• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      顱內(nèi)動(dòng)脈瘤的數(shù)值模擬研究進(jìn)展

      2019-10-08 11:55張凱旋邱收胡霖霖
      軟件 2019年8期
      關(guān)鍵詞:計(jì)算流體力學(xué)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)

      張凱旋 邱收 胡霖霖

      摘 ?要: 隨著醫(yī)學(xué)檢查技術(shù)和醫(yī)學(xué)設(shè)備的發(fā)展,顱內(nèi)動(dòng)脈瘤患者被發(fā)現(xiàn)的越來(lái)越多,對(duì)于顱內(nèi)動(dòng)脈瘤的治療以及預(yù)防其破裂是十分緊迫的。近期研究表明,數(shù)值模擬血流動(dòng)力學(xué)的參數(shù)與動(dòng)脈瘤發(fā)生、發(fā)展、破裂都有密切的聯(lián)系,且可以對(duì)治療進(jìn)行干預(yù),模擬治療后的效果。數(shù)值模擬能夠成為研究顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的重要手段。

      關(guān)鍵詞: 顱內(nèi)動(dòng)脈瘤;血流動(dòng)力學(xué);數(shù)值模擬;計(jì)算流體力學(xué)

      中圖分類號(hào): TP319 ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.08.008

      本文著錄格式:張凱旋,邱收,胡霖霖,等. 顱內(nèi)動(dòng)脈瘤的數(shù)值模擬研究進(jìn)展[J]. 軟件,2019,40(8):3841

      【Abstract】: With the development of medical examination technology and medical equipment, more and more patients with intracranial aneurysms have been found. It is very urgent to treat and prevent the rupture of intracranial aneurysms. Recent studies have shown that the parameters of numerical simulation of hemodynamics are closely related to the occurrence, development and rupture of aneurysms, and can intervene in the treatment and simulate the effect of treatment. The numerical simulation can be an important means to study the hemodynamics of intracranial aneurysms.

      【Key words】: Intracranial aneurysm; Hemodynamics; Numerical simulation; Computational fluid dynamics

      0 ?引言

      顱內(nèi)動(dòng)脈瘤是局部血管的異常改變而產(chǎn)生的病理性囊性膨出,是造成蛛網(wǎng)膜下腔出血的首位病因。非創(chuàng)傷性自發(fā)蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage,SAH)是一種神經(jīng)系統(tǒng)急癥,占所有中風(fēng)的1-7%,與SAH相關(guān)的發(fā)病率和死亡率非常高[1]。其中,動(dòng)脈瘤性SAH占81.4%,非動(dòng)脈瘤性SAH占18.6%。在我國(guó),顱內(nèi)動(dòng)脈瘤破裂是造成SAH的主要因素[2]。發(fā)病原因尚不十分清楚,通常認(rèn)為與動(dòng)脈硬化、感染、創(chuàng)傷、血流動(dòng)力學(xué)等諸多因素有關(guān)[3]。Steinman等人[4]首次提出使用基于圖像的計(jì)算流體力學(xué)(computational fluid dynamics,CFD)的方法對(duì)顱內(nèi)動(dòng)脈瘤進(jìn)行分析,隨著計(jì)算機(jī)技術(shù)的發(fā)展以及計(jì)算流體力學(xué)軟件的應(yīng)用,使用該方法對(duì)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的分析也越來(lái)越多。本文對(duì)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)特征及數(shù)值模擬在顱內(nèi)動(dòng)脈瘤臨床中的應(yīng)用進(jìn)行如下綜述。

      1 ?顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)特征

      顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)特征主要是從血流速度、壁切應(yīng)力、壁切應(yīng)力梯度、壁壓力、切應(yīng)力震蕩指數(shù)等血流動(dòng)力學(xué)參數(shù)來(lái)進(jìn)行研究,其中對(duì)于壁切應(yīng)力的研究十分重要。壁切應(yīng)力(Wall shear

      stress,WSS)是血液流動(dòng)時(shí)血流對(duì)血管壁的切向作用力,其作用方向平行于血管壁。血流速度與壁切應(yīng)力呈正相關(guān)[5],由此可見(jiàn)血流的變化會(huì)對(duì)壁切應(yīng)力產(chǎn)生一定的影響。內(nèi)動(dòng)脈瘤的自然病史包括三個(gè)階段:起始階段、生長(zhǎng)階段、穩(wěn)定階段或破裂階段,只有少數(shù)動(dòng)脈瘤發(fā)展到破裂階段[6]。顱內(nèi)動(dòng)脈瘤的形成是動(dòng)脈壁和血液動(dòng)力之間相互作用的結(jié)果[7]。由于缺乏外部彈性板、內(nèi)側(cè)彈性蛋白以及支持血管外和周圍組織的支持,腦血管系統(tǒng)在本質(zhì)上容易受到血流動(dòng)力學(xué)力的影響,所以容易受到血流動(dòng)力學(xué)應(yīng)力的損傷,以及隨后的內(nèi)部彈性椎板損傷和動(dòng)脈瘤的形[8-10]。目前對(duì)壁切應(yīng)力的研究分為高壁切應(yīng)力和低壁切應(yīng)力兩個(gè)方面。高WSS引發(fā)動(dòng)脈瘤形成,而低WSS導(dǎo)致內(nèi)皮細(xì)胞的空間紊亂和致動(dòng)脈粥樣硬化和促炎信號(hào)途徑的激活[11]。對(duì)此,不同的學(xué)者對(duì)其的影響看法迥異不同。巨大基底梭狀動(dòng)脈瘤的最大生長(zhǎng)區(qū)域始終具有最低的壁切應(yīng)力[12]。而有學(xué)者認(rèn)為高壁切應(yīng)力和低壁切應(yīng)力都與動(dòng)脈瘤的生長(zhǎng)有關(guān),并且發(fā)現(xiàn)動(dòng)脈瘤的生長(zhǎng)與高壁切應(yīng)力沖擊瘤頂有關(guān),而動(dòng)脈瘤在瘤頂部的成長(zhǎng)與低壁切應(yīng)力有關(guān)[13-14]。低壁切應(yīng)力可促進(jìn)巨噬細(xì)胞相關(guān)的慢性炎癥和動(dòng)脈粥樣硬化改變。這些由巨噬細(xì)胞引起的動(dòng)脈粥樣硬化炎癥改變和金屬蛋白酶產(chǎn)生可使壁易于變薄并進(jìn)一步破裂。顱內(nèi)動(dòng)脈瘤破裂可以通過(guò)低壁切應(yīng)力來(lái)預(yù)測(cè)[15]。局部壁切應(yīng)力減少可能是導(dǎo)致顱內(nèi)動(dòng)脈瘤破裂的重要預(yù)測(cè)參數(shù)[16]。另有人發(fā)現(xiàn)動(dòng)脈瘤頂處存在低壁切應(yīng)力區(qū)域,破裂點(diǎn)處壁切應(yīng)力最低,動(dòng)脈瘤內(nèi)壁切應(yīng)力低于載瘤動(dòng)脈內(nèi)壁切應(yīng)力,較之未破裂動(dòng)脈瘤,破裂動(dòng)脈瘤的平均和最大壁切應(yīng)力值均較低,而低切應(yīng)力區(qū)域面積(low shear area,LSA)可作為預(yù)測(cè)動(dòng)脈瘤破裂的獨(dú)立危險(xiǎn)因素[17]。顱內(nèi)動(dòng)脈瘤破裂與最高壁切應(yīng)力有關(guān),在動(dòng)脈瘤易破裂區(qū)域其壁切應(yīng)力值最高[18-19]。而有人證明動(dòng)脈瘤破裂點(diǎn)處壁切應(yīng)力最低[20]。

      2 ?數(shù)值模擬在顱內(nèi)動(dòng)脈瘤臨床中的應(yīng)用

      顱內(nèi)動(dòng)脈瘤的手術(shù)治療包括開(kāi)顱手術(shù)、血管內(nèi)介入治療。這些治療是通過(guò)將顱內(nèi)動(dòng)脈瘤排除在血液循環(huán)之外、將某種物質(zhì)填充動(dòng)脈瘤腔,使得動(dòng)脈瘤囊內(nèi)血流消失等改變顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的方式,對(duì)顱內(nèi)動(dòng)脈瘤進(jìn)行治療。

      2.1 ?開(kāi)顱手術(shù)

      開(kāi)顱夾閉術(shù)作為顱內(nèi)動(dòng)脈瘤治療的一種手段,有學(xué)者對(duì)這種方法進(jìn)行了數(shù)值模擬研究,Miura[21]等在左側(cè)小腦后動(dòng)脈近端進(jìn)行左側(cè)椎動(dòng)脈閉塞,對(duì)一例左側(cè)椎動(dòng)脈動(dòng)脈瘤進(jìn)行流量改變處理,并且進(jìn)行了CFD模擬以預(yù)測(cè)效果,通過(guò)CFD模擬,確定未破裂的椎動(dòng)脈梭形動(dòng)脈瘤的手術(shù)策略。Rayz[22]等基于圖像的計(jì)算流體動(dòng)力學(xué)模型用來(lái)模擬四個(gè)基底動(dòng)脈動(dòng)脈瘤的血流,使用MRI血管造影和測(cè)速數(shù)據(jù)構(gòu)建患者特異性幾何形狀,將針對(duì)術(shù)前流動(dòng)條件進(jìn)行的CFD模擬與在干預(yù)之前獲得的體內(nèi)相位對(duì)比MRI測(cè)量進(jìn)行比較,以評(píng)估血流改變干預(yù)所導(dǎo)致的術(shù)后血流動(dòng)力學(xué)。

      2.2 ?血管內(nèi)介入治療

      2.2.1 ?血管內(nèi)介入栓塞術(shù)

      血管內(nèi)介入栓塞術(shù)是治療顱內(nèi)動(dòng)脈瘤的一種標(biāo)準(zhǔn)的治療手法,因其侵入性小,失敗率低而優(yōu)于開(kāi)顱夾閉術(shù)。有不少學(xué)者對(duì)血管內(nèi)介入栓塞術(shù)進(jìn)行了研究,Wang[23]等根據(jù)支架置入前后患者動(dòng)脈瘤的特定幾何形狀,建立虛擬支架計(jì)算立體力學(xué)仿真模型,調(diào)查了支架置入術(shù)后動(dòng)脈瘤內(nèi)血流動(dòng)力學(xué)改變及其與動(dòng)脈瘤位置的關(guān)系,結(jié)果表明支架置入后,動(dòng)脈瘤內(nèi)血流速度和WSS下降,與動(dòng)脈瘤類型無(wú)關(guān)。Nambu[24]等首次比較線圈栓塞前和線圈栓塞后模型動(dòng)脈瘤復(fù)發(fā)的血流動(dòng)力學(xué)因素,使用50例顱內(nèi)動(dòng)脈瘤患者特異性三維旋轉(zhuǎn)血管造影數(shù)據(jù),通過(guò)對(duì)應(yīng)于虛擬線圈表面的平面創(chuàng)建了線圈栓塞前模型和通過(guò)手動(dòng)切割動(dòng)脈瘤制作的線圈栓塞后的模型,進(jìn)行CFD分析后,發(fā)現(xiàn)壓力差可能是線圈栓塞后復(fù)發(fā)的最強(qiáng)預(yù)測(cè)因子。另有學(xué)者對(duì)顱內(nèi)動(dòng)脈瘤內(nèi)填充的線圈進(jìn)行研究,Umeda[25]等通過(guò)計(jì)算流體力學(xué)使用多孔介質(zhì)模型評(píng)估動(dòng)脈瘤的形態(tài)學(xué)參數(shù),線圈填充密度和血流動(dòng)力學(xué)變量與動(dòng)脈瘤復(fù)發(fā)的相關(guān)性,發(fā)現(xiàn)殘余流量是唯一獨(dú)立顯著的因素,可能是預(yù)測(cè)栓塞后復(fù)發(fā)更有用的參數(shù),也可用于彈簧圈栓塞計(jì)劃,有助于更有效的動(dòng)脈瘤線圈栓塞。Fujimura[26]等采用有限元和計(jì)算流體力學(xué)分析方法,研究了隨著線圈剛度和長(zhǎng)度的變化,線圈的血流動(dòng)力學(xué)和分布規(guī)律。通過(guò)改變線圈的剛度和長(zhǎng)度,對(duì)線圈栓塞進(jìn)行數(shù)值模擬。發(fā)現(xiàn)較硬的彈簧圈更容易進(jìn)入動(dòng)脈瘤頂?shù)耐鈧?cè),短線圈更多分布在頸部區(qū)域,且當(dāng)彈簧圈在動(dòng)脈瘤頸區(qū)和瘤頂外側(cè)分布較集中時(shí),動(dòng)脈瘤內(nèi)的流速明顯降低。另外,動(dòng)脈瘤頂外側(cè)和頸部的高密度線圈對(duì)有效降低速度也很重要。有學(xué)者對(duì)顱內(nèi)動(dòng)脈瘤內(nèi)填充物進(jìn)行研究,其在尸體上重建巨大動(dòng)脈瘤模型的基礎(chǔ)上,采用多孔介質(zhì)建模,通過(guò)計(jì)算流體力學(xué)模擬,比較了未經(jīng)治療的動(dòng)脈瘤、線圈充盈的動(dòng)脈瘤以及屈服應(yīng)力流體材料充盈的動(dòng)脈瘤之間血流動(dòng)力學(xué)參數(shù)的差異,探討了屈服應(yīng)力流體材料栓塞動(dòng)脈瘤的可能性[27]。線圈在顱內(nèi)動(dòng)脈瘤的位置也很重要,Byun[28]等對(duì)線圈位于動(dòng)脈瘤不同位置進(jìn)行CFD模擬,來(lái)分析線圈栓塞巨大或多葉動(dòng)脈瘤的情況下,線圈的位置,對(duì)動(dòng)脈瘤產(chǎn)生不同的效果。該研究表明線圈最佳的栓塞位置位于動(dòng)脈瘤的遠(yuǎn)端頸部。Leng[29]等人開(kāi)發(fā)了可靠和使用的虛擬線圈栓塞和支架植入的方法,來(lái)用于顱內(nèi)動(dòng)脈瘤手術(shù)計(jì)劃,其為后續(xù)的計(jì)算流體力學(xué)分析提供幾何形狀。在治療過(guò)程中,支架被放置在合適的位置,實(shí)現(xiàn)了良好的擴(kuò)張和支架與動(dòng)脈壁的貼合。對(duì)于寬頸動(dòng)脈瘤和復(fù)雜動(dòng)脈瘤需要使用支架輔助線圈栓塞,支架也是血管內(nèi)介入栓塞中的重要一部分。Tremmel[30]等首次采用CFD對(duì)Enterprise支架進(jìn)行分析,利用計(jì)算流體力學(xué)量化單個(gè)和多個(gè)自擴(kuò)張Enterprise支架和球囊擴(kuò)張式支架對(duì)動(dòng)脈瘤血流動(dòng)力學(xué)的影響,支架置入可抑制復(fù)雜動(dòng)脈瘤的血流,動(dòng)脈瘤壁切應(yīng)力隨著支架數(shù)量增加而降低。Wang[31]等通過(guò)計(jì)算流體力學(xué)來(lái)量化新型低輪廓可視化管腔內(nèi)支架的效果以及與管道裝置和Enterprise支架相比的流體分流效果。這是第一個(gè)分析Low-profile Visualized Intraluminal Support(LVIS)支架血流變化的研究。發(fā)現(xiàn)LVIS支架對(duì)腦動(dòng)脈瘤有一定的血流動(dòng)力學(xué)效應(yīng):?jiǎn)沃VIS支架比雙支enterprise支架減少的流量更多,但比管道支架少。然而,雙LVIS支架比管道支架具有更好的分流效果。Kim[32]等為了評(píng)估不對(duì)稱支架貼片對(duì)動(dòng)脈瘤血流動(dòng)力學(xué)的影響,將其置入患者的動(dòng)脈瘤幾何結(jié)構(gòu)中,進(jìn)行計(jì)算流體力學(xué)分析。通過(guò)計(jì)算和實(shí)驗(yàn)比較未治療和支架治療動(dòng)脈瘤的血流動(dòng)力學(xué)發(fā)現(xiàn),不對(duì)稱支架有效地阻擋了進(jìn)入動(dòng)脈瘤的強(qiáng)流入射流并消除了穹頂出動(dòng)脈瘤壁上的流動(dòng)沖擊,消除了壁切應(yīng)力升高的沖擊區(qū)域,動(dòng)脈瘤血流活性大大減少,血流明顯減少,實(shí)驗(yàn)觀察結(jié)果和CFD結(jié)果定性吻合較好。所證明的不對(duì)稱支架可以導(dǎo)致一種新的微創(chuàng)影像指導(dǎo)介入,以減少動(dòng)脈瘤的生長(zhǎng)

      和破裂。Zhang[33]等開(kāi)發(fā)了一種快速虛擬支架技術(shù)(fast virtual stenting,F(xiàn)VS)來(lái)模擬支架在特定患者動(dòng)脈瘤中的部署,并使用計(jì)算流體力學(xué)的方法分析三種情況:支架從動(dòng)脈瘤模型的現(xiàn)實(shí)部署,快速虛擬支架技術(shù)部署,有限元部署,來(lái)評(píng)估快速虛擬支架技術(shù)在腦動(dòng)脈瘤支架植入術(shù)的應(yīng)用效果。通過(guò)數(shù)值驗(yàn)證,這是一種用于虛擬支架釋放的新方法。結(jié)果表明,F(xiàn)VS具有虛擬支架植入的能力,可以對(duì)腦動(dòng)脈瘤之家植入術(shù)后的血流動(dòng)力學(xué)進(jìn)行評(píng)估。且可提供有效的支架動(dòng)脈瘤模型,結(jié)合CFD研究之后的血流動(dòng)力學(xué)。

      2.2.2 ?分流術(shù)

      分流器(Flow Diverter,F(xiàn)D)是一種密集編織的支架網(wǎng),具有高金屬覆蓋率和低孔隙率,最近已成為顱內(nèi)動(dòng)脈瘤的首選治療方式,特別是對(duì)于傳統(tǒng)上具有挑戰(zhàn)性的寬頸和梭形動(dòng)脈瘤。FD可以使血液從動(dòng)脈瘤中流出,破壞動(dòng)脈瘤內(nèi)的血液流動(dòng),誘導(dǎo)血栓形成前的狀態(tài),并作為內(nèi)皮細(xì)胞生長(zhǎng)和動(dòng)脈重構(gòu)的支架。Paliwal[34]等首次展示了虛擬支架工作流程在商用血管栓塞裝置FD治療顱內(nèi)動(dòng)脈瘤的臨床應(yīng)用。采用硅膠模型對(duì)15例采用FD治療的動(dòng)脈瘤患者進(jìn)行臨床干預(yù),獲得治療前和治療后的血流動(dòng)力學(xué),血流動(dòng)力學(xué)參數(shù)顯示兩組的平均流入率和動(dòng)脈瘤的速度均有相似程度的降低。Xu[35]等人構(gòu)建四種不同載瘤動(dòng)脈曲度的顱內(nèi)動(dòng)脈瘤模型,采用5種分流策略(單個(gè)FD,5%和10%線圈填充密度的單個(gè)FD,重疊率為25%和50%的兩個(gè)FD)對(duì)分流前后的血流動(dòng)力學(xué)進(jìn)行CFD模擬,表明在所有的分流策略中,重疊FD誘導(dǎo)最有利的血流動(dòng)力學(xué)變化,且治療后的血流動(dòng)力學(xué)變化主要受載瘤動(dòng)脈曲度的影響。Damiano[36]等測(cè)試了四種臨床干預(yù)策略:線圈、單個(gè)分流器、有線圈的分流器和重疊的分流器,通過(guò)計(jì)算流體力學(xué)評(píng)價(jià)治療后的血流動(dòng)力學(xué),結(jié)果表明,分流器的主要作用時(shí)分流流入,而線圈的作用時(shí)在動(dòng)脈瘤內(nèi)產(chǎn)生瘀滯。Sindeev[37]等應(yīng)用CFD和相位對(duì)比MRI在相似的流動(dòng)條件下進(jìn)行模擬和體外測(cè)量血流動(dòng)力學(xué),對(duì)比術(shù)前和術(shù)后的血流動(dòng)力學(xué)參數(shù)分布,CFD模擬和PC-MRI的速度測(cè)試結(jié)果相似,三種模型治療后均未觀察到漩渦。Zhang[38]等進(jìn)行CFD研究分析FD植入后血流動(dòng)脈血的影響,CFD分析表明,在FD治療后動(dòng)脈瘤內(nèi)的血流量應(yīng)減少。為了保證FD治療的成功,F(xiàn)D支架的抗力必須大于動(dòng)力。另一方面,高速射流是動(dòng)脈瘤殘留和破裂的另一個(gè)原因。因此,降低射流速度的方法對(duì)于FD的設(shè)計(jì)和處理至關(guān)重要。

      3 ?結(jié)論

      CFD數(shù)值模擬可用于評(píng)價(jià)治療前后的顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué),這些局部血流動(dòng)力學(xué)參數(shù)可用于預(yù)測(cè)治療結(jié)果,從而幫助臨床醫(yī)生對(duì)不同的治療策略進(jìn)行先驗(yàn)評(píng)估。CFD模擬的潛在有用性決定了治療策略,CFD模擬可以幫助確定哪些手術(shù)選項(xiàng)可能減少流入動(dòng)脈瘤的流量,使用基于預(yù)處理血管造影的虛擬線圈栓塞解剖模型的血流動(dòng)力學(xué)分析可用于預(yù)測(cè)動(dòng)脈瘤復(fù)發(fā)。虛擬線圈栓塞和分流技術(shù)能夠再現(xiàn)復(fù)雜的血管內(nèi)干預(yù)策略和詳細(xì)的血流動(dòng)力學(xué),從而確定影響治療結(jié)果的血流動(dòng)力學(xué)因素。

      參考文獻(xiàn)

      [1] Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003, 2: 43-53. doi: 10. 1016/S1474- 4422(03)00266-7.

      [2] Song, J. P., et al., Epidemiological Features of Nontraumatic Spontaneous Subarachnoid Hemorrhage in China: A Nation?wide Hospital-based Multicenter Study. Chin Med J (Engl), 2017. 130(7): p. 776-781.

      [3] Seibert B, Tummala RP, Chow R, et al. Intracranial aneurysms: review of current treatment options and outcomes. Front Neurol, 2011, 2: 45.

      [4] Steinman, D. A., et al., Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol, 2003. 24(4): p. 559-66.

      [5] 呂楠, 徐瑾瑜, 李強(qiáng), 許奕, 劉建民, 黃清海. 致死性術(shù)中破裂前交通動(dòng)脈瘤血流動(dòng)力學(xué)特征分析[J]. 中華腦血管病雜志(電子版), 2013, 7(06): 310-313.

      [6] Rinkel GJ, Djibuti M, Algra A, et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998, 29: 251–56.

      [7] Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res 2006, 28: 372–80.

      [8] Stehbens WE. Pathology and pathogenesis of intracranial berry aneurysms. Neurol Res 1990, 12: 29–34.

      [9] Inci S, Spetzler RF. Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 2000, 53: 530–40, discussion 540–42.

      [10] Steiger HJ. Pathophysiology of development and rupture of cerebralaneurysms. Acta Neurochir Suppl (Wien) 1990, 48: 1–57.

      [11] Dolan, J. M., Meng, H., Sim, F. J. & Kolega, J. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress. Am J Physiol Cell Physiol 305, C854–866 (2013).

      [12] 付凱亮, 王春霞, 劉懷軍, 宗會(huì)遷, 柳青. 顱內(nèi)動(dòng)脈瘤計(jì)算流體力學(xué)有限元分析[J]. 河北醫(yī)藥, 2013, 35(16): 2413-2415.

      [13] Zhou, G., et al., Association of wall shear stress with intrac?ranial aneurysm rupture: systematic review and meta-analysis. Scientific Reports, 2017. 7(1): p. 5331.

      [14] Sugiyama SI, Meng H, Funamoto K, et al. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg 2012, 78: 462–68.

      [15] Sforza DM, Putman CM, Tateshima S, et al. Hemodynamics characteristics of growing and stable aneurysms. ASME Summer Bioengineering Conference, Fajardo, Puerto Rico, June 20–23, 2012.

      [16] Acevedo-Bolton G, Jou LD, Dispensa BP, et al. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental valida-tion: technical case report. Neurosurgery 2006, 59: E429 –30, author reply E429–30

      [17] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic- morphologic discriminants for intracranial aneurysm rupture. Stroke 2011, 42: 144–52

      [18] Valen-Sendstad, K., Mardal, K. A., Mortensen, M., Reif, B. A. & Langtangen, H. P. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech. 44, 2826–2832 (2011).

      [19] Castro MA, Putman CM, Sheridan MJ, et al. Hemodynamic patterns of anterior communicating artery aneurysms: a poss?ible association with rupture. AJNR Am J Neuroradiol 2009, 30: 297–302

      [20] RUSSELL JH, KELSON N, BARRY M, et al. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation[J]. Neurosurgery, 2013, 73(6): 1061-1068.

      [21] Miura, Y., et al., A Case of Vertebral Artery Fusiform Aneurysm Treated by Flow Alteration: Successful Prediction of Therapeutic Effects Using Computational Fluid Dynamics. NMC Case Report Journal, 2017. 4(4): p. 107-110.

      [22] Rayz, V. L., et al., Computational Modeling of Flow-Altering Surgeries in Basilar Aneurysms. Annals of Biomedical Engineering, 2015. 43(5): p. 1210-1222.

      [23] Wang, C., et al., Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm. Acta Neurochirurgica, 2016. 158(4): p. 811-819.

      [24] Nambu, I., et al., High Pressure in Virtual Postcoiling Model is a Predictor of Internal Carotid Artery Aneurysm Recurr?ence After Coiling. Neurosurgery, 2019. 84(3): p. 607-615.

      [25] Umeda, Y., et al., Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms. PLOS ONE, 2017. 12(12): p. e0190222.

      [26] Fujimura, S., et al., Hemodynamics and coil distribution with changing coil stiffness and length in intracranial aneurysms. J Neurointerv Surg, 2018. 10(8): p. 797-801.

      [27] Wang, W., et al., Giant intracranial aneurysm embolization with a yield stress fluid material: insights from CFD analysis. Biorheology, 2013. 50(3-4): p. 99.

      [28] Byun, H. S. and K. Rhee, CFD modeling of blood flow following coil embolization of aneurysms. Medical Engi-neering & Physics, 2004. 26(9): p. 755-761.

      [29] Leng, X., et al., Numerical simulation of patient-specific endovascular stenting and coiling for intracranial aneurysm surgical planning. J Transl Med, 2018. 16(1): p. 208.

      [30] Tremmel, M., et al., Alteration of Intraaneurysmal Hemod-ynamics for Flow Diversion Using Enterprise and Vision Stents. World Neurosurgery, 2010. 74(2-3): p. 306-315.

      [31] Wang, C., et al., Flow diverter effect of LVIS stent on cerebral aneurysm hemodynamics: a comparison with Enterprise stents and the Pipeline device. Journal of Translational Medicine, 2016. 14(1): 199.

      [32] Kim, M., et al., Evaluation of an asymmetric stent patch design for a patient specific intracranial aneurysm using Computational Fluid Dynamic (CFD) calculations in the Computed Tomography (CT) derived lumen. Proc SPIE Int Soc Opt Eng, 2006. 6143: p. 61432G-61432G-8.

      [33] Zhang, Q., et al., Phantom-based experimental validation of fast virtual deployment of self-expandable stents for cerebral aneurysms. Biomed Eng Online, 2016. 15(Suppl 2): p. 125.

      [34] Paliwal, N., et al., Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc SPIE Int Soc Opt Eng, 2017. 11, 10135.

      [35] Xu, J., et al., Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study. PLOS ONE, 2015. 10(9): p. e0138648.

      [36] Damiano, R. J., et al., Finite element modeling of endovas-cular coiling and flow diversion enables hemod?ynamic prediction of complex treatment strategies for intracranial aneurysm. Journal of Biomechanics, 2015. 48(12): p. 3332- 3340.

      [37] Sindeev, S., et al., Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment. PLOS ONE, 2018. 13(1): p. e0190696.

      [38] Zhang, Y., W. Chong and Y. Qian, Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment. Medical Engineering & Physics, 2013. 35(5): p. 608-615.

      猜你喜歡
      計(jì)算流體力學(xué)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)
      顱內(nèi)動(dòng)脈瘤開(kāi)顱夾閉術(shù)后護(hù)理
      血管內(nèi)栓塞治療顱內(nèi)動(dòng)脈瘤效果初步觀察及評(píng)估
      椎管內(nèi)麻醉下婦科開(kāi)腹手術(shù)患者血流動(dòng)力學(xué)及血糖變化研究
      夾閉和栓塞治療顱內(nèi)動(dòng)脈瘤對(duì)蛛網(wǎng)膜下腔出血腦血管痙攣的影響
      右美托咪定復(fù)合七氟烷吸入麻醉在顱內(nèi)動(dòng)脈瘤介入
      武夷山市| 收藏| 红河县| 新绛县| 新建县| 宁化县| 蒲城县| 深州市| 平度市| 五家渠市| 丹东市| 秭归县| 正蓝旗| 萍乡市| 沙洋县| 南涧| 明溪县| 肃宁县| 霍林郭勒市| 理塘县| 靖边县| 八宿县| 西乡县| 深水埗区| 榆社县| 高陵县| 区。| 张家口市| 桃园县| 饶阳县| 南开区| 都匀市| 武城县| 开封县| 沁阳市| 韩城市| 镇江市| 新沂市| 本溪市| 定陶县| 威海市|