嚴(yán)建軍 李鈺 楊帆 郝娜 張杰
摘 要:本文在(C,α,ρ,d)-凸函數(shù)的基礎(chǔ)上,提出廣義(C,α,ρ,d)K,θ-凸函數(shù)的概念,并討論涉及這類新廣義凸性的一類多目標(biāo)半無限規(guī)劃的最優(yōu)性條件。
關(guān)鍵詞:多目標(biāo)規(guī)劃;半無限規(guī)劃;廣義(C,α,ρ,d)K,θ-凸函數(shù);最優(yōu)性
中圖分類號:O221.6
文獻(xiàn)標(biāo)識碼: A
隨著多目標(biāo)最優(yōu)化和半無限規(guī)劃的研究發(fā)展,凸性理論逐步被廣泛地應(yīng)用到各個(gè)研究范疇中,且取得了許多有意義的重要成果。文獻(xiàn)[1]引入了(F,α,ρ,d)-凸函數(shù),文獻(xiàn)[2]對其進(jìn)一步推廣,得到了(C,α,ρ,d)-凸函數(shù),并研究了涉及這類凸性的最優(yōu)性條件和對偶結(jié)果。文獻(xiàn)[3-7]對于涉及(C,α,ρ,d)-凸性的多目標(biāo)規(guī)劃、多目標(biāo)分式規(guī)劃等問題的最優(yōu)性和對偶理論進(jìn)行了研究。作者在此基礎(chǔ)上,結(jié)合局部漸近錐、K-方向?qū)?shù)[8]和K-次微分[9],提出廣義(C,α,ρ,d)K,θ-凸函數(shù),并在新的廣義凸性下,研究了一類多目標(biāo)半無限規(guī)劃的最優(yōu)性條件。
3 結(jié)語
本文定義了廣義(C,α,ρ,d)K,θ-凸函數(shù),討論了涉及新廣義凸性的一類多目標(biāo)半無限規(guī)劃的最優(yōu)性條件,所得結(jié)果從理論上對已有凸性進(jìn)行了有益推廣,充實(shí)了廣義凸性和數(shù)學(xué)規(guī)劃的相關(guān)理論。還可進(jìn)一步深入研究這類新廣義凸性及其相關(guān)的對偶性、鞍點(diǎn)[14]和算法設(shè)計(jì)與穩(wěn)定性分析等內(nèi)容。
參考文獻(xiàn):
[1]LIANG Z A, HUANG H X, PARDALOS P M. Optimality conditions and duality for a class of nonlinear fractional programming problems[J]. Journal of Optimization Theory and Application, 2001,110(3):611-619.
[2]YUAN D H, LIU X L, CHINCHULUUN A, et al. Nondifferentiable Minimax Fractional Programming Problems with (C,α,ρ,d)-convexity [J]. Journal of Optimization Theory and Application,2006,129(1):185-199.
[3]CHINCHULUUN A, PARDALOS P M. Multiobjective Programming Problems under Generalized Convexity[M]//TRN A, ?ILINSKAS J. Models and Algorithms for Global Optimization. New York:Springer,2007:3-20.
[4]CHINCHULUUN A, YUAN D, PARDALOS P M. Optimality Conditions and Duality for Nondifferentiable Multiobjective Fractional Programming with Generalized Convexity[J].Annals of Operations Research,2007,154(1):133-147.
[5]YUAN D, CHINCHULUUN A, LIU X, et al. Generalized Convexities and Generalized Gradients Based on Algebraic Operations[J]. Journal of Mathematical Analysis and Applications,2006,321(2):675-690.
[6]YUAN D, CHINCHULUUN A, LIU X, et al. Optimality Conditions and Duality for Multiobjective Programming Involving (C,α,ρ,d)-type-I Functions[M]//KONNOV I V, LUC D T, RUBINOV A M. Generalized Convexity and Related Topics. Berlin: Springer-Verlag, 2007,583:73-87.
[7]LONG X J. Optimality Conditions and Duality for Nondifferentiable Multiobjective Fractional Programming Problems with (C,α,ρ,d)-convexity[J]. Journal of Optimization Theory and Application,2011,148(1):197-208.
[8]ELSTER K H. Thierfelder J. On Cone Approximations and Generalized Directional Derivatives[M]//CLARKE F H, DEMYANOV V ?F, GIANNESSI F. Nonsmooth optimization and related topics. New York:Springer US,1989:133-154.
[9]CASTELLANI M. Nonsmooth Invex Functions and Sufficient Optimality Conditions[J].Journal of Mathematical Analysis and Applications,2001,255(1):319-332.
[10]KUK H, LEE G M, TANINO T. Optimality and Duality for Nonsmooth Multiobjective Fractional Programming with Generalized Invexity[J].Journal of Mathematical Analysis and Applications,2001,262:365-375.
[11]張慶祥. 非光滑半無限多目標(biāo)規(guī)劃弱非控解的充分性[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào), 1996, 11A(4):461-466.
[12]王麗, 張慶祥. 一類一致Fb-凸多目標(biāo)規(guī)劃的最優(yōu)性條件[J].延安大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,20(3):7-11.
[13]SHIMIZY K, ISHIZUKA Y, BARD J F. Nondifferentiable and Two-Level Mathematical Programming[M].Boston:Kluwer Academic Publishers,1997.
[14]李鈺, 嚴(yán)建軍, 李江榮. 具有廣義凸性的一類半無限向量分式規(guī)劃的鞍點(diǎn)準(zhǔn)則[J]. 貴州大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015,32(5):1-4.
(責(zé)任編輯:周曉南)