李桂秋 魏影 余治健 陳俊文 鐘婉瑩 陳重
【摘要】 目的:研究Eravacycline體外誘導(dǎo)金黃色葡萄球菌耐藥菌株的核糖體30S亞基16S rRNA基因和核糖體蛋白變異特點(diǎn),闡明金黃色葡萄球菌Eravacycline耐藥機(jī)制。方法:選擇3株金黃色葡萄球菌株,采用Eravacycline不同壓力濃度下逐漸誘導(dǎo)Eravacycline耐藥金黃色葡萄球菌耐藥菌株,挑取誘導(dǎo)菌株單克隆,采用瓊脂平板稀釋法測定母株及誘導(dǎo)系列的Tigecycline和Eravacycline的MIC值;通過PCR擴(kuò)增其5個(gè)拷貝的16S rRNA基因(RR1-RR5)和30S核糖體蛋白基因,將誘導(dǎo)的Eravacycline耐藥株擴(kuò)增產(chǎn)物測序后與母株序列比較,獲得該基因片段突變位點(diǎn)。結(jié)果:經(jīng)過體外Eravacycline不同濃度梯度多步誘導(dǎo)共挑取6株Eravacycline耐藥菌株,這些菌株的Tigecycline和Eravacycline的MIC值范圍分別為8~16 μg/mL和32~64 μg/mL。16S rRNA基因PCR測序分析提示該基因的主要突變位點(diǎn)分別為RR1(T170G)、RR2(A1124G,G77A)、RR3(C810T)、RR4(G185A,G1036A),30S亞基核糖體蛋白S3蛋白沒有突變,30S亞基核糖體蛋白S10基因多個(gè)位點(diǎn)突變。結(jié)論:金黃色葡萄球菌Eravacycline誘導(dǎo)耐藥后可導(dǎo)致Tigecycline和Eravacycline的交叉耐藥及16S rRNA基因和30S亞基核糖體蛋白S10位點(diǎn)突變。
【關(guān)鍵詞】 MRSA; MSSA; Evacycline誘導(dǎo)耐藥; 16S rRNA基因
Genetic Mutation of 16S rRNA Genes in Eravacycline-resistant Staphylococcus Aureus in Vitro Induced Under Eravacycline Pressure/LI Guiqiu,WEI Ying,YU Zhijian,et al.//Medical Innovation of China,2019,16(18):-146
【Abstract】 Objective:To study the mutation characteristics of ribosomal 30S subunit 16S rRNA gene and ribosomal protein in Staphylococcus aureus resistant strains induced by Eravacycline in vitro,to elucidate the resistance mechanism of Staphylococcus aureus Eravacycline.Method:3 strains of Staphylococcus aureus were selected to induce drug-resistant Staphylococcus aureus strains with Eravacycline at different pressure concentrations.Monoclones of the induced strains were selected.The MIC values of Tigecycline and Eravacycline in the mother strain and induction series were determined by agar plate dilution method.5 copies of the 16S rRNA gene(RR1-RR5)and 30S ribosomal protein gene were amplified by PCR.The amplified products of the induced Eravacycline resistant strain were sequenced and compared with the sequence of the parent strain to obtain the mutation site of the gene fragment.Result:6 strains of Eravacycline-resistant strains were selected by multi-step induction with different concentration gradients in vitro,the MIC values of Tigecycline and Eravacycline of these strains ranged from 8 to 16 μg/mL and 32 to 64 μg/mL respectively.PCR sequencing analysis of 16S rRNA gene indicated that the main mutation sites of the gene were RR1(T170G),RR2(A1124G,G77A),RR3(C810T),RR4(G185A,G1036A),30S subunit ribosomal protein S3 protein had no mutation,and 30S subunit ribosomal protein S10 gene had multiple mutations.Conclusion:After Staphylococcus aureus Eravacycline induced drug resistance can lead to cross-resistance of Tigecycline and Eravacycline,mutation of 16S rRNA gene and S10 site of 30S subunit ribosomal protein.
【Key words】 MRSA; MSSA; Evacycline resistance; 16S rRNA gene
First-authors address:Shenzhen Nanshan Peoples Hospital,Shenzhen 518052,China
doi:10.3969/j.issn.1674-4985.2019.18.038
金黃色葡萄球菌是G+細(xì)菌的代表菌,主要分布在人體皮膚表面、鼻咽部和腸道,該細(xì)菌通過內(nèi)外毒素及免疫病理可引起呼吸系統(tǒng)、血流、傷口等組織化膿性感染[1-2]。耐甲西林耐藥金黃色葡萄球菌(MRSA)是由mecA基因編碼的一種pbp2A蛋白,此蛋白與甲氧西林親和力低,該類細(xì)菌臨床治療選擇極為有限,開發(fā)金黃色葡萄球菌治療藥物尤其是MRSA治療的有效藥物是臨床的緊迫問題[1]。
四環(huán)素類抗生素作用于細(xì)菌核糖體30S亞基,體外晶體結(jié)構(gòu)分析四環(huán)素的作用機(jī)制是與30S小亞基16S rRNA和核糖體蛋白相互作用,阻止氨基酰-tRNA轉(zhuǎn)運(yùn)從而干擾蛋白質(zhì)合成[2-3]。Tetrapnase制藥公司研發(fā)的新型四環(huán)素類抗生素Eravacycline結(jié)構(gòu)類似于替加環(huán)素,對G+細(xì)菌具有良好抑制活性和最低抑菌濃度(minimum inhibitory concentration,MIC)值,目前尚無金黃色葡萄球菌臨床耐藥株的報(bào)道[4]。因此本實(shí)驗(yàn)利用Eravacycline體外誘導(dǎo)金黃色葡萄球菌耐藥株,通過聚合酶鏈?zhǔn)椒磻?yīng)(PCR)擴(kuò)增核糖體基因并測序分析,觀察體外誘導(dǎo)Eravacycline誘導(dǎo)的耐藥株是否和tigecycline存在交叉耐藥以及是否在30S亞基的16S rRNA基因和核糖體蛋白S10基因上出現(xiàn)變異位點(diǎn),揭示金黃色葡萄球菌Eravacycline耐藥的潛在規(guī)律?,F(xiàn)報(bào)道如下。
1 材料與方法
1.1 菌株的復(fù)蘇鑒定及Eravaycycline耐藥菌誘導(dǎo) 將
2株MSSA(編號MS7和MS8)和1株MRSA菌株(編號MR2)采用血平板復(fù)蘇,由BD phonixtm 100公司全自動藥敏鑒定系統(tǒng)和質(zhì)譜儀鑒定菌種,質(zhì)控菌株為ATCC29213[5]。
1.2 體外誘導(dǎo)Eravacycline耐藥金黃色葡萄球菌 將
3株金黃色葡萄球菌分別接種到MH平板培養(yǎng)基中復(fù)蘇。挑取單克隆菌落,根據(jù)母株的MIC值,誘導(dǎo)的起始濃度為1/2MIC的Eravacycline(MCE公司),誘導(dǎo)濃度為1×MIC、2×MIC、4×MIC、8×MIC、16×MIC,各濃度梯度誘導(dǎo)4~8代,誘導(dǎo)下一梯度時(shí)需接平板質(zhì)譜鑒定,當(dāng)細(xì)菌生長抑制時(shí)需降低化合物濃度重復(fù)傳代培養(yǎng),每代37 ℃培養(yǎng)12~14 h,誘導(dǎo)終止時(shí)挑取單克隆用無抗血平板篩查傳3代,進(jìn)行MIC值測定和DNA提取及PCR[6]。
1.3 MIC值的檢測 按美國CLSI2017年規(guī)定的標(biāo)準(zhǔn),采用瓊脂平板稀釋法檢測3株母株及相對應(yīng)的6株誘導(dǎo)株的Tigecycline和Eravacycline的MIC值。
1.4 16S rRNA基因片擴(kuò)增和測序 16S rRNA的5個(gè)拷貝基因片段:RR1(2 086 bp)、RR2(2 075 bp)、RR3(1 936 bp)、RR4(1 756 bp)和RR5(2 345 bp)。
引物委托北京六合華大基因公司合成(引物Primer 5.0軟件設(shè)計(jì),引物序列見表1)。采用TAKARA試劑盒提取菌株基因組DNA,-20 ℃保存?zhèn)溆?。采用PCR方法檢測基因RR1、RR2、RR3、RR4和RR5,擴(kuò)增條件如下:反應(yīng)體系50 μL,Dream Taq Green PCR Master Mix(2×)25 μL,F(xiàn)orward primer 1 μL,Reverse primer 1 μL,Template DNA 2 μL,加dd H2O補(bǔ)齊至50 μL。PCR反應(yīng)條件:95 ℃預(yù)變性5 min,95℃變性30 s,RR1、2、3、4、5,S3,S10的退火溫度分別為50 ℃,49 ℃,51 ℃,RR1、2、3、4、5,S3,S10的延伸時(shí)間分別為2 min,1 min,1 min,共35個(gè)循環(huán),72 ℃后延伸10 min,PCR產(chǎn)物于4 ℃保存。PCR反應(yīng)產(chǎn)物均用1%的瓊脂糖凝膠電泳,對電泳陽性產(chǎn)物送華大基因公司測序,測序結(jié)果采用DNAMAN比對誘導(dǎo)株和拷貝16S rRNA序列與野生株間差異尋找變異位點(diǎn)。同樣方法擴(kuò)增30S核糖體亞基蛋白S3和S10,通過變異株和母株基因比對尋找耐藥相關(guān)變異位點(diǎn)。
2 結(jié)果
2.1 耐藥株鑒定及MIC值測定 結(jié)果顯示,3株金葡誘導(dǎo)前均對Eravacycline敏感;3株母株菌經(jīng)過多步法體外誘導(dǎo)后,其Eravacycline MIC值顯著增高,得到不同MIC值梯度的菌株,Eravacycline MIC值達(dá)8~16 μg/mL;Eravacycline耐藥株的Tigecycline MIC值波動在32~64 μg/mL,見表2。
2.2 16S rRNA基因和核糖體蛋白測序分析 變異位點(diǎn)3株母株和誘導(dǎo)耐藥株的16S rRNA基因比對提示主要突變位點(diǎn)分別為RR1(T170G)、RR2(A1124G,G77A)、RR3(C810T)、RR4(G185A,G1036A),其中30S核糖體蛋白S3沒有突變,30S核糖體蛋白S10蛋白基因41、47、87位點(diǎn)突變,見表3。
3 討論
既往有研究報(bào)道了我國金黃色葡萄球菌臨床分離株Eravacycline的敏感性及異質(zhì)性耐藥發(fā)生比例,提示Eravacycline對于臨床株具有較好的敏感性[7-8],目前尚無金黃色葡萄球菌中Eravacycline耐藥株的報(bào)道,但對于異質(zhì)性耐藥的發(fā)生值得臨床密切關(guān)注并深入研究。本研究選擇Eravacycline對3株金黃色葡萄球菌進(jìn)行誘導(dǎo)耐藥實(shí)驗(yàn),結(jié)果提示獲得Eravacycline高濃度耐藥株。Eravacycline為FDA2018審批通過的新型抗生素,目前折點(diǎn)對于金黃色葡萄球菌的推薦為0.5 μg/mL,本研究獲得的Eravacycline誘導(dǎo)金黃色葡萄球菌株的MIC值遠(yuǎn)遠(yuǎn)高于這一折點(diǎn),因此通過體外誘導(dǎo)成功獲得Eravacycline耐藥金黃色葡萄球菌菌株。
細(xì)菌對四環(huán)素耐藥機(jī)制主要為通過外排泵主動外排;通過核糖體保護(hù)蛋白解離;通過對四環(huán)素的酶解作用。既往多項(xiàng)研究提示核糖體30S亞基16S rRNA和核糖體蛋白S3及S10變異與四環(huán)素類耐藥密切相關(guān)[9-11]。細(xì)菌含有多個(gè)16S rRNA拷貝,不同細(xì)菌研究提示四環(huán)素導(dǎo)致的16S rRNA基因變異位點(diǎn)在不同拷貝的16S rRNA變異位點(diǎn)并不一致,這可能與四環(huán)素作用的空間結(jié)構(gòu)復(fù)雜密切相關(guān)。Eravacycline因?yàn)樘厥獾幕鶊F(tuán)免疫這些抵抗機(jī)制[12-13]。
本研究經(jīng)Eravacycline誘導(dǎo)耐藥后的3組誘導(dǎo)菌株與母株經(jīng)16S rRNA基因測序后發(fā)現(xiàn),金黃色葡萄球菌16S rRNA的5個(gè)拷貝中不同細(xì)菌的RR1、RR2、RR3、RR4間有共同突變位點(diǎn),RR5無規(guī)律,30S亞基核糖體蛋白S10基因突變無規(guī)律。文獻(xiàn)[14-15]結(jié)果提示替加環(huán)素誘導(dǎo)金黃色葡萄球菌16S rRNA變異與本研究結(jié)果一致,因此在新型替加環(huán)素等藥物誘導(dǎo)下細(xì)菌16S rRNA基因變異規(guī)律及其意義仍有到進(jìn)一步研究。本研究提示通過體外誘導(dǎo)金黃色葡萄球菌可獲得Eravacycline耐藥菌株,這類菌株同時(shí)對Tigecycline產(chǎn)生耐藥性;隨著Eravacycline藥物壓力增加和時(shí)間延長,其MIC值會增加;Eravacycline誘導(dǎo)可以導(dǎo)致16S rRNA基因突變和核糖體蛋白S3和S10突變,這些位點(diǎn)突變與耐藥的臨床意義和規(guī)律仍有待進(jìn)一步研究揭示。
參考文獻(xiàn)
[1] Otto M.Community-associated MRSA:what makes them special[J].Int J Med Microbiol,2013,303(6-7):324-330.
[2] Chukwudi C U.rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines[J].Antimicrob Agents Chemother,2016,60(8):4433-4441.
[3] Roberts M C,Schwarz S.Tetracycline and Phenicol Resistance Genes and Mechanisms:Importance for Agriculture,the Environment,and Humans[J].J Environ Qual,2016,45(2):576-592.
[4] Kern W V.New antibacterial agents on the market and in the pipeline[J].Internist(Berl),2015,56(11):1255-1263.
[5] Zhang F,Bai B,Xu G J,et al.Eravacycline activity against clinical S.aureus isolates from China:in vitro activity,MLST profiles and heteroresistance[J].BMC Microbiol,2018,18(1):211-214.
[6] Yao W,Xu G,Bai B,et al.In vitro-induced erythromycin resistance facilitates cross-resistance to the novel fluoroketolide,solithromycin,in Staphylococcus aureus[J].FEMS Microbiol Lett,2018,365(12):1-5.
[7] Wang Y,Lv Y,Cai J,et al.A novel gene,optrA,that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin[J].J Antimicrob Chemother,2015,70(8):2182-2190.
[8] Sharma V K,Johnson N,Cizmas L,et al.A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J].Chemosphere,2016,150(5):702-714.
[9] Svobodová K,Semerád J,Petrá?ková D,et al.Antibiotic Resistance in Czech Urban Wastewater Treatment Plants:Microbial and Molecular Genetic Characterization[J].Microb Drug Resist,2018,24(6):830-838.
[10] Soheili S,Ghafourian S,Sekawi Z,et al.Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates[J].Scientific World Journal,2014,20(14):623-627.
[11] Yim J,Smith J R,Rybak M J.Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faeciumInfections:Review of the Current Evidence[J].Pharmacotherapy,2017,37(5):579-592.
[12]汪復(fù),朱德妹,胡付品,等.2012年中國CHINET細(xì)菌耐藥性監(jiān)測[J].中國感染與化療雜志,2013,13(5):321-330.
[13]徐廣健,白冰,李多云,等.替加環(huán)素體外誘導(dǎo)金黃色葡萄球菌耐藥株16SrRNA基因突變位點(diǎn)分析[J].中國熱帶醫(yī)學(xué),2017,(10):959-962.
[14] Bai B,Hu K,Li H,et al.Effect of tedizolid on clinical Enterococcus isolates:in vitro activity,distribution of virulence factor,resistance genes and multilocus sequence typing[J].FEMS Microbiol Lett,2018,365(3):1-6.