沈情情 王俊 蘇占會 謝俊霞
[摘要]?目的?研究黑質(SN)區(qū)過表達α-突觸核蛋白(α-syn)對小鼠運動行為的影響。
方法將40只9周齡C57BL/6J雄性小鼠隨機均分為2組,實驗組小鼠SN區(qū)雙側注射200 nL腺相關病毒(AAV)2/9-α-syn,對照組小鼠SN區(qū)注射等量的AAV2/9-EGFP。病毒注射4周后,采用爬桿實驗和轉棒實驗觀察小鼠的運動協(xié)調能力。
結果Western Blot檢測顯示,與對照組相比,實驗組小鼠SN區(qū)α-syn表達明顯增加(t=2.803,P<0.05)。爬桿實驗顯示,與對照組相比,實驗組小鼠爬桿所用總時間和調頭時間均明顯增加(t=8.045、9.401,P<0.01)。轉棒實驗顯示,實驗組小鼠在轉棒儀上停留的時間較對照組小鼠明顯縮短(t=2.177,P<0.05)。
結論SN區(qū)過表達α-syn會導致小鼠運動功能障礙。
[關鍵詞]?α突觸核蛋白;黑質;帕金森病;運動障礙;小鼠
[中圖分類號]?R338.8
[文獻標志碼]?A
[文章編號]??2096-5532(2019)01-0021-04
INFLUENCE OF α-SYNUCLEIN OVEREXPRESSION IN THE SUBSTANTIA NIGRA ON MOTOR FUNCTION IN MICE
SHEN Qingqing, WANG Jun, SU Zhanhui, XIE Junxia
(Departmenr of Physiology, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, Chain)
[ABSTRACT]ObjectiveTo investigate the influence of α-synuclein (α-syn) overexpression in the substantia nigra (SN) on motor function in mice.
MethodsA total of 40 male C57BL/6J mice aged 9 weeks were randomly divided into control group and experimental group, with 20 mice in each group. The mice in the experimental group were given injection of 200 nL AAV2/9-α-syn into the SN at both sides, and those in the control group were given injection of an equal volume of AAV2/9-EGFP into the SN. At 4 weeks after injection, the pole test and the rotarod test were used to observe motor function.
ResultsWestern blot showed that compared with the control group, the experimental group had a significant increase in the expression of α-syn in the SN (t=2.803,P<0.05). The pole test showed that compared with the control group, the experimental group had significant increases in the total time to climb down the pole and the time to turn around (t=8.045 and 9.401,P<0.01). The rotarod test showed that the experimental group had a significantly shorter retention time on the rotarod than the control group (t=2.177,P<0.05).
ConclusionOverexpression of α-syn in the SN can lead to motor impairment in mice.
[KEY WORDS]alpha-synuclein; substantia nigra; Parkinson disease; motor disorders; mice
帕金森?。≒D)是全球第二大神經退行性疾病,其運動癥狀主要包括靜止性震顫、運動遲緩、肌強直和姿勢不穩(wěn)[1]。PD病人黑質(SN)致密部的多巴胺(DA)能神經元進行性丟失,出現(xiàn)以α-突觸核蛋白(α-syn)為主要成分的路易小體(LB)[2-3]。α-syn由140個氨基酸組成,參與DA合成、重攝取和突觸DA囊泡的轉運等功能[4]。α-syn構象的改變會引起DA能神經元的死亡[5-6],可能與運動功能障礙有關[7],但引起α-syn錯誤折疊的原因尚不明確[8]。近年來,與α-syn相關的PD動物模型成為大家關注的焦點。A53T轉基因小鼠作為一種常用的高表達人源性α-syn的PD模型小鼠,可以在一定程度上模擬一些與PD相關的神經病理學和行為學特征[9-11],但是,A53T基因在小鼠體內并不僅在PD相關腦區(qū)表達[12]。近年來,通過注射腺相關病毒(AAV)使其在目的腦區(qū)表達已經得到了大家廣泛的認可,AAV-α-syn動物模型也越來越多地被應用于PD研究中[13-16]。本研究通過將AAV2/9-α-syn注射到小鼠雙側SN中來研究過表達α-syn對小鼠運動行為的影響。現(xiàn)將結果報告如下。
1?材料與方法
1.1?實驗材料
SPF級8周齡雄性C57BL/6J小鼠40只,購于北京維通利華實驗技術有限公司,飼養(yǎng)于清潔的小鼠房內,每籠4只,保證室溫(21±2)℃、濕度(50±5)%、12/12 h晝夜循環(huán)光照,小鼠可自由飲水、取食。AAV由和元生物技術(上海)股份有限公司生產,實驗組病毒為AAV2/9-α-syn,滴度為1.65×1016V.G./L,對照組病毒為AAV2/9-EGFP,滴度為9.95×1015V.G./L,經公司檢測均可以正常表達。α-syn抗體為美國CST公司產品,β-actin抗體為中國博奧森公司產品。
1.2?動物分組及處理
待小鼠適應環(huán)境1周后,將其隨機平均分為2組。利用瑞沃德公司的呼吸麻醉機將其深度麻醉后,迅速取出固定在小鼠立體定位儀上,同時用異氟烷給予持續(xù)麻醉。將小鼠用耳桿適配器固定好,使其頭部平整,耳桿左右讀數(shù)相同,暴露出小鼠顱骨,參照第2版小鼠腦立體定位圖譜,定位并讀出前囟坐標,在三維推動器的引導下至SN區(qū),其坐標為前囟后-3.1 mm、旁開±1.4 mm、深度-4.4 mm[17]。兩組小鼠均采用微量注射泵在兩側SN注射200 nL病毒,流量為0.5 nL/s,注射結束后留針10 min再緩慢退針,病毒注射4周后對小鼠進行行為學檢測。
1.3?檢測指標及方法
1.3.1Western Blot方法檢測SN區(qū)α-syn蛋白表達?行為學實驗結束后,每組取10只小鼠,用異氟烷深度麻醉后在冰上迅速斷頭取腦,取出SN后加入蛋白裂解液研磨均勻于冰上裂解30 min,在4 ℃下以12 000 r/min離心20 min,取上清,用BCA法測定蛋白濃度。蛋白經SDS-PAGE電泳后濕轉至PVDF膜上。用50 g/L脫脂奶粉將切出的目的條帶在搖床上室溫封閉2 h后,分別用α-syn(1∶1 000)和β-actin(1∶10 000)的一抗于4 ℃在搖床上孵育過夜。用TBST洗3次,每次10 min,再用山羊抗兔(1∶10 000)二抗室溫孵育1 h,TBST洗膜后用ECL發(fā)光液孵育1 min,用LSUVP Vision WorksTM LS軟件顯影后進行統(tǒng)計分析。
1.3.2轉棒實驗?使用美國Med Associates,Inc.公司的轉棒儀檢測小鼠運動協(xié)調能力。先將小鼠面對墻壁放在靜止的轉棒儀上適應2 min,適應結束后,將轉棒儀轉速設置為4~40 r/min,勻加速轉動5 min。實驗開始后,小鼠會隨著轉棒儀轉動連續(xù)奔跑或掉落下來,5 min后轉棒儀自動停止轉動,系統(tǒng)可記錄小鼠在轉棒儀上停留的時間。采用非連續(xù)性測量法,測定2次,時間間隔2 h,最后取2次測量的平均值。
1.3.3爬桿實驗?取一根長0.5 m、直徑1 cm的木桿,在木桿頂部固定一個直徑為2.5 cm的塑料球,并在木桿外表面纏滿紗布防止小鼠打滑。于實驗前1 d訓練小鼠使其能夠在桿上爬行。實驗時,將小鼠頭部向上貼近塑料球,使其身體自然下垂,開始計時。分別記錄小鼠頭部向下、后肢到達塑料球處和小鼠四肢全部到達地面的時間,作為小鼠的爬桿調頭時間和總時間。每隔20 min檢測1次,取5次檢測的平均值,如果小鼠中間向上調頭爬行或停止爬行,則重新進行檢測。
1.4?統(tǒng)計學分析
應用SPSS 18.0軟件進行統(tǒng)計學分析,計量資料結果以[AKx-D]±s形式表示,兩獨立樣本均數(shù)比較采用Students t 檢驗,以P<0.05為差異有顯著性。
2?結??果
2.1?小鼠SN區(qū)α-syn蛋白表達比較
實驗組與對照組小鼠SN區(qū)α-syn表達水平分別為1.218±0.114和0.697±0.140,實驗組小鼠SN區(qū)的α-syn表達明顯增加,差異有統(tǒng)計學意義(t=2.803,P<0.05)。
2.2?α-syn對小鼠運動功能的影響
轉棒實驗結果顯示,對照組小鼠和實驗組小鼠在轉棒儀上停留的時間分別為(178.40±19.04)和(128.80±13.23)s,實驗組小鼠在轉棒儀上停留的時間較對照組小鼠明顯縮短(t=2.177,P<0.05)。爬桿實驗結果顯示,對照組和實驗組小鼠爬桿所用總時間分別為(8.76±0.41)和(15.26±0.64)s,調頭時間分別為(1.59±0.10)和(3.32±0.14)s,實驗組小鼠爬桿所用總時間和調頭時間均較對照組明顯增加(t=8.045、9.401,P<0.01)。
3?討??論
PD是一種多發(fā)于中老年人的中樞神經系統(tǒng)退行性疾病,遺傳因素、環(huán)境因素、氧化應激以及炎癥因素等均可參與PD的發(fā)病[18]。路易小體的出現(xiàn)是PD的病理特征之一,而聚集的α-syn是路易小體的主要成分。本實驗對C57BL/6J小鼠雙側SN定向注射AAV2/9-α-syn后,通過轉棒實驗和爬桿實驗研究小鼠SN內過表達α-syn對運動功能的影響。爬桿實驗結果顯示,與對照組相比,實驗組小鼠爬桿所用總時間與調頭時間均明顯增加;轉棒實驗結果顯示,與對照組相比,實驗組小鼠在轉棒儀上停留的時間明顯縮短。上述實驗結果均表明SN區(qū)過表達α-syn會使小鼠運動協(xié)調能力下降,出現(xiàn)明顯的運動功能障礙。
運動不能、肌僵直、靜止性震顫和姿勢反射障礙是PD病人常見的運動癥狀,而α-syn異常聚集產生的毒性會造成運動功能障礙與神經變性[17]。有文獻報道,過表達α-syn小鼠表現(xiàn)出運動功能障礙、紋狀體DA喪失和神經變性[19-21]。此外有研究觀察到,(Thy1)-h[A30P]-αSyn轉基因小鼠出現(xiàn)早期中樞神經系統(tǒng)運動障礙[22]。本研究結果顯示,在小鼠SN內注射AAV2/9-α-syn 4周后,小鼠SN區(qū)α-syn蛋白的表達量明顯上升,同時小鼠出現(xiàn)了明顯的運動功能障礙。在AAV-α-syn過表達模型中,運動損傷的出現(xiàn)時間和損傷程度在不同的研究中有所差異[21,23]。通常,SN區(qū)單側注射AAV-α-syn被更廣泛地應用于PD研究中,但是,與單側注射相比,SN區(qū)雙側注射AAV-α-syn會導致更明顯的病理學特征與運動功能障礙[24-29]。有研究結果顯示,在大鼠SN區(qū)注射AAV6-α-syn后,囊泡單胺轉運蛋白2、多巴胺轉運體和酪氨酸羥化酶表達均降低30%~50%[30],這提示α-syn的過表達會導致DA合成和釋放的普遍下調,進而影響運動功能。α-syn的突變與過表達也可引起線粒體功能障礙和氧化應激等[31-32],但SN區(qū)注射AAV-α-syn后是否存在線粒體功能障礙與氧化應激的改變還有待進一步研究。
綜上所述,小鼠SN區(qū)雙側注射AAV2/9-α-syn 4周會引起其SN區(qū)α-syn表達增加,小鼠出現(xiàn)運動功能障礙。
[參考文獻]
[1]KANSARA S, TRIVEDI A, CHEN S, et al. ?Early diagnosis and therapy of Parkinsons disease: can disease progression be curbed[J]? ?Journal of Neural Transmission (Vienna, Austria:1996), 2013,120(1):197-210.
[2]BABA M, NAKAJO S, TU P H, ?et al. ?Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinsons disease and dementia with Lewy bodies[J]. ?American Journal of Pathology, 1998,152(4):879-884.
[3]DEHAY B, BOURDENX M, GORRY P A, et al. ?Targeting alpha-synuclein for treatment of Parkinsons disease:mechanistic and therapeutic considerations[J]. ?Lancet Neurology, 2015,14(8):855-866.
[4]YU S, UEDA K, CHAN P. alpha-Synuclein and dopamine metabolism[J]. ?Molecular Neurobiology, 2005,31(1/3):243-254.
[5]BUTLER B, SAMBO D, KHOSHBOUEI H. Alpha-synuclein modulates dopamine neurotransmission[J]. ?Journal of Chemical Neuroanatomy, 2017,83(2):41-49.
[6]TOLMASOV M, DJALDETTI R, LEV N, et al. ?Pathological and clinical aspects of alpha/beta synuclein in Parkinsons di-sease and related disorders[J]. ?Expert Review of Neurotherapeutics, 2016,16(5):505-513.
[7]FORTUNA J T, GRALLE M, BECKMAN D A, et al. ?Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinsons disease-like symptoms in mice[J]. ?Beha-vioural Brain Research, 2017,333(4):150-160.
[8]BENDOR J T, LOGAN T P, EDWARDS R H. The function of alpha-synuclein[J]. ?Neuron, 2013,79(6):1044-1066.
[9]PAUMIER K L, SUKOFF RIZZO S J, BERGER Z, et al. ?Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinsons disease[J]. ?PLoS One, 2013,8(8):e70274.
[10]DAWSON T M, KO H S, DAWSON V L. Genetic animal models of Parkinsons disease[J]. ?Neuron, 2010,66(5):646-661.
[11]CHESSELET M F. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinsons disease[J]? ?Experimental Neurology, 2008,209(1):22-27.
[12]CHESSELET M F, FLEMING S, MORTAZAVI F, et al. ?Strengths and limitations of genetic mouse models of Parkinsons disease[J]. ?Parkinsonism & Related Disorders, 2008,14(Suppl 2):S84-S87.
[13]KOPRICH J B, JOHNSTON T H, REYES M G, et al. ?Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the path[J]. ?Molecular Neurodegeneration, 2010,5(1):43.
[14]MARKS J, BARTUS R T, SIFFERT J A, et al. ?Gene delive-ry of AAV2-neurturin for Parkinsons disease: a double-blind, randomised, controlled trial[J]. ?Lancet Neurology, 2010,9(12):1164-1172.
[15]ULUSOY A, DECRESSAC M, KIRIK D, et al. ?Viral vector-mediated overexpression of alpha-synuclein as a progressive model of Parkinsons disease[J]. ?Progress in Brain Research, 2010,184(3):89-111.
[16]WILLIAMS G P, SCHONHOFF A M, JURKUVENAITE A A, et al. ?Targeting of the class Ⅱ transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinsons disease[J]. ?Journal of Neuroinflammation, 2018,15(1):244.
[17]IP C W, KLAUS L C, KARIKARI A A, et al. ?AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra
Results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinsons disease[J]. ?Acta Neuropathologica Communications, 2017,5(1):11.
[18]FLEMING S M. Mechanisms of gene-environment interactions in Parkinsons disease[J]. ?Current Environmental Health Reports, 2017,4(2):1-8.
[19]LO BIANCO C, RIDET J L, SCHNEIDER B L, et al. ?alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinsons disease[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2002,99(16):10813-10818.
[20]VAN ROMPUY A S, OLIVERAS S M, VAN D A, et al. ?Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration[J]. ?Molecular Neurodegeneration, 2015,10(1):23.
[21]KIRIK D, ROSENBLAD C, BURGER C, et al. ?Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system[J]. ?Journal of Neuroscience, 2002,22(7):2780-2791.
[22]NEUMANN M, KAHLE P J, GIASSON B I, et al. ?Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies[J]. ?Journal of Clinical Investigation, 2002,110(10):1429-1439.
[23]MULCAHY P, ODOHERTY A, PAUCARD A, et al. ?Development and characterisation of a novel rat model of Parkinsons disease induced by sequential intranigral administration of AAV-alpha-synuclein and the pesticide, rotenone[J]. ?Neuroscience, 2012,203(11):170-179.
[24]DONG Z Z, FERGER B, FELDON J, et al. ?Overexpression of Parkinsons disease-associated alpha-synucleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP[J]. ?Journal of Neurobiology, 2002,53(1):1-10.
[25]GOMBASH S E, MANFREDSSON F P, KEMP C J, et al. ?Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system[J]. ?PLoS One, 2013,8(11):e81426.
[26]VAN DER PERREN A, TOELEN J, CASTEELS C, et al. ?Longitudinal follow-up and characterization of a robust rat model for Parkinsons disease based on overexpression of alpha-synuclein with adeno-associated viral vectors[J]. ?Neuro-biology of Aging, 2015,36(3):1543-1558.
[27]FEBBRARO F, ANDERSEN K J, SANCHEZ-GUAJARDO V, et al. ?Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkin-sons model[J]. ?Experimental Neurology, 2013,247(2):45-58.
[28]OLIVERAS-SALVA M, VAN DER PERREN A, CASADEI N, et al. ?rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration[J]. ?Molecular Neurodegeneration, 2013,8(1):44.
[29]BOURDENX M, DOVERO S, ENGELN M, ?et al. ?Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by alpha-synuclein overexpression[J]. ?Acta Neuropathologica Communications, 2015,3(1):46.
[30]DECRESSAC M, MATTSSON B, LUNDBLAD M, et al. ?Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons[J]. ?Neurobiology of Disease, 2012,45(3):939-953.
[31]POON H F, FRASIER M, SHREVE N, et al. ?Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice-a model of familial Parkinsons disease[J]. ?Neurobiology of Disease, 2005,18(3):492-498.
[32]DEVI L, RAGHAVENDRAN V, PRABHU B M, et al. ?Mitochondrial import and accumulation of alpha-synuclein impair complex Ⅰ in human dopaminergic neuronal cultures and Parkinson disease brain[J]. ?The Journal of Biological Chemistry, 2008,283(14):9089-9100.