張京京,閆澍旺,練繼建,郎瑞卿
?
關于修正劍橋模型預測負孔隙水應力的評析
張京京1, 2,閆澍旺1,練繼建1,郎瑞卿3
(1. 天津大學水利工程仿真與安全國家重點實驗室,天津 300072;2. 中鐵十八局集團有限公司,天津 300350;3. 天津城建大學土木工程學院,天津 300384)
在吸力錨和樁靴等海洋基礎結構的上拔問題中,負孔隙水應力是抗拔阻力的重要組成部分,開展相關研究具有重要的科學意義和工程價值.修正劍橋模型不但可以合理地解釋超靜負孔隙水應力產(chǎn)生的機理,而且可以計算三軸卸荷過程中孔隙水應力的發(fā)展變化規(guī)律.通過開展高嶺土地基桶形基礎上拔室內(nèi)模型試驗,研究了總上拔力和超孔壓隨時間的變化情況;結合數(shù)值模擬,用修正劍橋模型計算卸荷對負孔隙水應力的影響,分析了上拔過程中負孔壓分布特點;總結高嶺土土體中受上拔速率影響的上拔承載力試驗,并引入歸一化速率對試驗結果和數(shù)值計算結果進行分析,評析并量化了修正劍橋模型在預測負孔隙水應力時的適用條件.研究表明:負孔隙水壓力在上拔初期主要集中在桶體下部和內(nèi)部土體,對應的最大位移出現(xiàn)在桶裙底部;當上拔位移較大時,最大負孔壓出現(xiàn)在桶內(nèi)土體中;隨著上拔位移的增大,土體中超靜負孔壓區(qū)域逐漸變大,同時桶形基礎外側土體發(fā)生向桶內(nèi)的水平向位移.修正劍橋模型計算得到的超靜負孔隙水應力小于模型試驗結果,造成計算誤差的主要原因為:劍橋修正計算模型是通過較低速率的三軸試驗得到,其速率遠遠小于模型試驗,從而低估了卸荷速率對負孔隙水應力的影響;修正劍橋模型預測負孔壓的適用條件為歸一化速率低于70.
修正劍橋模型;負孔隙水應力;適用條件;卸荷
吸附力是一種常見的作用于海洋工程結構物上的外部作用,其作用機理較復雜,是海洋巖土工程學科的重要組成部分.在風和浪等荷載的作用下,位于飽和黏土中的基礎結構物處于上拔狀態(tài),對應的地基土進入卸荷狀態(tài),此時土體內(nèi)產(chǎn)生負孔隙水壓力,該力是吸附力的重要組成部分.負孔壓在不同結構物和工程中有多種用途:在吸力錨、吸力樁等結構物中,負孔壓可以用于抵抗外荷載;而在樁靴移動、打撈沉船等工程中,負孔壓則是需要克服的不利因素. 因此,對負孔壓的預測和計算具有重要的工程價值.
Li等[1]用有限元法結合修正劍橋模型闡述了負孔隙水應力的產(chǎn)生機理,文獻[2-3]則通過三軸試驗驗證了負孔隙水應力產(chǎn)生機理的合理性.三軸試驗、模型試驗均表明,速率對負孔隙水應力有重要影響.為了探究修正劍橋模型預測孔隙水應力在模型試驗中的應用效果,采用有限元法對桶型基礎上拔試驗進行模擬,根據(jù)分析結果論證該模型預測和計算孔隙水應力的適用性并量化相關適用條件.
文獻[4-11]開展了大量桶形基礎上拔室內(nèi)模型試驗,并對上拔過程中的孔壓分布進行了監(jiān)測.結合以上模型試驗和修正劍橋模型,探討上拔過程中負孔壓的預測和計算方法.
試驗裝置由固結試驗槽、桶形基礎模型和上拔設備等組成.其中,固結試驗槽直徑為1.0m,高度為1.4m,無縫不銹鋼材質(zhì).具體模型試驗裝置見圖1.
桶形基礎模型(見圖2)高度為0.40m,外徑為0.205m,桶壁厚度為0.0225m,頂部厚度為0.02m.模型內(nèi)部材料為鋼材,外部為混凝土,總重為22.25kg.桶形基礎內(nèi)部凈高為0.38m,基礎裙底為楔形體,坡度為1∶2.為了便于監(jiān)測土塞等現(xiàn)象,桶形基礎頂部材料為透明的亞格力材料.
圖1? 模型試驗裝置
圖2 ?桶形基礎模型(單位:m)
高嶺土使用廣泛,但普遍具有固結系數(shù)小、滲透性低等特點.本次試驗選用高嶺土進行.試驗用高嶺土液限61,塑限38,相對體積質(zhì)量2.61,靈敏度2.3.試驗用土容重和含水率如圖3所示.固結壓力分別為25kPa和90kPa,固結壓力用c表示.在預留的孔洞內(nèi)采用十字板法測量高嶺土的不排水強度u.高嶺土的不排水強度u隨深度不斷變化,但是在固結桶內(nèi)的變化非常有限,忽略不計,可認為地基土強度均勻.結合圖3可知,25kPa固結壓力下土體不排水強度u為5.7kPa,90kPa固結壓力下桶內(nèi)不排水強度u為16.7kPa.
圖3? 高嶺土含水率及容量
有限元計算模型(見圖4)與試驗尺寸相同,孔壓測試點、埋深分別為20cm、40cm,如圖4所示.上拔時固結應力不卸除,計算模型應力狀態(tài)與試驗相同.計算參數(shù)見表1.
圖4? 有限元計算模型
表1? 計算參數(shù)
Tab.1? Calculation parameters
通過觀察試驗過程可知,試驗上拔過程中桶內(nèi)土體與桶體脫離,發(fā)生剪切破壞[11].因此,在數(shù)值模擬中,可將桶壁與土體之間的接觸設置為可脫離摩擦.根據(jù)模型試驗反算,側壁摩擦系數(shù)為0.11.
上拔承載力試驗結果與數(shù)值模擬結果對比如圖5所示.對比圖5中兩條曲線可以看出,數(shù)值模擬得到的上拔力與試驗測得的上拔力較為吻合.
圖5? 上拔力計算結果
通過數(shù)值模擬可較為詳細地研究上拔過程中孔壓的分布.不同上拔位移對應的土體孔壓分布見圖6.
由圖6可以看出:當上拔位移較小時,負孔隙水壓力主要集中在桶體下部和內(nèi)部土體,對應的最大位移出現(xiàn)在桶裙底部;當向上位移較大時,最大負孔壓出現(xiàn)在桶內(nèi)土體中;隨著桶形基礎被不斷拔出,土體中超靜負孔壓區(qū)域逐漸變大,同時桶形基礎外側土體發(fā)生向桶內(nèi)的水平向位移.該現(xiàn)象表明,在上拔過程中,桶壁作用于周圍土體上的作用不僅有剪切作用,還有水平向卸荷作用,從而導致了負孔壓的產(chǎn)生[1-2].
對上拔過程中,深度為0.20m和0.40m處的土體孔壓變化進行監(jiān)測.數(shù)值計算所得孔壓與試驗值對比如圖7所示.
圖7? 數(shù)值模擬孔壓值與實測結果對比
由圖7可知,試驗測得的孔壓與計算值存在一定差異:深度為0.2m處,最大負孔壓實測值為-6kPa,而數(shù)值模擬值為-1.5kPa;深度為0.4m處,最大負孔壓實測值為-10kPa,而數(shù)值模擬值為-3.2kPa.由此可見,采用MCC模型計算得到的孔壓小于模型試驗的實測值.
Chen等[12]和Li等[13]的研究表明,卸荷速率對負孔隙水應力有重要影響,卸荷速率越快負孔隙水應力越大,對卸荷速率、埋深或排水路徑和固結系數(shù)v進行歸一化處理,得到歸一化速率=/v,并通過分析得到完全不排水、部分排水、完全排水條件的速率界限,如圖8所示.
圖8 ?高嶺土中模型試驗速率歸一化
由圖8可知,根據(jù)Chen等[12]的研究結果可將歸一化速率為10~1000的試驗界定為卸荷時部分排水問題;而若根據(jù)Li等[13]的研究結果該速率介于10~100之間.
本文中桶形基礎模型試驗拔出速率為3.23cm/min,孔壓測試點、有效排水路徑分別為0.20m和0.40m,試驗用高嶺土的固結系數(shù)v為1.5m2/a,則計算得到兩點歸一化速率分別為1582、3164.修正劍橋模型根據(jù)三軸試驗結果建立,為了確定有限元計算模型速率效應的影響作用,對高嶺土三軸試驗速率進行歸一化分析.三軸試樣尺寸為14cm×7cm,試驗速率0.05%~0.10%/min,高嶺土三軸試驗歸一化速率為17.0~68.6.結合圖8中相關界定數(shù)值可知,試驗用土常規(guī)三軸試驗可界定為部分排水狀態(tài),而本文中上拔模型試驗則屬于不排水?問題.
速率對負孔壓值有很大的影響,Chen等[12]和Li等[13]的研究表明,卸荷速率越快則負孔隙水應力越大,三軸試驗也驗證了這一結論[12].MCC模型是在歸一化速率較低三軸試驗條件下得到的本構關系,而本文模型試驗的歸一化速率較高.因此,運用MCC模型計算得到本文試驗條件下的孔壓結果偏?。?/p>
當通過較低速率三軸試驗得到的本構模型預測并計算土體中負孔壓的發(fā)展及相應的應力狀態(tài)時,可能會造成計算結果偏小,低估了負孔壓的作用.當三軸試驗的加載速率與實際情況相同時,即圖8中的完全不排水條件時,運用固結理論考慮速率的影響才能得到與實際工程較為接近的結果.因此,通過常規(guī)三軸試驗得到的修正劍橋模型較為適用于低速率(對于高嶺土為歸一化速率小于70)的卸荷問題,而對于歸一化速率較大的卸荷問題尚需另做研究.當卸荷速率較快時,模型試驗更適用于負孔壓預測.
采用有限元法研究修正劍橋模型在桶形基礎上拔問題中的應用,主要得出以下結論.
(1) 采用修正劍橋模型對高嶺土地基中桶形基礎上拔試驗進行分析,數(shù)值計算得到的負孔壓小于實測值.該現(xiàn)象產(chǎn)生的原因為:修正劍橋模型在較低速率的常規(guī)三軸試驗中得到,該速率遠低于模型試驗條件,而卸荷速率越快,負孔隙水應力越大,修正劍橋模型低估了速率對孔壓的影響.
(2) 修正劍橋模型能夠揭示負孔隙水應力的產(chǎn)生機理,但較適用于計算低速卸荷條件下孔壓值.對于高嶺土,該低速卸荷條件的界限值為70,而對于較高速率的卸荷問題則參考模型試驗結果進行預測更為合理.
[1] Li X J,Tian Y H,Gaudin C,et al. Comparative study of the compression and uplift of shallow foundations[J]. Computers and Geotechnics,2015,69(5):38-45.
[2] Yan S W,Zhang J J,Tian Y H,et al. Pore pressure characteristics in isotropic consolidated saturated clay under unloading conditions[J]. Journal of Marine Science and Technology,2016,24(1):19-25.
[3] 閆澍旺,張京京,陶?琳,等. 等向固結飽和黏土卸荷特性影響因素研究[J]. 巖土工程學報,2016,38(增2):42-47.
Yan Shuwang,Zhang Jingjing,Tao Lin,et al. Influencing factors for unloading characteristics in saturated clay[J]. Chinese Journal of Geotechnical Engineering,2016,38(Suppl 2):42-47(in Chinese).
[4] 閆澍旺,霍知亮,楚?劍,等. 黏土中負壓桶形基礎下沉與承載特性試驗及有限元分析研究[J]. 工程力學,2016,33(1):122-132.
Yan Shuwang,Huo Zhiliang,Chu Jian,et al. Test and FEA of installation and axial behavior of suction caisson in clay[J]. Engineering Mechanic,2016,33(1):122-132(in Chinese).
[5] 閆澍旺,霍知亮,孫立強,等. 海上風電機組筒型基礎工作及承載特性研究[J]. 巖土力學,2013,34(7):2036-2042.
Yan Shuwang,Huo Zhiliang,Sun Liqiang,et al. Study of working mechanism and bearing capacity behavior of bucket foundation for offshore wind turbine [J]. Rock and Soil Mechanics,2013,34(7):2036-2042(in Chinese).
[6] Chu J,Yan S W,Li W. Innovative methods for dike construction—An overview[J]. Geotextiles and Geomembranes,2012,30(2):35-42.
[7] He J,Chu J,Liu H L. Undrained shear strength of desaturated loose sand under monotonic shearing[J]. Soils & Foundations,2014,54(4):910-916.
[8] Guo W,Chu J,Kou H. Model tests of soil heave plug formation in suction caisson[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2016,169(2):214-223.
[9] Guo W,Chu J. Experimental study of installation of concrete suction caisson in clay[C]//Proceedings of the Institution of Civil Engineers. San Antonio Texas,USA,2015:784-791.
[10] Guo Z,Wang L,Yuan F,et al. Model tests on installation techniques of suction caissons in a soft clay seabed[J]. Applied Ocean Research,2012,34(1):116-125.
[11] 霍知亮. 黏土地基中桶形基礎模型試驗及工作機理研究[D]. 天津:天津大學建筑工程學院,2015.
Huo Zhiliang. Model Test and Working Mechanism Study of Suction Caisson in Clay[D]. Tianjin:School of Civil Engineering,Tianjin University,2015(in Chinese).
[12] Chen R,Gaudin C,Cassidy M J. Investigation of the vertical uplift capacity of deep water mudmats in clay[J]. Canadian Geotechnical Journal,2012,49(7):853-865.
[13] Li X,Gaudin C,Tian Y,et al. Rate effects on the uplift capacity of skirted foundations on clay[C]// ICPMG 2014-Physical Modelling in Geotechnics. London,UK,2014:473-479.
Analysis on Predicting Negative Pore Stress Using Modified Cambridge Model
Zhang Jingjing1, 2,Yan Shuwang1,Lian Jijian1,Lang Ruiqing3
(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China;2. China Railway 18 Bureau Group Co.,LTD,Tianjin 300350,China;3. School of Civil Engineering,Tianjin Chengjian University,Tianjin 300384,China)
The negative pore pressure is an important component of the pullout force in the uplifting project of offshore engineering structures,such as a caisson or a jackup spudcan. It has great scientific significance and engineering value to carry out relevant research. The modified Cambridge model not only can explain the mechanism of negative pore water stress reasonably but also can calculate the development of pore water stress during the triaxial unloading process. Based on the pull model tests of bucket foundation in kaolin soil,variations of the total pullout force and excess pore pressure with time were studied. Combined with the numerical simulation,the modified Cambridge model was used to calculate the influence of unloading on the negative pore water stress. Moreover,the distribution of negative pore pressure during the uplifting process was analyzed. The uplift capacities of kaolin soil affected by the uplift rate were summarized,and the normalization rate was proposed to analyze the test and numerical calculation results. Furthermore,the applicable conditions of the modified Cambridge model was evaluated and quantified. The research showed that the negative pore water pressure mainly appeared at the lower part and the internal soil during the initial stage of uplifting,whereas the corresponding maximum displacement occurred at the bottom of the bucket skirt. When the upward displacement was large,the maximum negative pore pressure was observed in the soil inside the bucket. The area of the negative pore pressure increased gradually with increasing uplift displacement. The soil outside the bucket produced horizontal displacement into the bucket. The calculated value of the negative pore pressure using the modified Cambridge model is less than the test value. The modified Cambridge model was obtained from triaxial test with a low rate,much smaller than that of the model tests. Therefore,the influence of unloading rate on the negative pore water stress was underestimated. The applicable condition for calculating the negative pore pressure of the modified Cambridge model is a normalized rate of less than 70.
modified Cambridge model;negative pore stress;applicable condition;unloading
TU758.11
A
0493-2137(2019)08-0871-05
10.11784/tdxbz201806032
2018-06-15;
2018-11-05.
張京京(1989—??),女,博士,工程師,zhangjj0305@163.com.
郎瑞卿,tculrq@163.com.
國家自然科學基金資助項目(41372291);天津市科技計劃資助項目(15ZCZDF00220);天津市應用基礎與前沿技術研究計劃資助項目(15JCYBJC48800).
the National Natural Science Foundation of China(No.41372291),the Tianjin Science and Technology Project (No.15ZCZDF00220),the Tianjin Key Research Program of Application Foundation and Advanced Technology (No.15JCYBJC48800).
(責任編輯:樊素英)