing, YU Chen, TANG XiaoZhi
(College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and 0ils Quality Control and Processing, Nanjing 210023, Jiangsu)
【Objective】Sorghum ACE inhibitory peptides were prepared by extrusion-enzyme synergistic method in order to provide a technical guidance to enhance the utilization efficiency of sorghum protein.【Method】Sorghum flour was introduced into an extruder, and then treated by α-amylase and alkaline protease to obtain the ACE inhibitory peptides. Effects of water content in sorghum flour, extrusion temperature and enzyme activity on the degree of hydrolysis and the activity and stability of ACE inhibitory peptides were investigated.【Result】With the increasing moisture content and extrusion temperature, the specific mechanical energy () decreased. During extrusion, the interaction between starch and protein in sorghum became loose, which broke the starch-protein complex, and the spherical protein in sorghum was broken up, and thus the sensitivity of sorghum protease was enhanced and more ACE peptides were obtained after alkaline protease treatment. The moisture content, extrusion temperature and the activity of α-amylase presented a significant effect on the degree of hydrolysis and the inhibition rate of ACE inhibitory peptides. With the increasing moisture content, the assemble degree of protein decreased, which increased the degree of hydrolysis and the inhibition rate of ACE inhibitory peptides. When the moisture content reached to 19%, the damage degree of the starch around protein decreased, leading to the gentle increase trend of the hydrolysis degree and the inhibition rate of ACE inhibitory peptides. When the extrusion temperature increased from 120℃ to 180℃, the damage degree of starch-protein complex in sorghum increased. Meanwhile, the denaturation degree of protein also increased. The degree of hydrolysis increased from 7.42% to 11.06%, and the inhibition rate of sorghum protein ACE inhibitory peptides increased from 46.57% to 53.41%. The sorghum flour was treated by a-amylase to remove the starch around the protein after extrusion, and then it was found that when the activity of α-amylase increased, the damage degree of protein-starch complex in sorghum increased, which provided more raw materials for the preparation of sorghum protein ACE inhibitory peptides, leading to the higher the degree of hydrolysis and the activity of ACE inhibitory peptides. When the activity of α-amylase increased to 2.0 U·g-1, the binding of α-amylase to starch reached saturation, and the degree of hydrolysis and the inhibition rate of ACE inhibitory peptides tended to be stable. the activity of ACE inhibitory peptide fluctuated within 68.1%-71.31% after being treated by different storage temperatures and pH, suggesting a good inhibitory activity. Aftersimulated gastrointestinal digestive enzymes digestion, the inhibitory activity of ACE inhibitory peptides was higher than 73%, which still maintained high value. The stability test indicated that sorghum ACE inhibitory peptides had good resistance to thermal, acid and alkaline treatment, and intestinal enzymes digestion.【Conclusion】The degree of hydrolysis and the inhibition rate of ACE inhibitory peptides all increased significantly by extrusion-enzyme synergistic method, while sorghum ACE inhibitory peptides had good stability, thus this work provided a new approach for the utilization of sorghum and the preparation of sorghum protein and ACE inhibitory peptides with potential use as functional food ingredients.
extrusion; α-amylase; sorghum ACE inhibitory peptides; stability
10.3864/j.issn.0578-1752.2019.02.012
2018-07-05;
2018-11-12
江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)
周劍敏,E-mail:9120111012@nufe.edu.cn。通信作者湯曉智,E-mail:warmtxz@njue.edu.cn
(責(zé)任編輯 趙伶俐)