陳元昊 周勐生 殷曉宇 賀怡 王偉 郝景茹 韓園 高燦
[摘要] 目的 探討急性束縛應(yīng)激對(duì)小鼠AMPA受體跨膜轉(zhuǎn)運(yùn)和恐懼記憶的影響及其機(jī)制。 方法 將64只雄性C57BL/6小鼠采用隨機(jī)數(shù)字表法分為對(duì)照組、普萘洛爾組、束縛應(yīng)激組、聯(lián)合組(束縛應(yīng)激+普萘洛爾),每組16只。普萘洛爾組和聯(lián)合組以10 mg/kg普萘洛爾溶液灌胃,同時(shí)對(duì)照組和束縛應(yīng)激組以等容積的生理鹽水灌胃,給藥容積均為20 mL/kg。給藥30 min后,束縛應(yīng)激組和聯(lián)合組小鼠用50 mL EP管束縛,束縛時(shí)間為30 min。采用條件性恐懼記憶實(shí)驗(yàn)測(cè)定小鼠的恐懼記憶;采用免疫印記法測(cè)定小鼠海馬GluA1蛋白表達(dá)的變化、GluA1第831位(pS-831)和845位(pS-845)絲氨酸磷酸化水平變化、鈣/鈣調(diào)素依賴性蛋白激酶Ⅱ(CaMKⅡ)表達(dá)及其磷酸化(p-CaMKⅡ)水平變化以及神經(jīng)元細(xì)胞膜上GluA1水平的變化。 結(jié)果 與對(duì)照組比較,束縛應(yīng)激組的環(huán)境和聲音依賴的凍結(jié)時(shí)間均增加(P < 0.05),海馬pS-831和pS-845以及p-CaMKⅡ表達(dá)增加(P < 0.05),GluA1在細(xì)胞膜上表達(dá)增加(P < 0.05),而總蛋白中GluA1以及CaMKⅡ的表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05);與束縛應(yīng)激組比較,聯(lián)合組的環(huán)境和聲音依賴的凍結(jié)時(shí)間均降低(P < 0.05),海馬pS-831和pS-845以及p-CaMKⅡ表達(dá)減少(P < 0.05),GluA1在細(xì)胞膜上表達(dá)減少(P < 0.05),而總蛋白中GluA1、CaMKⅡ的表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。結(jié)論 急性束縛應(yīng)激促進(jìn)小鼠恐懼記憶的形成,其機(jī)制可能與調(diào)控GluA1亞基磷酸化,增加AMPA受體跨膜轉(zhuǎn)運(yùn)有關(guān)。此外,β-腎上腺素受體(β-ARs)可能是束縛應(yīng)激促進(jìn)恐懼記憶的重要作用靶點(diǎn)之一。
[關(guān)鍵詞] 急性束縛應(yīng)激;恐懼記憶;去甲腎上腺素;AMPA受體;跨膜轉(zhuǎn)運(yùn);普萘洛爾
[中圖分類號(hào)] R338? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)07(c)-0007-05
Effect of acute stress on AMPA receptors trafficking and fear memory in mice
CHEN Yuanhao1? ?ZHOU Mengsheng1? ?YIN Xiaoyu1? ?HE Yi1? ?WANG Wei2? ?HAO Jingru1? ?HAN Yuan1? ?GAO Can1
1.Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Jiangsu Province, Xuzhou? ?221004, China; 2.Department of Neurology, the First People′s Hospital of Huainan, Anhui Province, Huainan? 232007, China
[Abstract] Objective To investigate the effect of acute restraint stress on AMPA receptors trafficking and fear memory in mice and its mechanism. Methods Sixty-four male C57BL/6 mice were divided into control group, Propranolol group, restraint stress group, combined group (restraint stress + Propranolol), according to random number table method, with 16 mice in each group. In the propranolol group and combined group, 10 mg/kg Propranolol solution was administered intragastrically, at the same time, the control group and the restraintstress group were intragastrically administered with an equal volume of normal saline, and the administration volume were 20 mL/kg. After 30 minutes of administration, the restraint stress group and combined group were restrained with 50 mL EP tube for 30 minutes. The fear memory of mice was evaluated by fear conditioning test. The expression of GluA1 in hippocampus, the level of serine phosphorylation at the 831th (pS-831) and the 845th (pS-845) of GluA1, the expression of calcium/calmodulin dependent protein kinase Ⅱ (CaMKⅡ) and its phosphorylation (p-CaMKⅡ) level, and the expression of GluA1 in the hippocampus cell membrane were measured by Western blot. Results Compared with the control group, the context-dependent and tone-dependent freezing time in the restraint stress group increased (P < 0.05), the expression of pS-831, pS-845 and p-CaMKⅡ in hippocampus increasd (P < 0.05), and the expression of GluA1 in cell membrane increased (P < 0.05), while the expression of GluA1 and CaMKⅡ in total protein had no significant difference (P > 0.05). Compared with the restraint stress group, the context-dependent and tone-dependent freezing time in the combined group decreased (P < 0.05), the expression of pS831, pS845 and p-CaMKⅡ in hippocampus decreased (P < 0.05), and the expression of GluA1 in cell membrane decreased (P < 0.05), while the expression of GluA1 and CaMK Ⅱ in total protein had no significant difference (P > 0.05).? Conclusion Acute restraint stress can promote the formation of fear memory in mice, which may be related to the regulation of GluA1 subunit phosphorylation and the increased trafficking of AMPA receptors. Moreover, β-adrenergic receptors (β-ARs) may be one of the important targets for restraint stress-induced fear memory.
[Key words] Acute restraint stress; Fear memory; Norepinephrine; AMPA receptor; Trafficking; Propranolol
學(xué)習(xí)記憶是大腦的基本功能,適度的應(yīng)激可以促進(jìn)學(xué)習(xí)記憶[1]。應(yīng)激時(shí)藍(lán)斑核和側(cè)腦腦干釋放的去甲腎上腺素(norepinephrine,NE)被認(rèn)為是調(diào)控記憶形成的重要因素[2],當(dāng)NE與腦中β-腎上腺素受體(β-ARs)結(jié)合,能誘導(dǎo)長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP)的發(fā)生[3]。
現(xiàn)研究認(rèn)為L(zhǎng)TP主要是通過(guò)調(diào)控AMPA受體的跨膜轉(zhuǎn)運(yùn)實(shí)現(xiàn)的[4]。AMPA受體是一種離子型谷氨酸受體,它是由GluA1~GluA4四個(gè)亞基組成的四聚體[5]。其中GluA1亞基在AMPA受體跨膜轉(zhuǎn)運(yùn)方面發(fā)揮核心作用[6]。這種作用是通過(guò)GluA1亞基幾個(gè)重要位點(diǎn)的磷酸化實(shí)現(xiàn)的。其中被蛋白激酶A(proteinkinase A,PKA)催化的GluA1亞基第845位絲氨酸(Ser-845)以及被蛋白激酶C(proteinkinase C,PKC)和CaMKⅡ催化的GluA1亞基第831位絲氨酸(Ser-831)的磷酸化最為重要[7]。NE作用到β-ARs可以激活cAMP-PKA級(jí)聯(lián)信號(hào)通路[8],并增強(qiáng)CaMKⅡ的活性[9]。然而,急性束縛應(yīng)激是否能通過(guò)NE激活β-ARs,對(duì)GluA1亞基磷酸化進(jìn)行調(diào)控尚不十分清楚;急性束縛應(yīng)激對(duì)小鼠AMPA受體跨膜轉(zhuǎn)運(yùn)以及學(xué)習(xí)記憶的影響也未見(jiàn)報(bào)道。本研究將通過(guò)急性束縛建立小鼠應(yīng)激模型,觀察小鼠學(xué)習(xí)記憶功能,檢測(cè)海馬總蛋白GluA1、pS-831、pS-845、CaMKⅡ、p-CaMKⅡ以及膜蛋白GluA1的變化,并采用β-ARs阻滯劑普萘洛爾干預(yù),以進(jìn)一步探討其作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物
64只雄性C57BL/6小鼠,8~10周齡,體重20~25 g,購(gòu)自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司[合格證號(hào):SCXK(魯)20140007]。所有大鼠置于室溫25℃的動(dòng)物房適應(yīng)1周,自由飲食攝水。動(dòng)物飼養(yǎng)及動(dòng)物實(shí)驗(yàn)方案遵循國(guó)家《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》。
1.2 主要試劑和儀器
鹽酸普萘洛爾片(批號(hào):1704146)購(gòu)自江蘇亞邦愛(ài)普森藥業(yè)有限公司;GluA1抗體(批號(hào):2955485)購(gòu)自Millipore公司;GluA1 pS-831抗體(批號(hào):GR46728-15)、GluA1 pS-845抗體(批號(hào):GR246519-11)均購(gòu)自Abcam公司;CaMKⅡ抗體(批號(hào):E1908)、p-CaMKⅡ抗體(批號(hào):E2013)、β-actin抗體(批號(hào):D0618)均購(gòu)自Santa Cruz公司;辣根過(guò)氧化物酶標(biāo)記的山羊抗小鼠二抗(批號(hào):052418181101)、辣根過(guò)氧化物酶標(biāo)記的山羊抗兔二抗(批號(hào):040818180510)、BCA蛋白測(cè)定試劑盒(批號(hào):070517170815)、ECL發(fā)光試劑盒(批號(hào):113016170307)均購(gòu)自碧云天生物技術(shù)有限公司;生物素(EZ-Link sulfo-NHS-SS-Biotin)(批號(hào):NG174 305)、親和素瓊脂糖(批號(hào):ND170336)均購(gòu)自Thermo Fisher公司。小鼠條件性恐懼檢測(cè)箱購(gòu)自Med Associates公司。
1.3 動(dòng)物模型的建立
采用隨機(jī)數(shù)字表法將小鼠分為對(duì)照組、普萘洛爾組、束縛應(yīng)激組、聯(lián)合組(束縛應(yīng)激+普萘洛爾),每組各16只。普萘洛爾組和聯(lián)合組以10 mg/kg普萘洛爾溶液灌胃,同時(shí)對(duì)照組和束縛應(yīng)激組以等容積的生理鹽水灌胃,給藥容積均為20 mL/kg。給藥30 min后,束縛應(yīng)激組和聯(lián)合組小鼠用50 mL EP管束縛,束縛時(shí)間為30 min,束縛期間各組小鼠禁水禁食。束縛結(jié)束后,各組立即取8只進(jìn)行行為學(xué)檢測(cè),其余8只立即斷頭取腦,提取總蛋白和膜蛋白。
1.4 實(shí)驗(yàn)方法
1.4.1 條件性恐懼記憶實(shí)驗(yàn)? 參照文獻(xiàn)[10]進(jìn)行,將各組小鼠依次放入條件性恐懼記憶檢測(cè)箱體內(nèi),箱體四面為黑色背景,總時(shí)間為180 s,在150 s時(shí)給予聲音30 s(10 kHz,75 dB),在聲音結(jié)束時(shí)給2 s電刺激(0.7 mA恒流),24 h后,將小鼠放入同一環(huán)境中,記錄小鼠凍結(jié)時(shí)間。另外將小鼠放入新環(huán)境箱體中,適應(yīng)30 s后給予聲音30 s,記錄小鼠凍結(jié)時(shí)間。結(jié)果以凍結(jié)時(shí)間占總觀察時(shí)間的百分比表示。
1.4.2 小鼠海馬總蛋白提取? 小鼠海馬取材后,各組隨機(jī)取4個(gè)海馬組織加入含有PMSF的裂解液,用超聲勻漿器超聲10 s,共4次,間隔40 s。4℃,10 000 g離心10 min,收集上清并測(cè)蛋白濃度。按BCA法測(cè)定樣本蛋白濃度后,用裂解液和上樣緩沖液將蛋白濃度調(diào)為一致。
1.4.3 生物素標(biāo)記法提取膜蛋白? 參照文獻(xiàn)[11]進(jìn)行操作,每組剩余的4個(gè)海馬組織剪碎后用4℃人工腦脊液(ACSF)洗滌3次,加入1 mL ACSF和40 μL生物素溶液。室溫?fù)u床上孵育30 min后用ACSF洗滌3次,加入含有PMSF的裂解液300 μL,用超聲勻漿器超聲10 s,共4次,間隔40 s。4℃,10 000 g離心10 min,收集上清液并按BCA法測(cè)樣本蛋白濃度。測(cè)定蛋白濃度后,每管取出相同質(zhì)量的上清液,加入40 μL親和素瓊脂糖,室溫孵育30 min。4℃ 1000 g離心3 min,取沉淀,用裂解液洗滌沉淀3次后,加入200 μL裂解液和40 μL上樣緩沖液配成小鼠海馬膜蛋白樣品。
1.4.4 免疫印記分析? 等量蛋白樣品經(jīng)10%SDS聚丙烯酰胺凝膠電泳分離后,用濕轉(zhuǎn)法將蛋白轉(zhuǎn)移至PVDF膜。轉(zhuǎn)移后的PVDF膜經(jīng)5%脫脂奶粉的封閉液室溫封閉1 h后加入適當(dāng)稀釋的一抗,4℃孵育過(guò)夜。用TBST洗膜5 min,共3次,加入相應(yīng)的二抗,室溫孵育1 h,用TBST洗膜5 min,共4次,滴加ECL發(fā)光液后,用Bio-rad成像系統(tǒng)檢測(cè),所得條帶使用Image J軟件分析。
1.5 統(tǒng)計(jì)學(xué)方法
采用SPSS 19.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,兩組間比較采用LSD(方差齊性)或者Dunnett T3(方差不齊),以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組小鼠環(huán)境、聲音依賴的凍結(jié)時(shí)間比較
與對(duì)照組比較,束縛應(yīng)激組小鼠環(huán)境、聲音依賴的凍結(jié)時(shí)間均增加(P < 0.05)。與束縛應(yīng)激組比較,聯(lián)合組小鼠環(huán)境、聲音依賴的凍結(jié)時(shí)間均降低(P < 0.05)。見(jiàn)圖1。
2.2 各組小鼠GluA1亞基在海馬神經(jīng)元細(xì)胞膜及總蛋白中的表達(dá)比較
與對(duì)照組比較,束縛應(yīng)激組小鼠GluA1亞基在海馬神經(jīng)元細(xì)胞膜上的表達(dá)(S-GluA1)明顯增加(P < 0.05),GluA1亞基在總蛋白中的表達(dá)(T-GluA1)差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。與束縛應(yīng)激組比較,聯(lián)合組小鼠S-GluA1的表達(dá)降低(P < 0.05),T-GluA1的表達(dá)量差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖2。
2.3 各組小鼠海馬GluA1亞基pS-845和pS-831水平比較
與對(duì)照組比較,束縛應(yīng)激組小鼠海馬GluA1亞基pS-845和pS-831水平均提高(P < 0.05)。與束縛應(yīng)激組比較,聯(lián)合組小鼠海馬GluA1亞基pS-845和pS-831水平均下降(P < 0.05)。見(jiàn)圖3。
2.4 各組小鼠海馬CaMKⅡ和p-CaMKⅡ水平比較
與對(duì)照組比較,束縛應(yīng)激組小鼠海馬p-CaMKⅡ水平升高(P < 0.05),而CaMKⅡ水平差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。與束縛應(yīng)激組比較,聯(lián)合組小鼠海馬p-CaMKⅡ水平降低(P < 0.05),而CaMKⅡ水平差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖4。
與對(duì)照組比較,*P < 0.05;與束縛應(yīng)激組比較,#P < 0.05
3 討論
應(yīng)激對(duì)機(jī)體的影響是雙重的,過(guò)強(qiáng)的應(yīng)激會(huì)引起學(xué)習(xí)記憶功能的下降,適度應(yīng)激則能促進(jìn)學(xué)習(xí)記憶[1]。本研究結(jié)果顯示,束縛應(yīng)激后的小鼠在環(huán)境和聲音依賴的恐懼記憶測(cè)試中表現(xiàn)明顯的凍結(jié)時(shí)間延長(zhǎng),提示急性束縛應(yīng)激能增加小鼠的恐懼記憶。
在中樞神經(jīng)系統(tǒng)中,AMPA受體介導(dǎo)大多數(shù)快速興奮性突觸傳遞[12]。AMPA受體可以快速地插入以及移出突觸后膜,這種動(dòng)態(tài)轉(zhuǎn)運(yùn)方式使其在多種形式的突觸可塑性中發(fā)揮重要作用,并且調(diào)控突觸上AMPA受體的數(shù)量可能是誘導(dǎo)LTP的機(jī)制之一[13]。含GluA1的受體被募集進(jìn)入突觸是AMPA受體跨膜轉(zhuǎn)運(yùn)的關(guān)鍵步驟[6]。本研究結(jié)果顯示,束縛應(yīng)激增加了GluA1亞基細(xì)胞膜表面表達(dá)量,提示束縛應(yīng)激在促進(jìn)AMPA受體跨膜轉(zhuǎn)運(yùn)和LTP中發(fā)揮重要作用,AMPA受體是束縛應(yīng)激影響突觸可塑性的關(guān)鍵作用靶點(diǎn)。
GluA1亞基定位到突觸膜上,主要是依靠GluA1亞基Ser-845和Ser-831磷酸化調(diào)控的[7]。GluAl亞基Ser-845磷酸化是AMPA受體胞吐到突觸外膜上的關(guān)鍵一步[14]。GluA1亞基Ser-831磷酸化,不僅能促使AMPA受體插入突觸后膜,還可以增強(qiáng)其通道傳導(dǎo)性[15]。本研究結(jié)果顯示,束縛應(yīng)激增加GluA1亞基在細(xì)胞膜表面表達(dá)的同時(shí)可以檢測(cè)到pS-845和pS-831水平升高,提示束縛應(yīng)激升高GluA1亞基磷酸化水平,從而影響GluA1亞基在細(xì)胞膜表面的表達(dá)。
急性應(yīng)激可以促進(jìn)藍(lán)斑和側(cè)腦腦干釋放NE[16-17],并能投射到海馬等區(qū)域[18]。NE激活海馬β-ARs可以誘導(dǎo)LTP的發(fā)生,發(fā)揮提升學(xué)習(xí)記憶的作用[3]。本研究結(jié)果顯示,普萘洛爾可以阻斷束縛應(yīng)激對(duì)小鼠恐懼記憶的促進(jìn)作用,并且對(duì)束縛應(yīng)激增強(qiáng)pS-845、pS-831水平以及細(xì)胞膜中GluA1亞基的表達(dá)也具有阻斷作用。本研究結(jié)果提示,β-ARs是束縛應(yīng)激促進(jìn)恐懼記憶和GluA1亞基磷酸化以及增加細(xì)胞膜上GluA1表達(dá)的重要作用靶點(diǎn)之一。
GluA1亞基Ser-845磷酸化是依靠PKA催化的,GluA1亞基Ser-831磷酸化是依靠PKC和CaMKⅡ催化[19]。cAMP-PKA信號(hào)級(jí)聯(lián)反應(yīng)是β-ARs的經(jīng)典信號(hào)通路,因此束縛應(yīng)激激活β-ARs后可以進(jìn)一步激活cAMP-PKA通路,催化GluA1亞基Ser-845磷酸化。然而,束縛應(yīng)激促進(jìn)GluA1亞基Ser-831磷酸化的機(jī)制尚不明確。在心肌細(xì)胞中,兒茶酚胺類物質(zhì)作用到心肌β-ARs可以激活CaMKⅡ,誘導(dǎo)心肌細(xì)胞凋亡[20]。目前,束縛應(yīng)激激活海馬β-ARs對(duì)CaMKⅡ的作用尚鮮見(jiàn)報(bào)道。本研究顯示,束縛應(yīng)激后,小鼠海馬p-CaMKⅡ水平升高,而CaMKⅡ水平無(wú)改變;普萘洛爾可以阻斷束縛應(yīng)激對(duì)小鼠海馬p-CaMKⅡ水平的升高作用,而對(duì)CaMKⅡ水平無(wú)影響。提示束縛應(yīng)激通過(guò)激活β-ARs,促進(jìn)海馬CaMKⅡ磷酸化從而提升其活性,進(jìn)一步催化GluA1亞基Ser-831磷酸化。
綜上所述,急性束縛應(yīng)激可以增強(qiáng)小鼠的恐懼記憶,其可能機(jī)制是急性束縛應(yīng)激促進(jìn)藍(lán)斑和側(cè)腦腦干釋放NE并投射到海馬,激活海馬β-ARs,進(jìn)一步激活PKA和CaMKⅡ,催化GluA1亞基Ser-845、Ser-831磷酸化,促進(jìn)AMPA受體的跨膜轉(zhuǎn)運(yùn),最終增強(qiáng)小鼠的恐懼記憶。然而,本研究并不能排除其他磷酸化位點(diǎn)的作用。此外,對(duì)AMPA受體其他亞基在細(xì)胞中的分布也需進(jìn)一步研究。
[參考文獻(xiàn)]
[1]? Whitehead G,Jo J,Hogg EL,et al. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus [J]. Brain,2013,136(Pt 12):3753-3765.
[2]? Sara SJ. The locus coeruleus and noradrenergic modulation of cognition [J]. Nat Rev Neurosci,2009,10(3):211-223.
[3]? Maity S,Rah S,Sonenberg N,et al. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs [J]. Learn Mem,2015,22(10):499-508.
[4]? Lee HK,Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex [J]. Semin Cell Dev Biol,2011,22(5):514-520.
[5]? Bassani S,F(xiàn)olci A,Zapata J,et al. AMPAR trafficking in synapse maturation and plasticity [J]. Cell Mol Life Sci,2013, 70(23):4411-4430.
[6]? Cz?觟nd?觟r K,Thoumine O. Biophysical mechanisms regulating AMPA receptor accumulation at synapses [J]. Brain Res Bull,2013,93:57-68.
[7]? Lee HK,Takamiya K,He K,et al. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus [J]. J Neurophysiol,2010,103(1):479-489.
[8]? Hall RA. Beta-adrenergic receptors and their interacting proteins [J]. Semin Cell Dev Biol,2004,15(3):281-288.
[9]? Zhang X,Szeto C,Gao E,et al. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling [J]. Circ Res,2013,112(3):498-509.
[10]? Hu R,Wei P,Jin L,et al. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model [J]. Cell Death Dis,2017,8(3):e2717.
[11]? Shi XD,Sun K,Hu R,et al. Blocking the Interaction between EphB2 and ADDLs by a Small Peptide Rescues Impaired Synaptic Plasticity and Memory Deficits in a Mouse Model of Alzheimer′s Disease [J]. J Neurosci,2016,36(47):11 959-11 973.
[12]? Man HY,Sekine-Aizawa Y,Huganir RL. Regulation of {alpha}-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit [J]. Proc Natl Acad Sci U S A,2007,104(9):3579-3584.
[13]? Shepherd JD,Huganir RL. The cell biology of synaptic plasticity:AMPA receptor trafficking [J]. Ann Rev Cell Dev Biol,2007,23:613-643.
[14]? Oh MC,Derkach VA,Guire ES,et al. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation [J]. J Biol Chem,2006,281(2):752-758.
[15]? Appleby VJ,Corrêa SA,Duckworth JK,et al. LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression [J]. J Neurochem,2011,116(4):530-543.
[16]? 陶楊,丁秀芳,陳育堯,等.急性應(yīng)激對(duì)大鼠行為學(xué)及藍(lán)斑TH、DBH基因表達(dá)的影響[J].熱帶醫(yī)學(xué)雜志,2011, 11(3):274-277.
[17]? Fanselow MS,Gale GD. The amygdala,fear,and memory [J]. Ann N Y Acad Sci,2003,985:125-134.
[18]? Swift KM,Gross BA,F(xiàn)razer MA,et al. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory [J]. Curr Biol,2018,28(22):3599-3609.e4.
[19]? Henley JM,Barker EA,Glebov OO. Routes,destinations and delays:recent advances in AMPA receptor trafficking [J]. Trends Neurosci,2011,34(5):258-268.
[20]? 孫鳳姣,張譯丹,張密霞,等.β-AR/PKA/CaMKⅡ信號(hào)通路在阿霉素誘導(dǎo)大鼠心肌細(xì)胞凋亡中的作用[J].中國(guó)藥理學(xué)通報(bào),2017,33(3):360-365.