孫玉
摘 ?要:氣溫變化對(duì)經(jīng)濟(jì)、社會(huì)、生態(tài)文明等各個(gè)領(lǐng)域有著顯著影響,成為國(guó)內(nèi)外的研究熱點(diǎn)和重點(diǎn),在環(huán)境建設(shè)中起重要保障作用。然而實(shí)際獲取的氣溫?cái)?shù)據(jù)具有明顯的相關(guān)性、多樣性和復(fù)雜性,為不同地區(qū)氣溫空間建模帶來困難??臻g變系數(shù)回歸模型中的地理加權(quán)回歸模型(Geographical Weighted Regression,GWR)可以很好的解決這一問題。文章主要利用1961-2000年的年均氣溫?cái)?shù)據(jù),在考慮地形影響的條件下,建立全國(guó)氣溫空間GWR模型,并對(duì)模擬精度進(jìn)行評(píng)價(jià),說明各地形因子的影響程度。通過與OLS模型對(duì)比,顯示出GWR的優(yōu)越性。
關(guān)鍵詞:氣溫;GWR模型;地形因子;模擬精度
中圖分類號(hào):P412.11 ? ? ? 文獻(xiàn)標(biāo)志碼:A ? ? ? ? 文章編號(hào):2095-2945(2019)13-0011-05
Abstract: Temperature change has a significant impact on economic, social, ecological civilization and other fields. It has become a research hotspot and focus at home and abroad, and plays an important role in environmental construction. However, the actual temperature data have obvious correlation, diversity and complexity, which brings difficulties to the spatial modeling of air temperature in different areas. The geographical weighted regression model (GWR) in the spatial variable coefficient regression model can solve this problem very well. In this paper, based on the annual temperature data from 1961 to 2000, the GWR model of national air temperature space is established under the condition of considering the influence of topography, the simulation accuracy is evaluated, and the influence degree of each topographic factor is explained. Compared with the OLS model, the superiority of GWR is shown.
Keywords: air temperature; GWR model; terrain factor; simulation accuracy
1 概述
20世紀(jì),全球氣候發(fā)生重要變化,多個(gè)國(guó)家或地區(qū)近百年的觀測(cè)數(shù)據(jù)顯示氣溫和降水分別呈現(xiàn)趨勢(shì)性增加和減少,極端天氣頻發(fā)。氣候變化強(qiáng)烈程度具有明顯區(qū)域性,北半球最強(qiáng)。這種變化引起了世界各國(guó)政府部門以及科研機(jī)構(gòu)的廣泛關(guān)注,由幾百名科學(xué)家組成的“政府間氣候變化委員會(huì)”(IPCC)在20世紀(jì)末對(duì)全球氣候變化情況進(jìn)行研究,得到以下結(jié)論:(1)過去一百年,地球表面平均溫度上升0.6℃左右;(2)1960-2000年,近地球8km內(nèi)大氣層溫度升高;(3)冰雪覆蓋區(qū)域減小,非極地冰川范圍萎縮;(4)過去一百年,全球海平面平均上升0.1~0.2m;(5)20世紀(jì)中后期,北半球中高緯度降水量增加,大雨頻率增加2%~4%[1]。IPCC預(yù)測(cè)到2100年,地球表面平均溫度上升1.4℃~5.8℃,地球平均海平面上升0.09~0.88m。
20世紀(jì)的全球氣候變化給人類社會(huì)和自然環(huán)境都帶來不可估量的影響,具體表現(xiàn)為人民生命財(cái)產(chǎn)損失增加以及生物物種變異加快[2]。對(duì)氣溫等氣候特征值變化的研究已經(jīng)迫在眉睫。地理加權(quán)回歸(Geographical Weighted Regression,GWR)模型是英國(guó)New Castle大學(xué)地理學(xué)家Fotheringham用于研究空間非平穩(wěn)性時(shí)提出的新方法。該模型可以很好的解決解釋變量對(duì)被解釋變量影響的空間差異性問題,適合全局氣溫空間建模。近幾年,國(guó)內(nèi)外關(guān)于GWR模型的各方面研究逐漸增加。Brunsdon 和 Fotheringham[3]基于英國(guó)肯特郡房?jī)r(jià)的例子數(shù)據(jù)集,利用地理加權(quán)回歸(GWR)技術(shù)對(duì)線性模型系數(shù)中的空間“漂移”進(jìn)行了建模,從多個(gè)方面擴(kuò)展了GWR的思想。Zhang[4]利用地理加權(quán)回歸(GWR)方法研究了樹林直徑-高度關(guān)系的空間變異,結(jié)果表明相對(duì)于傳統(tǒng)的OLS 模型,GWR對(duì)模型擬合有明顯的改善作用,產(chǎn)生更小的模型殘差;此外,還可以利用地理信息系統(tǒng)(GIS)等可視化工具對(duì)GWR模型的參數(shù)估計(jì)和模型統(tǒng)計(jì)進(jìn)行映射,說明所研究的回歸關(guān)系中的局部空間變化。蘇方林[5]利用地理加權(quán)回歸(GWR)技術(shù)研究科研環(huán)境等影響的空間結(jié)構(gòu)差異,其結(jié)果優(yōu)于OLS模型。玄海燕等[6]基于我國(guó)40年(1961-2000)的氣象觀測(cè)資料,利用GWR技術(shù)研究發(fā)現(xiàn),年降水量隨海拔高度變化呈現(xiàn)明顯空間區(qū)域性。王佳等[7]和董磊磊等[8]分別采用OLS和GWR模型模擬京津唐地區(qū)、蘭州城區(qū)不同土地覆蓋與地表溫度的關(guān)系,研究表明,GWR表現(xiàn)較OLS好且可以量化兩者關(guān)系的空間非穩(wěn)定性特征。由此可見,GWR模型在空間研究上展現(xiàn)出巨大優(yōu)勢(shì),已廣泛應(yīng)用于各個(gè)學(xué)科,具有良好的應(yīng)用前景。
本文在考慮地形影響的條件下,運(yùn)用地理加權(quán)回歸(GWR)模型對(duì)全國(guó)40年(1961-2000年)的氣溫變化空間規(guī)律進(jìn)行深刻分析,研究各個(gè)因素的空間分布對(duì)氣溫變化的影響機(jī)理,建立全國(guó)氣溫空間GWR模型,深入理解氣溫空間結(jié)構(gòu),為人類經(jīng)濟(jì)社會(huì)以及生態(tài)環(huán)境的和諧穩(wěn)定發(fā)展提供可靠依據(jù)。
2 研究區(qū)與數(shù)據(jù)源
本文采用從606個(gè)氣象站得到的1961-2000年的全國(guó)年均氣溫?cái)?shù)據(jù)、氣象站經(jīng)緯度數(shù)據(jù)以及氣象站高程數(shù)據(jù),多年平均氣溫分布如圖1所示。在考慮地形因素的影響下,建立全國(guó)范圍氣溫空間GWR模型,對(duì)模擬精度進(jìn)行評(píng)價(jià),并對(duì)各地形因子的影響程度做出說明。
3 GWR模型的基本原理
3.1 基本模型
3.2 空間權(quán)函數(shù)的選擇
空間權(quán)值矩陣W(ui,vi)是GWR模型的核心[11],不同的空間權(quán)函數(shù)構(gòu)成空間權(quán)值矩陣,描述對(duì)數(shù)據(jù)空間關(guān)系的認(rèn)識(shí)??臻g權(quán)函數(shù)的選取對(duì)GWR模型參數(shù)估計(jì)產(chǎn)生巨大影響,下面為幾種常見的空間權(quán)函數(shù)。
3.2.1 距離閾值法
3.3 GWR模型的特點(diǎn)
傳統(tǒng)OLS模型采用全局的方式估計(jì)參數(shù),忽略了參數(shù)的空間非穩(wěn)定性。鑒于實(shí)際獲取氣溫?cái)?shù)據(jù)相關(guān)性、多樣性和復(fù)雜性的特征,導(dǎo)致數(shù)據(jù)點(diǎn)對(duì)參數(shù)估計(jì)的影響具有空間差異性??臻g變系數(shù)回歸模型中的GWR模型進(jìn)行局部權(quán)值優(yōu)化,可以很好地解決這一問題。
根據(jù)GWR模型本身的特點(diǎn),所用數(shù)據(jù)必須有空間坐標(biāo)以及拓?fù)潢P(guān)系等空間屬性。因此,在剖析空間數(shù)據(jù)時(shí),該模型較一般的全局回歸模型效果較好,具體表現(xiàn)為以下幾個(gè)方面。首先,從分析結(jié)果方面看,GWR模型考慮了數(shù)據(jù)空間關(guān)系的局部特性,靈活優(yōu)化局域權(quán)值,具體反映每一點(diǎn)的狀態(tài)而不是反映全局的平均情況;其次,從模型方法方面看,GWR模型可以與多學(xué)科聯(lián)系,例如進(jìn)行計(jì)量檢驗(yàn)等;最后,GWR模型可以結(jié)合GIS實(shí)現(xiàn)結(jié)果的可視化,實(shí)現(xiàn)對(duì)感興趣區(qū)域的進(jìn)一步研究[12]。
4 操作過程及結(jié)果
4.1 坡度計(jì)算
打開Arc map軟件,選擇Arc Toolbox——使用“空間分析”工具——選擇“表面分析”——選擇“坡度”,對(duì)所給的高程數(shù)據(jù)進(jìn)行坡度計(jì)算,所得結(jié)果如圖2所示。
4.2 坡向計(jì)算
打開Arc map軟件,選擇Arc Toolbox——使用“空間分析”工具——選擇“表面分析”——選擇“坡向”,對(duì)所給的高程數(shù)據(jù)進(jìn)行坡向計(jì)算,所得結(jié)果如圖3所示。
4.3 多值提取
打開Arc map軟件,選擇Arc Toolbox——使用“空間分析”工具——選擇“提取分析”——選擇“多值提取至點(diǎn)”,將所得坡度坡向數(shù)據(jù)添加到氣溫屬性表中,實(shí)現(xiàn)多值提取。
“多值提取至點(diǎn)”較“單值提取至點(diǎn)”工具,不生成其他點(diǎn)文件,直接在原始表格后增加字段,能夠一次性提取多個(gè)柵格影像數(shù)據(jù),并且不會(huì)影響原始點(diǎn)文件字段,有利于進(jìn)一步分析。
4.4 建立OLS模型
打開Arc map軟件,選擇Arc Toolbox——使用“空間統(tǒng)計(jì)”工具——選擇“空間關(guān)系建?!薄x擇“普通最小二乘法”,利用高程、坡度、坡向等字段對(duì)氣溫進(jìn)行建模,所得結(jié)果如圖4所示。
4.5 建立GWR模型
打開Arc map軟件,選擇Arc Toolbox——使用“空間統(tǒng)計(jì)”工具——選擇“空間關(guān)系建模”——選擇“地理加權(quán)回歸”,利用高程、坡度、坡向等字段對(duì)氣溫進(jìn)行建模,所得結(jié)果如圖5所示。
5 分析與結(jié)論
5.1 OLS分析與結(jié)論
為了與GWR模型參數(shù)估計(jì)結(jié)果對(duì)比,首先使用OLS模型回歸,不考慮空間關(guān)系影響,標(biāo)準(zhǔn)化殘差直方圖如圖6所示,殘差-預(yù)測(cè)圖如圖7所示。OLS報(bào)告中AICc值為2181.21,該參數(shù)取值越低表示模型越精確;Koenker(BP) Statistic值為12.27,該參數(shù)檢驗(yàn)?zāi)P偷乩砜臻g和數(shù)據(jù)空間上的一致性;校正R平方為0.18,各自變量回歸系數(shù)都通過了1%或5%顯著性水平的檢驗(yàn),說明在OLS模型中,各地形因子均可以作為模型的解釋變量。各地形因子影響的程度絕對(duì)值由大到小依次為坡度、坡向、高程,其排序表示各變量對(duì)氣溫的全局影響水平。當(dāng)結(jié)果為顯著性時(shí),參考robust probabilities評(píng)估自變量的有效性,該回歸模型的顯著不穩(wěn)定性意味著GWR模型更適合空間數(shù)據(jù)分析。
5.2 GWR分析與結(jié)論
對(duì)于不同空間區(qū)域,解釋變量與依賴變量的關(guān)系有所差異,因此全國(guó)氣溫空間建模時(shí)考慮空間差異性、選取GWR模型非常必要。GWR模型所得總結(jié)報(bào)告如表1所示,為了便于將GWR模型與傳統(tǒng)OLS模型對(duì)比,分析校正R的平方和AICc兩個(gè)指標(biāo)。R的平方越大表示解釋變量對(duì)被解釋變量的解釋程度越大;AICc評(píng)估模型預(yù)測(cè)精度,若兩個(gè)模型的差值比三大,那么AICc小的模型精度更高。
由表1可以得到,GWR模型中R的平方為0.98大于OLS模型,AICc為973.90遠(yuǎn)小于OLS模型,因此說明本研究中GWR模型自變量對(duì)因變量的解釋程度更高、模型預(yù)測(cè)精度更高,較OLS模型具有更好的性能。GWR模型結(jié)果表明不同解釋變量的影響程度存在差異,即存在空間非平穩(wěn)性。本文利用GWR模型分析了導(dǎo)致氣溫變化的地形因素,所選影響因素對(duì)氣溫影響比較顯著,結(jié)論對(duì)氣溫的系統(tǒng)性研究有一定的參考意義。
6 前景展望
地理學(xué)第一定理表明兩事物間隔越小,空間關(guān)系越大。因此,采用基于全局的氣溫模型會(huì)導(dǎo)致預(yù)測(cè)精度下降,進(jìn)行局部參數(shù)估計(jì)的GWR模型在分析空間數(shù)據(jù)探索氣溫變化方面擁有更廣闊的發(fā)展空間。研究表明,空間統(tǒng)計(jì)模型在氣溫模擬探索方面具有優(yōu)越性,所得到的各地形因子對(duì)氣溫影響及空間關(guān)系的結(jié)論為生態(tài)環(huán)境、經(jīng)濟(jì)和社會(huì)生活等各個(gè)方面的研究提供了參考,使氣溫模擬更深刻地考慮影響因素的空間異質(zhì)性。同時(shí),對(duì)氣溫變化的研究有利于探索氣候環(huán)境變化保護(hù)生態(tài)文明,依據(jù)所得到的空間規(guī)律,基于過去觀測(cè)數(shù)據(jù)預(yù)測(cè)未來變化趨勢(shì),為人工改變氣溫、影響氣候提供理論支持。
另外,本文只分析了高程、坡度、坡向等地形因子對(duì)氣溫結(jié)構(gòu)的影響,還可繼續(xù)分析研究植被、社會(huì)經(jīng)濟(jì)因子、降水等因素與氣溫的空間關(guān)系,進(jìn)一步探索全國(guó)氣溫的空間結(jié)構(gòu)。
參考文獻(xiàn):
[1]張強(qiáng),韓永翔,宋連春.全球氣候變化及其影響因素研究進(jìn)展綜述[J].地球科學(xué)進(jìn)展,2005,09:990
-998.
[2]US National Academy of Science,Climate Change Science:Analysis of Some Key Questions[R].National Academy June,2001.
[3]Brunsdon C,F(xiàn)otheringham A S. Some notes on Parametric significance tests for geographically weighted regression[J]. Journal of Regional Science,1999(39):497-524.
[4]Zhang L J. Modeling spatial variation in tree diameter-height relationships [J]. Forest Ecology and Management,2004(1):317-329.
[5]蘇方林.中國(guó)R&D與經(jīng)濟(jì)增長(zhǎng)的空間統(tǒng)計(jì)分析[D].華東師范大學(xué),2005.
[6]玄海燕,羅雙華.我國(guó)區(qū)域降水量與海拔高度關(guān)系的分析[C].中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十三屆學(xué)術(shù)年會(huì)論文,2007:110-113.
[7]王佳,錢雨果,韓立建,等.基于GWR模型的土地覆蓋與地表溫度的關(guān)系——以京津唐城市群為例[J].應(yīng)用生態(tài)學(xué)報(bào),2016,27(7):2128-2136.
[8]董磊磊,潘竟虎,王衛(wèi)國(guó),等.基于遙感和GWR的蘭州中心城區(qū)夏季熱場(chǎng)格局及與土地覆蓋的關(guān)系[J].土壤,2018,50(2):404-413.
[9]玄海燕,黎鎖平,劉樹群.地理加權(quán)回歸模型及其擬合[J].甘肅科學(xué)學(xué)報(bào),2007(1):51-52.
[10]Brunsdon C, Fotheringham AS, Charlton M. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geogr Anal, 1996,28(4):281-98.
[11]Brunsdon C, Aitkin M, Fotheringham AS, Charlton M. A comparison of random coefficient modelling and geographically weighted regression for spatially non-stationary regression problems.Geographical and Environmental Modelling, 1999,3(1):47-62.
[12]Huang Y F, Leung Y. Analyzing regional industrialization in Jiangsu province using geographically weighted regression[J].Journal of Geographical Systems, 2002(4):233-249.