盛月凡,王海燕,喬鈜元,王玫,陳學森,沈向,尹承苗,毛志泉
?
不同土壤質(zhì)地對平邑甜茶幼苗連作障礙程度的影響
盛月凡1,王海燕1,喬鈜元1,王玫1,陳學森1,沈向1,尹承苗1,毛志泉1
(山東農(nóng)業(yè)大學園藝科學與工程學院/作物生物學國家重點實驗室,山東泰安 271018)
【目的】以平邑甜茶幼苗作為試材,研究不同土壤質(zhì)地蘋果園連作障礙發(fā)生程度及其差異機制,以便根據(jù)連作障礙可能發(fā)生的嚴重程度采用適宜的防治措施?!痉椒ā咳熍_萊州3種不同質(zhì)地老果園土,在盆栽條件下設置連作砂壤土、連作壤土、連作黏壤土及各個質(zhì)地土壤對應溴甲烷熏蒸處理,共6個處理,測定不同處理盆栽幼苗的生物量、土壤微生物數(shù)量、土壤酶活性、根系保護性酶活性、丙二醛(MDA)含量,使用實時熒光定量(qPCR)技術(shù)檢測老果園土壤中主要有害真菌的數(shù)量變化。因3種土壤條件不同,故分別以3種土壤溴甲烷處理與各自連作處理上述指標的差異來表示連作障礙發(fā)生的程度,差異越大,連作障礙程度越嚴重。同時采用高效液相色譜法測定3種連作土壤中的酚酸類物質(zhì)含量。【結(jié)果】與各自連作對照相比,黏壤土、砂壤土和壤土溴甲烷熏蒸處理植株干樣質(zhì)量分別提高了98.9%、87.9%和54.4%,說明黏壤土連作與溴甲烷處理差異最大,連作障礙程度最嚴重。與各自連作對照相比,黏壤土、砂壤土、壤土溴甲烷熏蒸處理植株的根系保護酶活性均顯著提高,根呼吸速率顯著增加,MDA含量明顯降低。其中超氧化物歧化酶(SOD)活性分別是各自連作對照的2.63、1.80和1.53倍;過氧化物酶(POD)活性分別是連作的3.02、2.01和1.62倍,過氧化氫酶(CAT)活性分別是連作的3.25、2.61和2.11倍。黏壤土根系保護性酶差異最大,說明在連作黏壤土條件下,根系脅迫更嚴重。與各自連作對照相比,黏壤土、砂壤土、壤土溴甲烷熏蒸處理植株根呼吸速率分別提高了91.3%、69.4%和36.0%;MDA含量分別降低了51.3%、48.9%和33.1%。脲酶活性分別比連作降低了68.2%、64.2%和54.4%;磷酸酶活性分別比連作降低了25.6%、18.6%和8.18%。黏壤土、砂壤土和壤土溴甲烷熏蒸處理比各自連作對照真菌數(shù)量降低了85.8%、58.1%和72%,尖孢鐮孢菌拷貝數(shù)比各自連作處理分別降低了87.5%、70.1%和66.3%,且連作黏壤土條件下尖孢鐮孢菌拷貝數(shù)最多。連作條件下黏壤土的實測酚酸總量最高,為41.30 mg·kg-1?!窘Y(jié)論】3種不同土壤質(zhì)地中,黏壤土酚酸類物質(zhì)含量高、土壤中尖孢鐮孢菌為主的有害真菌最多、根系脅迫最嚴重,最終表現(xiàn)為連作平邑甜茶幼苗與溴甲烷熏蒸處理的生物量差異最大,而壤土則相反。
蘋果連作障礙;土壤質(zhì)地;土壤微生物;酚酸類物質(zhì)
【研究意義】我國是世界蘋果最大的生產(chǎn)及貿(mào)易中心,蘋果栽培面積最大、總產(chǎn)量最高、人均占有量最多、蘋果出口量最大。隨著種植年限的增加,近年來,僅山東省就有近0.67×105—1×105hm2蘋果園面臨更新[1-2]。在對老果園更新時,由于土地資源的限制,果樹連作栽培無法避免,使得蘋果連作障礙的發(fā)生具有普遍性[2-5]。連作障礙會使果實產(chǎn)量及品質(zhì)降低,病蟲害加重,樹勢衰弱甚至死亡,果農(nóng)經(jīng)濟損失嚴重[3,6]。土壤理化性質(zhì)的好壞會影響果樹根系的生長發(fā)育和對養(yǎng)分的吸收能力,影響果樹的高產(chǎn)[7]。我國蘋果生產(chǎn)區(qū)域分布廣泛,其中環(huán)渤海、西南冷涼高地、黃河故道和西北黃土高原為四大主要生產(chǎn)區(qū)域,土壤質(zhì)地類型多樣[7]。且土壤質(zhì)地是土壤重要的物理性質(zhì)之一[8],是影響土壤潛在生產(chǎn)力的關(guān)鍵因素。研究不同質(zhì)地土壤連作障礙發(fā)生程度及差異機制,即可根據(jù)連作障礙可能發(fā)生的程度采用適宜的防治措施,為防治連作障礙提供可行的技術(shù)措施?!厩叭搜芯窟M展】前人研究認為質(zhì)地不同的土壤理化性狀差別很大[8],土壤質(zhì)地影響土壤的總孔隙度,進而影響土壤的通氣性和透光率[9],從而影響蘋果根系的呼吸速率;還會影響土壤的水分含量及養(yǎng)分狀況,進而影響微生物的生存環(huán)境及代謝活性[10-11],不同土壤質(zhì)地的微生物群落結(jié)構(gòu)存在差異。嚴永旺[12]研究表明土壤質(zhì)地不同,微生物種群數(shù)量也存在顯著差異。其中細菌、放線菌及總微生物數(shù)量以壤土較多,砂土較少;真菌數(shù)量以黏土較多,砂土較少。另外,土壤質(zhì)地與土壤中酚類物質(zhì)的含量也有一定的關(guān)系,王米蘭等[13]研究發(fā)現(xiàn)土壤中的酚酸類物質(zhì)與粉粒呈顯著正相關(guān),與黏粒正相關(guān)但未達到顯著水平,與砂粒呈顯著負相關(guān)。土壤砂粒越多,酚類含量越少?!颈狙芯壳腥朦c】經(jīng)前人研究可知,土壤質(zhì)地不同,土壤微生物、酚酸類物質(zhì)的種類和含量都有所不同,這三者與蘋果再植后的生長發(fā)育密切相關(guān),說明土壤質(zhì)地的差異會影響蘋果連作障礙的程度,但在這方面的研究卻鮮有報道?!緮M解決的關(guān)鍵問題】研究不同土壤質(zhì)地蘋果園連作障礙發(fā)生程度及差異機制,以便后期根據(jù)土壤質(zhì)地不同初步判斷蘋果連作障礙的發(fā)生程度,并采取適宜的防治措施,達到經(jīng)濟高效的目的。
試驗于2017年3—10月在山東農(nóng)業(yè)大學南校區(qū)的國家蘋果工程中心進行。
試驗用土取自煙臺萊州三地(大沙嶺、鳳毛寨、灣頭村)25年生老果園,根據(jù)美國制土壤分類標準,采用微吸管法測得大沙嶺為砂壤土,鳳毛寨為壤土,灣頭村為黏壤土。土壤材料的土壤質(zhì)地見表1,基本特性見表2。
試驗材料為蘋果砧木品種平邑甜茶(Rehd)的幼苗,待其長出6片真葉,選擇長勢均勻、健康的幼苗移栽至裝有7.0 kg供試土壤的泥盆中,每盆定植2株幼苗,每個處理15盆,統(tǒng)一肥水管理。
取適量3種類型的土壤用溴甲烷熏蒸處理,分別設置溴甲烷熏蒸和連作兩個處理,共6個處理。于2017年8月中旬取樣,測定相關(guān)指標,因3地土壤條件不同,故以3地溴甲烷與連作處理各指標的差異來表示連作障礙發(fā)生的程度,差異越大,連作障礙程度越嚴重。
表1 供試土壤的機械組成
表2 供試土壤的基本特性
植株生物量使用直尺、游標卡尺及電子天平測定。
采用稀釋平板計數(shù)法測定土壤微生物數(shù)量,采用LB、PDA及高氏一號培養(yǎng)基檢測土壤細菌、真菌、放線菌數(shù)量[14]。
參考毛志泉等[15]的試驗方法測定根系的呼吸速率。
根系相關(guān)抗氧化酶和丙二醛(MDA)的含量參考趙世杰等[16]的方法測定。
土壤相關(guān)酶活性參考關(guān)松蔭等[17]的方法測定。
酚酸類物質(zhì)的含量采用尹承苗等[18]的方法測定。
參照王玫等[19]的方法,取過篩的新鮮土壤0.5 g,使用E.Z.N.A.?土壤DNA提取試劑盒提取DNA,用CFX96TMThermal Cycler(Bio-Rad)測定土壤中尖孢鐮孢菌的基因拷貝數(shù)。
Microsoft Excel 2007用于數(shù)據(jù)的計算及作圖,SPSS19.0軟件用于方差分析,使用鄧肯氏新復極差法及t檢驗檢測結(jié)果的差異顯著性。
溴甲烷熏蒸條件下平邑甜茶幼苗株高均比連作條件下有所增加。其中砂壤土增幅最大,達到35.2%;其次是黏壤土,達到了29.1%;壤土增幅最小,為26.3%。3種質(zhì)地土壤溴甲烷熏蒸條件下平邑甜茶幼苗地徑均比連作條件下有所增加。各處理差異表現(xiàn)為黏壤土>砂壤土>壤土,分別比連作條件下增加51.6%、31.2%和24.2%。3種土壤質(zhì)地連作與溴甲烷處理的鮮樣質(zhì)量與干樣質(zhì)量差異顯著,且趨勢都為溴甲烷處理高于連作處理。砂壤土、壤土及黏壤土的溴甲烷處理鮮樣質(zhì)量比連作分別提高了85.7%、59.6%和104%。砂壤土、壤土及黏壤土的溴甲烷處理的干樣質(zhì)量比連作分別提高了87.9%、54.4%和98.9%。
如表4所示,3種土壤溴甲烷熏蒸處理的真菌數(shù)量均低于連作,黏壤土、砂壤土和壤土溴甲烷熏蒸處理分別比連作處理真菌數(shù)量降低81.4%、64.0%和75.2%。砂壤土溴甲烷熏蒸處理比連作處理細菌數(shù)量降低71.2%,壤土和黏壤土溴甲烷處理細菌數(shù)量均高于連作處理,分別是連作處理的6.57、7.24倍。砂壤土、壤土及黏壤土溴甲烷熏蒸處理放線菌數(shù)量均低于連作,分別比連作降低了76.5%、94.2%和90.8%。
3種質(zhì)地土壤(砂壤土、壤土、黏壤土)溴甲烷熏蒸處理的根系抗氧化酶均高于連作,且差異顯著。其中3地溴甲烷處理SOD活性分別是連作的1.80、1.53和2.63倍;POD活性分別是連作的2.01、1.62和3.02倍;CAT活性分別是連作的2.61、2.11和3.25倍。3種土壤溴甲烷處理與連作處理的MDA活性差異顯著,溴甲烷熏蒸處理的均低于連作處理。3種土壤溴甲烷熏蒸處理與連作差異表現(xiàn)為黏壤土>砂壤土>壤土,比連作分別降低了51.3%、48.9%和33.1%。說明黏壤土溴甲烷處理與連作差異最大。
表3 不同質(zhì)地連作土壤對平邑甜茶幼苗生物量的影響
兩組測定結(jié)果采用T檢驗進行差異顯著性分析,同一指標每一行后*代表同一土壤質(zhì)地溴甲烷熏蒸處理與連作處理差異顯著(<0.05),**表示同一土壤質(zhì)地溴甲烷熏蒸處理與連作處理差異極顯著(<0.01)。下同
The T-test was used to determine the significance of the difference between the two assays. * in each row of the same indicator represented a significant difference in the fumigation of methyl bromide treatment and the control of the same soil texture at the 0.05 level. ** indicates extremely significant difference between the fumigation of methyl bromide treatment and the control of the same soil texture at the 0.01 level. The same as below
表4 不同質(zhì)地連作土壤對土壤可培養(yǎng)微生物的影響
兩組測定結(jié)果采用T檢驗進行差異顯著性分析,*代表同一土壤質(zhì)地溴甲烷熏蒸處理與連作處理差異顯著(P<0.05),**表示同一土壤質(zhì)地溴甲烷熏蒸處理與連作處理差異極顯著(P<0.01)。下同
由圖2所示,3種質(zhì)地土壤溴甲烷處理與連作處理的根系活力差異表現(xiàn)為黏壤土>砂壤土>壤土,分別比連作處理提高了91.3%、69.4%和36.0%。連作黏壤土脲酶活性最高,為31.89 mg?g-1?d-1;黏壤土連作與溴甲烷處理差異最大,其次是砂壤土,最后是壤土。砂壤土、壤土及黏壤土溴甲烷熏蒸處理分別比連作降低了64.2%、54.4%和68.2%。磷酸酶活性比連作分別降低了18.6%、8.18%和25.6%;連作與溴甲烷處理差異表現(xiàn)為黏壤土>砂壤土>壤土。
由于同種土壤連作與溴甲烷熏蒸處理的酚酸類物質(zhì)含量差異不明顯,故不能通過連作與溴甲烷處理酚酸類物質(zhì)含量的差異來表示連作障礙發(fā)生的程度。因此,僅測定3種質(zhì)地連作土壤酚酸類物質(zhì)含量,采用單因素方差分析來比較3種質(zhì)地連作土壤酚酸類物質(zhì)含量的差異。結(jié)果表明,砂壤土、壤土和黏壤土連作處理的酚酸類物質(zhì)總量差異顯著,且以連作條件下黏壤土酚酸總量最多,為41.30 mg·kg-1,其次是壤土,砂壤土最少。
如圖4所示,3種土壤中尖孢鐮孢菌數(shù)量在連作與溴甲烷處理的差異值分別表現(xiàn)為黏壤土>砂壤土>壤土,砂壤土、壤土、黏壤土溴甲烷熏蒸處理的尖孢鐮孢菌拷貝數(shù)比連作處理真菌數(shù)量分別降低了70.1%、66.3%和87.5%。
圖2 不同處理對供試植株根系呼吸速率及土壤酶活性的影響
表5 不同質(zhì)地連作土壤對土壤酚酸類物質(zhì)的影響
不同處理的差異顯著性測定采用單因素方差分析,不同處理間的差異用不同小寫字母表示(<0.05)
The one-way ANOVA was used to determine the significance difference of different treatments. Different letters stand for the significant difference at the 0.05 level
土壤是植物生長發(fā)育的基礎(chǔ),不同質(zhì)地土壤的機械阻力及孔隙度不同,使土壤在水、肥、氣、熱方面存在差異,進而影響植物根系的生長[20]。土壤質(zhì)地與蘋果生長所需的土壤環(huán)境條件和養(yǎng)分的供需關(guān)系密切,蘋果的優(yōu)質(zhì)生產(chǎn)離不開良好的土壤理化性質(zhì)。對于蘋果的連作障礙來說,造成此種病癥的原因是多方面的,包括土壤有害微生物的增加、化感自毒作用、土壤理化性質(zhì)的惡化以及土壤中的養(yǎng)分失衡,即土壤環(huán)境的改變已不利于蘋果的生長。前人研究表明土壤質(zhì)地影響了土壤與作物之間的營養(yǎng)及水、氣的交換,使得作物根系的生長發(fā)育及作物產(chǎn)量、土壤中微生物的種類和數(shù)量以及酚類物質(zhì)的含量受到影響[21]。MASONI等[22]研究表明,黏壤土條件下小麥的氮和磷吸收量、干物質(zhì)積累及產(chǎn)量等顯著高于砂壤土。不同的土壤質(zhì)地對蘋果連作障礙的影響不同,本研究結(jié)果表明黏壤土連作障礙發(fā)生程度較嚴重,其次是壤土,砂壤土最輕,但砂壤土和壤土差異不大。可能的原因是黏壤土質(zhì)地黏重,根系分泌的自毒物質(zhì)更易留存,為有害真菌提供了適宜的環(huán)境,根系受脅迫最嚴重,因而不利于平邑甜茶幼苗的生長。壤土理化性質(zhì)良好,土壤中以尖孢鐮孢菌為主的有害真菌數(shù)量少,為平邑甜茶幼苗提供了相對適宜的土壤環(huán)境,根系受脅迫最輕,連作障礙發(fā)生程度也最輕。
圖4 不同處理對尖孢鐮孢菌的實時熒光定量分析
土壤酶活性的高低與土壤生物化學反應及生物體生命活力的高低有關(guān),同時影響土壤營養(yǎng)元素的有效性水平,不同質(zhì)地蘋果園土壤中的酶活性存在差異[23-24]。研究表明[25]長期連作能夠降低土壤中脲酶、磷酸酶活性。熏蒸土壤中的微生物數(shù)量減少,使得土壤相關(guān)酶活性降低。本研究表明溴甲烷熏蒸土壤中的脲酶和磷酸酶活性降低,這與KLOSE等[25]研究結(jié)論一致。同一質(zhì)地連作與溴甲烷熏蒸處理差異最大的是黏壤土,其次壤土,最后是砂壤土。王清奎等[26]研究發(fā)現(xiàn)砂壤土酶活性一般低于黏粒含量較高的中壤土和重壤土,與本試驗結(jié)果一致。其原因可能是黏粒含量較高,微生物生命活力越強,土壤酶活性越高。這與土壤黏粒含量越多,含水量變化就越小,且因土壤黏粒附著有機物質(zhì)使其不易流失有關(guān)[24-27]。
本試驗中不同質(zhì)地土壤連作與溴甲烷熏蒸處理的真菌數(shù)目差異顯著。大量研究表明,長期連作的土壤中,有害真菌所占比例增加,種群優(yōu)勢明顯,微生物種類及數(shù)量發(fā)生改變,使微生物群落結(jié)構(gòu)失衡[28-29]。本試驗中不同質(zhì)地土壤連作與溴甲烷熏蒸處理真菌數(shù)量差異表現(xiàn)為黏壤土>壤土>砂壤土,這在一定程度上說明質(zhì)地為黏壤土的老果園真菌數(shù)量增幅最大,連作程度最嚴重。KELDERER等[30]的研究表明尖孢鐮孢菌、腐皮鐮孢菌、柱孢屬真菌和雙核絲核菌是引起意大利地區(qū)蘋果連作障礙的主要病原菌。VAN SCHOOR等[31]研究表明引起南非蘋果園連作障礙的主要原因是土壤中鐮孢屬、柱孢屬及腐霉屬的有害真菌,TEWOLDEMEDIN等[32]發(fā)現(xiàn)連作蘋果園中尖孢鐮孢菌數(shù)量眾多。通過對不同質(zhì)地連作土中的尖孢鐮孢菌進行實時熒光定量分析發(fā)現(xiàn),黏壤土溴甲烷熏蒸與連作處理的尖孢鐮孢菌數(shù)量差異最大,這也是黏壤土條件下連作障礙更加嚴重的主要原因之一。
另外,許多研究表明蘋果土壤中的酚酸類物質(zhì)與連作致病真菌可以協(xié)同作用,姜偉濤等[33]研究發(fā)現(xiàn)根皮苷和串珠鐮孢菌共同作用加重了蘋果連作障礙現(xiàn)象。通過高效液相色譜法分析得到不同質(zhì)地土壤實測酚酸類物質(zhì)含量,結(jié)果表明,砂壤土、壤土和黏壤土連作土處理的酚酸類物質(zhì)總量差異顯著,且以連作條件下黏壤土酚酸總量最多,為41.30 mg?kg-1。周婷[34]研究表明土壤中黏粒含量越多,酚類物質(zhì)含量越高,這與本研究結(jié)果一致。筆者實驗室前期的研究探明了我國蘋果主產(chǎn)區(qū)引起連作障礙的主要病原菌是鐮孢菌,明確了酚酸類物質(zhì)的積累促進鐮孢菌的生長。故本研究探究不同質(zhì)地老果園連作障礙程度不同的原因主要從這兩方面進行考慮,關(guān)于土壤理化性質(zhì)及養(yǎng)分對連作的影響將進一步探究。
在逆境條件下,根系中的SOD、POD和CAT可以清除植物細胞中的自由基,使植物細胞膜受害程度減輕,抵抗逆境脅迫的能力更強[35]。MDA是反映植物遭受逆境傷害程度的重要指標,連作會提高MDA含量,導致脂質(zhì)過氧化程度加重,細胞膜穩(wěn)定指數(shù)及滲透調(diào)節(jié)物質(zhì)含量降低[36]。本研究發(fā)現(xiàn)不同質(zhì)地土壤溴甲烷熏蒸處理的SOD、POD和CAT等保護酶活性均高于連作,MDA均低于連作;且黏壤土溴甲烷熏蒸處理與連作處理的差異最大,說明黏壤土在連作條件下對平邑甜茶根系脅迫更嚴重。關(guān)于不同土壤質(zhì)地微生物群落結(jié)構(gòu)的差異以及對田間連作條件下新植蘋果幼樹的長期影響,需要進一步研究。
不同土壤質(zhì)地發(fā)生連作障礙程度不同,黏壤土連作障礙發(fā)生更嚴重,其次是砂壤土,壤土。其主要原因可能是黏壤土中以尖孢鐮孢菌為主的有害真菌數(shù)量多,酚酸類物質(zhì)含量高,根系受脅迫更嚴重。
[1] 陳學森, 韓明玉, 蘇桂林, 劉鳳之, 過國南, 姜遠茂, 毛志泉, 彭福田, 束懷瑞. 當今世界蘋果產(chǎn)業(yè)發(fā)展趨勢及我國蘋果產(chǎn)業(yè)優(yōu)質(zhì)高效發(fā)展意見. 果樹學報, 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on to-day's world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China., 2010, 27(4): 598-604. (in Chinese)
[2] 尹承苗, 王玫, 王嘉艷, 陳學森, 沈向, 張民, 毛志泉. 蘋果連作障礙研究進展, 園藝學報, 2017, 44(11): 2215-2230.
YIN C M, WANG M, WANG J Y, CHEN X S, SHEN X, ZHANG M, MAO Z Q. The research advance on apple replant disease., 2017, 44(11): 2215-2230. (in Chinese)
[3] MAZZOLA M, MANICI L M. Apple replant disease: role of microbial ecology in cause and control., 2012, 50: 45-65.
[4] 尹承苗, 陳學森, 沈向, 張兆波, 孫海兵, 毛志泉. 不同濃度有機物料發(fā)酵液對連作蘋果幼樹生物量及土壤環(huán)境的影響. 植物營養(yǎng)與肥料學報, 2013, 19(6): 1450-1458.
YIN C M, CHEN X S, SHEN X, ZHANG Z B, SUN H B, MAO Z Q. Effect of different concentration of organic matter fermentation fluid on the young apple tree biomass and soil properties under replant conditions., 2013, 19(6): 1450-1458. (in Chinese)
[5] 王艷芳, 潘鳳兵, 展星, 王功帥, 張國棟, 胡艷麗, 陳學森, 毛志泉. 連作蘋果土壤酚酸對平邑甜茶幼苗的影響, 生態(tài)學報, 2015, 35(19): 6566-6573.
WANG Y F, PAN F B, ZHAN X, WANG G S, ZHANG G D, HU Y L, CHEN X S, MAO Z Q. Effects of five kinds of phenolic acid on the function of mitochondria and antioxidant systems in roots ofRehd. seedlings., 2015, 35(19): 6566-6573. (in Chinese)
[6] LIU E T, WANG G S, LI Y Y, SHEN X, CHEN X S, SONG F H, WU S J, CHEN Q, MAO Z Q. Replanting affects the tree growth and fruit quality of Gala apple., 2014, 13(8): 1699-1706.
[7] 高義民, 同延安, 路永莉, 王小英. 陜西渭北紅富士蘋果園土壤有效養(yǎng)分及長期施肥對產(chǎn)量的影響. 園藝學報, 2013, 40(4): 613-622.
GAO Y M, TONG Y A, LU Y L, WANG X Y. Effects of soil available nutrients and long-term fertilization on yield of Fuji apple orchard of Weibei area in Shaanxi, China., 2013, 40(4): 613-622. (in Chinese)
[8] 李潮海, 李勝利, 王群, 侯松, 荊棘. 不同質(zhì)地土壤對玉米根系生長動態(tài)的影響. 中國農(nóng)業(yè)科學, 2004, 37(9): 1334-1340.
LI C H, LI S L, WANG Q, HOU S, JING J. Effect of different textural soils on root dynamic growth in corn., 2004, 37(9): 1334-1340. (in Chinese)
[9] 劉四義, 梁愛珍, 楊學明, 張曉平, 賈淑霞, 陳學文, 張士秀, 孫冰潔, 陳升龍. 不同部位玉米秸稈對兩種質(zhì)地黑土CO2排放和微生物量的影響. 環(huán)境科學, 2015, 36(7): 2686-2694.
LIU S Y, LIANG A Z, YANG X M, ZHANG X P, JIA S X, CHENG X W, ZHANG S X, CHEN S L. Effects of different residue part inputs of corn straws on CO2efflux and microbial biomass in clay loam and sandy loam black soils., 2015, 36(7): 2686-2694. (in Chinese)
[10] PLANTE A F, CONANT R T, SREWANT C E, PAUSTIAN K, SIX J. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions., 2006, 70(1): 287-296.
[11] 蘇永中, 楊曉, 楊榮. 黑河中游邊緣荒漠-綠洲非飽和帶土壤質(zhì)地對土壤氮積累與地下水氮污染的影響. 環(huán)境科學, 2014, 35(10): 3683-3691.
SU Y Z, YANG X, YANG R. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River Basin., 2014, 35(10): 3683-3691. (in Chinese)
[12] 嚴永旺. 不同質(zhì)地土壤微生物種群、酶活性對煙葉品質(zhì)的影響[D]. 長沙: 湖南農(nóng)業(yè)大學, 2011.
YAN Y W. Effects of microorganism’s population, enzyme activity on tobacco quality of differently textured soil [D]. Changsha: Hunan Agricultural University, 2011. (in Chinese)
[13] 王米蘭, 胡榮桂. 湖北省幾種農(nóng)業(yè)土壤中酚含量及其與碳氮的關(guān)系. 農(nóng)業(yè)環(huán)境科學學報, 2014, 33(4): 702-707.
WANG M L, HU R G. Phenol content and its relationships with carbon and nitrogen in several agricultural soils in Hubei province., 2014, 33(4): 702-707. (in Chinese)
[14] 沈萍, 陳向東. 微生物學實驗. 北京: 高等教育出版社, 2007.
SHEN P, CHEN X D..Beijing: Higher Education Press, 2007. (in Chinese)
[15] 毛志泉, 王麗琴, 沈向, 束懷瑞, 鄒巖梅. 有機物料對平邑甜茶實生苗根系呼吸強度的影響. 植物營養(yǎng)與肥料學報, 2004, 10(2): 171-175.
MAO Z Q, WANG L Q, SHEN X, SHU H R, ZOU Y M. Effect of organic materials on respiration intensity of annualRehd. root system., 2004, 10(2): 171-175. (in Chinese)
[16] 趙世杰, 史國安, 董新純. 植物生理學實驗指導. 北京: 中國農(nóng)業(yè)科技出版社, 2002: 98-99.
ZHAO S J, SHI G A, DONG X C..Beijing: China Agricultural Science and Technology Press, 2002: 98-99. (in Chinese)
[17] 關(guān)松蔭. 土壤酶及其研究法. 北京: 北京農(nóng)業(yè)出版社, 1986: 274-340.
GUAN S Y.. Beijing: Beijing Agriculture Press, 1986: 274-340. (in Chinese)
[18] 尹承苗, 王功帥, 李園園, 車金水, 沈向, 陳學森, 毛志泉, 吳樹敬. 一種分析土壤中酚酸類物質(zhì)含量的新方法-以連作蘋果園土壤為試材. 中國農(nóng)業(yè)科學, 2013, 46(21): 4612-4619.
YIN C M, WANG G S, LI Y Y, CHE J S, SHEN X, CHEN X S, MAO Z Q, WU S J. A new method for analysis of phenolic acids in the soil-soil from replanted apple orchards was investigated., 2013, 46(21): 4612-4619. (in Chinese)
[19] 王玫, 段亞楠, 孫申義, 相立, 王功帥, 陳學森, 沈向, 尹承苗, 毛志泉. 不同氮形態(tài)對連作平邑甜茶幼苗生長及土壤尖孢鐮孢菌數(shù)量的影響. 植物營養(yǎng)與肥料學報, 2017, 23(4): 1014-1021.
WANG M, DUAN Y N, SUN S Y, XIANG L, WANG G S, CHEN X S, SHEN X, YIN C M, MAO Z Q. Effects of different nitrogen forms on the growth of replanted apple rootstock (Rehd.) seedlings andpopulation in soil., 2017, 23(4): 1014-1021. (in Chinese)
[20] 曾艷. 氮肥, 土壤質(zhì)地對茶樹根系生長特性影響的研究[D]. 雅安: 四川農(nóng)業(yè)大學, 2014.
ZENG Y. The effect of nitrogen and soil texture on the root of tea plants () [D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese)
[21] 龍會英, 張德, 金杰. 土壤質(zhì)地對柱花草生長發(fā)育、生物量及土壤肥力變化的影響. 土壤, 2017, 49(5): 1049-1052.
LONG H Y, ZHANG D, JIN J. Effects of soil textures on growth, biomass ofand fertility of soils., 2017, 49(5): 1049-1052. (in Chinese)
[22] MASONI A, ERCOLI L, MARIOTTI M, ARDUINI I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type., 2007, 26(3): 179-186.
[23] 張旭龍, 馬淼, 吳振振, 張志政, 林慧. 慧油葵與光果甘草間作對根際土壤酶活性及微生物功能多樣性的影響. 土壤, 2016, 48(6): 1114-1119.
ZHANG X L, MA M, WU Z Z, ZHANG Z Z, LIN H. Effects ofandintercropping on rhizosphere soil enzyme activities and soil microbes functional diversity., 2016, 48(6): 1114-1119. (in Chinese)
[24] 陳偉. 蘋果園土壤微生物類群與栽培環(huán)境關(guān)系的研究[D]. 泰安: 山東農(nóng)業(yè)大學, 2007.
CHEN W. Studies on the relationship between soil microbial community and cultivation environment in apple orchard [D]. Tai’an: Shandong Agricultural University, 2007. (in Chinese)
[25] KLOSE S, ACOSTA-MARTIINEZ V, AJWA H A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with Methyl bromide or alternative biocides., 2006, 38(6): 1243-1254.
[26] 王清奎, 汪思龍, 馮宗煒, 黃宇. 土壤活性有機質(zhì)及其與土壤質(zhì)量的關(guān)系. 生態(tài)學報, 2005, 25(3): 513-519 .
WANG Q K, WANG S L, FENG Z W, HUANG Y. Active soil organic matter and its relationship with soil quality., 2005, 25(3): 513-519. (in Chinese)
[27] FRANZLUEBBERS A J, HANEY R L, HONS F M, ZUBERER D. Active fractions of organic matter in soils with different texture., 1996, 28(10/11): 1367-1372.
[28] 馬寧寧, 李天來. 設施西紅柿長期連作土壤微生物群落結(jié)構(gòu)及多樣性分析. 園藝學報, 2013, 40(2): 255-264.
MA N N, LI T L. Effect of long-term continuous cropping of protected tomato on soil microbial community structure and diversity., 2013, 40(2): 255-264. (in Chinese)
[29] 劉星, 張文明, 張春紅, 邱慧珍, 李瑞琴, 王蒂, 沈其榮. 土壤滅菌-生物有機肥聯(lián)用對連作馬鈴薯及土壤真菌群落結(jié)構(gòu)的影響. 生態(tài)學報, 2016, 36(20): 6365-6378.
LIU X, ZHANG W M, ZHANG C H, QIU H Z, LI R Q, WANG D, SHEN Q R. Combination of the application of soil disinfection and bio-organic fertilizer amendment and its effects on yield and quality of tubers, physiological characteristics of plants and the fungal community in a potato monoculture system., 2016, 36(20): 6365-6378. (in Chinese)
[30] KELDERER M, MANICI L M, CAPUTO F, THALHEIMER M. Planting in the ‘inter-row’ to overcome replant disease in apple orchards: A study on the effectiveness of the practice based on microbial indicators., 2012, 357: 381-393.
[31] VAN SCHOOR L, DENMAN S, COOK N C. Characterisation of apple replant disease under South African conditions and biological management strategies., 2009, 19(2): 153-162.
[32] TEWOLDEMEDHIN Y T, MAZZOLA M, BOTHAW J, SPIES F J, MCLEOD A. Characterization of fungi (and) and oomycetes (and) associated with apple orchards in South Africa., 2011, 130(2): 215-229.
[33] 姜偉濤, 尹承苗, 段亞楠, 相立, 王玫, 陳學森, 沈向, 張民, 毛志泉. 根皮苷和串珠鐮孢菌加重蘋果連作土壤環(huán)境及其對平邑甜茶生長的抑制. 園藝學報, 2018, 45(1): 21-29.
JIANG W T, YIN C M, DUAN Y N, XIANG L, WANG M, CHEN X S, SHEN X, ZHANG M, MAO Z Q. Phloridzin andaggravated the replanted soil environment and inhibited the growth ofseedlings., 2018, 45(1): 21-29. (in Chinese)
[34] 周婷. 不同質(zhì)地土壤條件下葡萄連作效應差異機制研究[D]. 沈陽: 沈陽農(nóng)業(yè)大學, 2016.
ZHOU T. Study on the mechanism of grape replant effect under different soil texture [D]. Shengyang: Shenyang Agricultural University, 2016. (in Chinese)
[35] 王艷芳, 相立, 徐少卓, 王森, 王曉偉, 陳學森, 毛志泉, 張民. 生物炭與甲殼素配施對連作平邑甜茶幼苗及土壤環(huán)境的影響. 中國農(nóng)業(yè)科學, 2017, 50(4): 711-719.
WANG Y F, XIANG L, XU S Z, WANG S, WANG X W, CHEN X S, MAO Z Q, ZHANG M. Effects of biochar and chitin combined application onRehd. seedlings and soil environment under replanting conditions., 2017, 50(4): 711-719. (in Chinese)
[36] 回振龍, 王蒂, 李宗國, 李朝周,李旭鵬, 張俊蓮. 外源水楊酸對連作馬鈴薯生長發(fā)育及抗性生理的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2014, 32(4): 1-8.
HUI Z L, WANG D, LI Z G, LI C Z, LI X P, ZHANG J L. Influences of exogenous salicylic acid on growth and resistance physiology of continuous cropping potato., 2014, 32(4): 1-8. (in Chinese)
Effects of Different Soil Textures on the Degree of Replanted Disease ofRehd.
SHENG YueFan, WANG HaiYan, QIAO HongYuan, WANG Mei, CHEN XueSen, SHEN Xiang, YIN ChengMiao, MAO ZhiQuan
(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong)
【Objective】The occurrence degree and mechanism of apple replant disease (ARD) in the apple orchards with different soil textures were studied with theRehd. seedlings as experimental material, so as to adopt appropriate control measures according to the severity of ARD.【Method】Pot experiment including six treatments, which were the replanted sandy loam soil and its methyl bromide fumigation treatment, the replanted loam soil and its methyl bromide fumigation treatment, and the replanted clay loam soil and its methyl bromide fumigation treatment, was carried out. And the soils were from Laizhou, Yantai. The biomass, root protective enzymes activities and malonaldehyde (MDA) contents ofseedlings, changes of the number of soil bacteria, fungi and actinomycetes, and soil enzyme activities were measured by conventional method. The number of thewas detected by a real-time quantitative PCR detection system. Because of the three different soil conditions, the differences of the above indicators between the three soil treatments of methyl bromide fumigation and their replanted soil treatments were used to indicate the degree of ARD. The greater of the difference, the more serious the ARD was. At the same time, the content of phenolic acids of three kind of soils was determined by high performance liquid chromatography.【Result】 Compared with their respective controls, the dry weight of plants in the methyl bromide fumigated clay loam, sandy loam soil and loam soil increased by 98.9%, 87.9%, and 54.4%, respectively. From the results, we could see that the most difference occurred between the replanted soil and its methyl bromide fumigation treatment in clay loam soil, which indicated that the degree of ARD in clay loam soil was the most serious. Compared with their respective controls, the plants treated with methyl bromide fumigation in clay loam, sandy loam and loam significantly increased the root activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and decreased the MDA content. The activity of SOD was 2.63, 1.80 and 1.53 times higher than that of the control, POD activity was 3.02, 2.01 and 1.62 times higher than that of the control and CAT activity was 3.25, 2.61 and 2.11 times higher than that of the control, respectively. The difference of root protective enzymes was the greatest in clay loam, which indicated that root stress was more serious in the replanted clay loam soil. Compared with their respective controls, the root respiration rates of clay loam, sandy loam and loam treated with methyl bromide fumigation increased by 91.3%, 69.4% and 36.0%, respectively. MDA content decreased by 51.3%, 48.9% and 33.1%, respectively. Urease activity decreased by 68.2%, 64.2% and 54.4%, respectively, and phosphatase activity decreased by 25.6%, 18.6% and 8.18%, respectively, compared with their respective controls. The amount of fungi treated with methyl bromide fumigation in clay loam, sandy loam soil and loam soil decreased by 85.8%, 58.1% and 72%, respectively. The copy number ofdecreased by 87.5%, 70.1% and 66.3%, respectively, and the copy number ofwas the highest in the replanted clay loam soil. Under replanted conditions, the total phenolic acid content in clay loam soil was the highest, which was 41.30 mg·kg-1.【Conclusion】 Among three soils of different texture, the degree of ARD was the most serious in clay loam soil on account of the highest total content of phenolic acid, the most harmful fungi mainly inand the most serious root stress, while the degree of ARD in loam soil was the slightest.
apple replant disease; soil texture; soil microorganism; Phenolic acid
10.3864/j.issn.0578-1752.2019.04.012
2018-09-07;
2018-12-28
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設專項(CARS-27)、國家自然科學基金(31672104,31501720)、國家重點研發(fā)計劃(2016YFD0201114)
盛月凡,E-mail:843547908@qq.com。通信作者毛志泉,Tel:0538-8241984;E-mail:mzhiquan@sdau.edu.cn.。通信作者尹承苗,E-mail:yinchengmiao@163.com
(責任編輯 趙伶俐)