劉慧慧,曲 磊,陳應泉,張文楠,楊海平,王賢華,陳漢平
天然微藻水熱炭理化特性及熱解動力學研究
劉慧慧1,曲 磊1,陳應泉1,張文楠2,楊海平1,王賢華1※,陳漢平1
(1. 華中科技大學煤燃燒國家重點實驗室,武漢 430074;2. Department of Chemical Engineering, Mid Sweden University, Sundsvall SE-85170, Sweden)
為探索天然微藻資源化的利用途徑,該文以天然柵藻為原料,采用傅立葉轉換紅外線光譜分析, X射線衍射分析,X射線熒光光譜分析, 環(huán)境掃描電子顯微鏡與熱重分析儀對水熱炭進行測試分析。研究結果表明,隨著水熱溫度的升高,水熱炭產率從47.29%(180℃)降低至43.01%(240%);水熱炭的O/C摩爾比從1.45減小至0.28,碳化程度加強,水熱炭具有應用于固體燃料的潛力。鑒于水熱炭含有大量灰分,其熱值為8.43~9.67 MJ/kg,因此脫灰預處理是必要的過程。經(jīng)過水熱碳化處理,天然柵藻的比表面積從4.36 m2/g增加到35.26 m2/g。熱解動力學結果表明隨著水熱溫度的提高,水熱炭的熱穩(wěn)定性增強。研究結果對天然微藻的資源化利用提供了一定的理論參考。
碳化;熱解;動力學;天然柵藻;水熱炭;理化特性
微藻作為第三代生物質燃料有很大的能源價值和環(huán)境效益[1-2]。相比于傳統(tǒng)生物質,微藻生長在水環(huán)境中,不占用農業(yè)耕地面積[3];光合固碳效率高[4-5],單位時間單位面積生物質產量高[6];易獲得低成本。因此微藻應用于熱化學轉化領域受到人們廣泛關注。其中,水熱工藝是微藻熱化學轉化利用的重要方式。水熱工藝可以生產高能量密度以及高附加值化學品[7]。與其他熱化學轉化工藝相比,水熱工藝不需要對原料進行干燥,降低了過程能耗,適用于含水率較高的生物質能源;對物質質量傳遞沒有限制,不受物料含水率制約;反應過程簡單,反應條件溫和;水熱產物易分離[8]。因此水熱工藝被公認為是高含水率生物質能源化利用較為理想的方法。水熱碳化過程中以大分子解聚為小分子以及小分子片段重新聚合為大分子為主要過程,包含了水解、脫水、脫羧、縮聚和芳香化等反應[9],可生產具有疏水性,易干燥和粉碎以及官能團豐富的焦炭[10-12]。
在微藻水熱領域,國內外學者對水熱工藝應用于微藻進行了大量的研究。Cheng等[13]評估了高蛋白質含量的紅藻的物質產率,能量回收率以及化學組成。Heilmann等[14]對衣藻進行碳化研究,其水熱炭的熱值達31.58 MJ/kg,且碳元素的收率為60%。Xu等[15]在低溫階段(180~210 ℃)分析銅藻水熱碳化特性,水熱炭的最大熱值達25.1 MJ/kg。Park等[16]通過對小球藻進行水熱炭化處理,發(fā)現(xiàn)其水熱炭的熱值高達29.8 MJ/kg,能量回收率為90%,水熱炭化處理有效的將微藻轉化為高效節(jié)能的可再生燃料資源。Lee等[17]將脂質提取后的微藻()進行水熱炭化處理,發(fā)現(xiàn)水熱炭在高溫區(qū)具有穩(wěn)定的燃燒特性。Marin-Batista等[18]研究發(fā)現(xiàn)微藻經(jīng)過水熱炭化處理后,其水熱炭的碳含量和熱值均大于原料。在水熱工藝中,溫度是影響水熱過程的重要因素[19]。在高溫高壓環(huán)境下,水的離子特性改變,大量H+和OH-解離促進了有機物的異構化,解聚和再聚合作用。同時,為了確保微藻轉化率達到最大值,充足的反應時間也是必須的。
目前,微藻的水熱工藝研究主要是利用實驗室理想環(huán)境培養(yǎng)的微藻作為原料。然而,天然藻類水熱特性研究還較少。由于生長環(huán)境復雜,天然藻類的組成與培養(yǎng)藻類有很大差異,本研究選用天然柵藻作為原料,其脂類和蛋白質含量很少,分別為1.4%和15.1%,灰分質量分數(shù)高達44.66%,而培養(yǎng)柵藻的脂類,蛋白質和碳水化合物的質量分數(shù)分別為20.2%、48.1%和9.86%,灰分質量分數(shù)僅為3.46%[20]。不同的組分組成導致其水熱特性也不盡相同。本文研究了天然柵藻()的水熱特性,分析了其水熱炭物化特性以及熱解動力學變化過程,利用傅立葉轉換紅外線光譜分析(Fourier transform infrared spectrometer),X射線衍射分析(X-ray diffraction),X射線熒光光譜分析(X-ray fluorescence),環(huán)境掃描電子顯微鏡(environmental scanning electron microscope,ESEM)和熱重分析(thermogravimetric analysis)對水熱炭進行測試分析,為天然柵藻水熱碳化利用提供一定的理論基礎,促進了天然柵藻的資源化利用過程。
天然柵藻由瑞典農業(yè)科技大學提供,生長在瑞典的Ume?(63°87′N,20°80′E),將其自然晾干后運送至實驗室。柵藻經(jīng)粉碎,篩分至粒徑小于0.125 mm。將原料放置于干燥箱內,55℃干燥至質量恒定。
微藻水熱裝置為100 mL的自攪拌高溫高壓反應釜(北京世紀森朗實驗儀器有限公司,SLM-100)。將干燥的天然柵藻和去離子水以1:15(g/mL)添加入反應釜中,其中原料的質量為3 g,經(jīng)超聲震蕩10 min后,組裝密封反應釜裝置,用氬氣排空后升壓至2 MPa,將反應釜升溫至反應溫度(180、200、220、240、260 ℃),在反應溫度下保溫4 h。反應完成后,將反應釜迅速置于冰水混合物中進行冷卻。待冷卻至室溫后,打開泄氣閥將釜體內的氣體排出,拆卸反應釜裝置,用真空抽濾裝置將反應產物固液分離,將固體產物105 ℃烘干12 h,每組工況至少重復2次。NM表示天然柵藻,反應產物用HC-進行標記,其中表示反應溫度。水熱炭產量、固存率、高位發(fā)熱量(high heating value,HHV),能量回收率通過以下公式[21-22]進行計算
HHV=0.338 3C+1.443H+0.094 2S?0.1803O (3)
采用SDTGA型工業(yè)分析儀(西班牙Las Navas公司)和EL-2元素分析儀(德國Vario公司)對樣品進行工業(yè)分析和元素分析。通過X’Pert PRO型X射線衍射儀(荷蘭帕納科公司PANalytical生產)對樣品晶相成分進行分析,掃描步長為0.0170°,陽靶極為Cu,操作條件為:40 mA,40 kV,2角度范圍為10°~80°。物相結構分析則采用X'Pert High Score Plus 軟件。利用EAGLE III X射線熒光探針(美國伊達克斯有限公司EDAX Inc.生產)對樣品灰分金屬鹽含量進行分析,其微聚焦X光管最大功率40 kV,1.0 mA。采用VERTEX 70傅立葉變換顯微紅外(德國Bruker 公司)分析樣品官能團演變過程,其光譜范圍為50~12,500 cm-1。利用ASAP2020型比表面積及孔徑分析儀(美國Micromeritics公司生產),通過Brunauer-Emmett-Teller(BET)方程進行線性回歸計算比表面積,Barrett-Joyner-Halenda模型計算總孔容。利用Quanta 200環(huán)境掃描電子顯微鏡(ESEM,荷蘭FEI公司)。
為了研究水熱炭的失重特性,對失重劇烈的階段構建熱解的表觀動力學模型以及求解主要的反應動力學參數(shù)。對柵藻進行反應動力學分析。將樣品從室溫以10 ℃/min升溫速率,在氮氣氛圍條件下從室溫升至800 ℃。根據(jù)文獻[23]中動力學分析方法,假設微藻熱重分析為一級反應模型[24],則反應轉化率的變化率可表述為
式中為反應速率常數(shù);為反應轉化率;M為反應時刻樣品質量,mg;M為反應結束后最終固體質量,mg;M為初始樣品質量,mg。
根據(jù)Arrhenius方程
可確定熱解過程的表觀反應為
式中為指前因子,為表觀活化能,kJ/mol;為氣體常數(shù),8.314 J/(mol·K)。由于升溫速率(=d/d)確定,ln[?ln(1?)]與1/呈線性關系,可計算出表觀活化能。
天然柵藻及不同水熱溫度條件下的水熱炭物化特性如表1所示。隨著水熱溫度的增加,水熱炭的產率逐漸從47.29%(180 ℃)降低至43.01%(240 ℃),這是因為高溫為微藻發(fā)生水解、脫水和脫羧基反應提供更多的能量,高聚物降解作用增強;當溫度升高至260 ℃時,水熱炭產率有增加趨勢,這可能是由于水熱的中間產物發(fā)生縮聚反應,導致水熱炭產率增加。
當溫度由180 ℃升高至240 ℃,揮發(fā)分質量分數(shù)由55.34%降至28.53%,而260 ℃時,揮發(fā)分質量分數(shù)增加為31.10%;與此同時,灰分質量分數(shù)由44.66%增至71.47%。當溫度為260 ℃時,灰分質量分數(shù)為68.90%。這說明天然微藻中的灰分多為難溶于水的組分,利用X射線熒光光譜分析(X-ray fluorescence)對灰分化學元素組分含量進行分析發(fā)現(xiàn)(圖1),經(jīng)過水熱處理后Na、K、Cl元素含量急劇降低,而其他元素含量僅有微量變化。天然柵藻及其水熱炭的XRD圖譜如圖2所示。從圖2中可以看出,天然柵藻中含有方解石(Mg0.064Ca0.936CO3)、SiO2、NaCl、Al2O3、CaSO4、Mg3S2O8(OH)2。經(jīng)過水熱處理后,NaCl溶解于水溶液中,其衍射峰消失;隨著水熱溫度的增加,各種不溶鹽的衍射峰增強,這是由于水熱碳化過程中,由于有機組分分解,方解石(Mg0.064Ca0.936CO3)等無機礦物組分被富積下來,衍射峰增強,這與XRF對于灰分組分的分析結果一致。因此,與其他原料不同[25-27],根據(jù)GB/T 28731-2012固體生物質燃料工業(yè)分析方法測量,天然柵藻和水熱炭均不含固定碳。通常釋放的揮發(fā)分會在固體表面沉降聚合形成固定碳[28],但由于天然微藻中含有大量的灰分,且多為難溶性組分,導致固定碳在工業(yè)分析中未能檢測到。
表1 不同溫度下天然柵藻及其水熱炭元素分析、工業(yè)分析、產率、熱值和能量回收率
注:*:差減法;元素分析:干燥無灰基;工業(yè)分析:干燥基。
Note: *: Calculated by minusing. Ultimate analysis: dry ash-free basis; Proximate analysis: dry basis.
圖1 天然柵藻及水熱炭XRF含量分布圖
圖2 天然柵藻及水熱炭XRD圖譜
元素分析結果顯示,與天然柵藻相比,在180~240 ℃范圍內,水熱炭的C和H元素隨著溫度升高而增加,而O元素質量分數(shù)減少,在脫水和脫羧基作用下以H2O和CO2形式脫除。當溫度從180 ℃升高至240 ℃時,C元素和H元素質量分數(shù)分別由44.6%和6.09%,增加至68.31%和8.27%,O元素質量分數(shù)由40.82%降至11.22%;而當溫度升至260 ℃時,C、H、O元素質量分數(shù)有相反的變化趨勢。天然柵藻及其水熱炭的C、H、O元素固存率如圖3所示。在水熱過程中,C元素的固存率最大,H元素次之,O元素最小。隨著溫度的增加,水熱炭中的C和H元素固存率分別由43.69%和40.41%,降至33.04%和29.20%;O元素固存率從29.06%(180 ℃)降至6.09%(24 ℃),而在260 ℃時增加至13.61%。這表明當240 ℃時,天然柵藻中69.88%的H元素和93.88%的O元素被脫除,C的固存率為33.97%。
圖3 天然柵藻水熱炭中C、H、O固存率
天然柵藻的熱值為9.33 MJ/kg,隨著水熱溫度增加,水熱炭的熱值減小。Van Krevelen圖用來描述反應過程中的脫水、脫羧基和脫甲基過程[29],如圖4所示。H/C摩爾比從1.64減小至0.69,O/C摩爾比從1.45減小至0.28。從圖4中可看出,脫水和脫羧基是天然柵藻水熱過程中的主要路徑,脫甲基路徑可忽略;O/C一般用于反映碳化程度[8],O/C的摩爾比從1.45減小至0.28。說明隨著水熱溫度的升高,水熱碳化程度加強,表明水熱炭有應用于固體燃料的潛力,鑒于水熱炭含有大量灰分,脫灰預處理是必要的過程。
注:NM為天然柵藻。下同。
天然柵藻及其不同水熱溫度條件下的水熱炭的FTIR結果如圖5所示。
圖5 天然柵藻及水熱炭FTIR吸收峰圖譜
根據(jù)文獻[30-36],對樣品進行官能團種類及演變過程進行分析。在3 000~3 800 cm-1處的強寬峰是羥基、羧基或氨基中的OH和NH伸縮振動的吸收峰,2 800~3 000 cm-1處的吸收峰為脂肪族CH2、CH3的不對稱伸縮振動峰,1 646 cm-1處的吸收峰主要是酮基和酰胺基中的C=O伸縮振動峰,1 535 cm-1處的吸收峰羧基中C=O的不對稱伸縮振動,1 424 cm-1處的吸收峰是芳香環(huán)中C=C的伸縮振動峰,1 094 cm-1處的吸收峰為醚鍵中C-O-R或醇類中C-O鍵的伸縮振動,同時,該出峰也常表示Si-O的吸收峰,874 cm-1處的吸收峰是芳香環(huán)側鏈中C-H的伸縮振動。與天然柵藻相比,水熱炭主要吸收峰位置變化不大,但強度變化較明顯,說明水熱炭化處理后,官能團種類沒有變化,但含量發(fā)生了變化。相比于天然柵藻,水熱炭在3 000~3 800 cm-1處的OH、NH吸收峰,2 800~3 000 cm-1處的CH吸收峰,1 424 cm-1處的C=C吸收峰,1 094 cm-1處的C-O吸收峰,874 cm-1處的C-H吸收峰均有明顯增加,說明相比于天然柵藻,水熱炭的官能團更豐富,芳構化程度更強,水熱炭的炭化程度增加;酮基和酰胺基中的C=O(1 646 cm-1)和羧基中C=O(1 535 cm-1)吸收峰有降低趨勢,說明水熱過程中有明顯的脫羧基和脫羰基作用,O元素質量分數(shù)降低,這與元素分析結果一致。
表2和圖6分別為不同溫度條件下制備水熱炭的結構特征和吸附-脫附等溫線圖。從表2中可看出,相比于天然柵藻,水熱炭比表面積有明顯的增大,水熱炭的比表面積范圍為28.7~35.26 m2/g,說明水熱工藝有利于改善其孔結構特性。對比不同水熱溫度條件下制備的水熱炭發(fā)現(xiàn),不同水熱溫度對孔結構的影響較小。圖6中,水熱炭的等溫吸附-脫附曲線為V型等溫線中的H3型回滯環(huán)。當相對壓力(0)大于0.2時出現(xiàn)回滯環(huán),這是由于水熱炭中的毛細凝聚。回滯環(huán)的形狀反映了孔的存在結構。原料柵藻的吸脫附能力很小,水熱炭的吸脫附能力明顯增強。
表2 天然柵藻及水熱炭BET比表面積、總孔容及平均孔徑
圖6 天然柵藻及水熱炭氮氣吸附-脫附等溫曲線
圖7為天然柵藻及其水熱炭的SEM圖。天然柵藻呈密實的塊狀無孔道結構(圖7a),從圖7b和圖7c中可看出,經(jīng)過水熱碳化處理后,樣品表面形貌有較大變化,水熱炭的破碎度和孔隙度增大,這是由于水熱過程中揮發(fā)分析出以及天然微藻基質的化學分解,這與前文相應的孔隙結構分析結果一致。
圖7 天然微藻及其水熱炭電鏡圖片
圖8為天然柵藻及其在不同溫度條件下水熱炭的熱重及失重速率曲線。
a. TG
b. DTG
圖8 天然柵藻和不同水熱溫度下水熱炭的TG和DTG曲線
Fig.8 TG-DTG curves of raw and hydrochars at different temperatures
從圖8的熱重曲線中可看出,與天然柵藻相比,水熱炭表現(xiàn)出不同的熱解特性;不同的水熱溫度下水熱炭的失質量過程差異也較大,失質量率范圍為33%~43%,原料的失質量率為57%,這是由于水熱處理后,天然柵藻中有機組分發(fā)生水解、脫水、脫羧、芳香化、縮聚等反應。從失質量速率曲線中可以看出,可以將整個熱解過程分為4個失質量區(qū)間。這些失質量區(qū)間對應不同的有機物的分解,第1個失質量階段(30~200 ℃)是樣品的脫水階段;第2個失質量階段(200~400 ℃)是原料和水熱炭中的無定形結構的快速熱解階段。最大失質量速率溫度為300 ℃。隨著水熱溫度的升高,天然柵藻碳化程度增強,揮發(fā)分含量減少,導致該階段的失質量峰逐漸減小,當水熱溫度大于220 ℃時,水熱炭在300 ℃處的失質量峰消失,最大失質量速率峰向高溫區(qū)移動。第3個失質量階段(400~550 ℃)是由于焦炭的失質量引起的;第4個失質量階段(550~800 ℃)是由于殘余焦炭以及灰分中鹽類的失質量引起的。對比天然柵藻,水熱炭的失質量峰明顯增強。由以上分析可知,高灰分含量的柵藻經(jīng)處理后,最大失質量速率峰值向高溫區(qū)移動,柵藻中的有機易分解組分向難分解殘?zhí)哭D化,一定程度上提高了固體產物的熱穩(wěn)定性。
DTG峰高表現(xiàn)的熱解速率與化學反應活性成正比,反應溫度與反應活性成反比[37]。對不同水熱溫度條件下水熱炭進行熱解動力學分析,為詳細研究水熱炭的熱解動力過程,將失重階段分為4個階段,即30~200、200~400、400~550和550~800 ℃,各階段表觀活化能分別用1、2、3、4表示,結果如表3所示。對比分析天然柵藻及其水熱炭的表觀活化能發(fā)現(xiàn),水熱炭1小于天然柵藻1,說明水熱炭的疏水性優(yōu)于原料[38],易于運輸和儲存。隨著水熱溫度的升高,2減小,3值增,說明水熱炭熱穩(wěn)定性增強。
表3 不同熱重階段天然柵藻及水熱炭的表觀活化能
注:1~4表示不同階段的活化能。
Note:1to4indicate the activation energy at different stages.
1)天然柵藻灰分質量分數(shù)為44.66%,脂類和蛋白質質量分數(shù)為1.4%和15.1%。天然微藻灰分組分多為難溶于水的組分,天然微藻水熱碳化后,水熱炭灰分含量增加。240 ℃時,天然微藻中69.88%的H元素和93.88%的O元素被脫除,C的固存率為33.97%。O/C摩爾比從1.45減小至0.28,水熱碳化程度加強。水熱炭有應用于固然燃料的潛力,鑒于水熱炭含有大量的灰分,脫灰預處理是必要的過程。
2)水熱碳化處理有效提高了水熱炭的孔隙結構,水熱炭的吸脫附能力明顯增強,相比于天然柵藻(4.36 m2/g),水熱炭的比表面積范圍為28.7~35.26 m2/g。天然柵藻呈密實的塊狀無孔道結構,而水熱炭的破碎度和孔隙率增大。
3)水熱炭熱重分析發(fā)現(xiàn),隨著水熱溫度升高,300 ℃處的失質量峰逐漸消失,柵藻中的易分解組分向難分解殘?zhí)哭D化,提高了固體產物的熱解穩(wěn)定性。熱解動力學結果顯示,水熱炭疏水性優(yōu)于天然柵藻。
[1] Teymouri A, Stuart B J, Kumar S. Effect of reaction time on phosphate mineralization from microalgae hydrolysate[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(1): 618-625.
[2] Bhattacharya S, Maurya R, Mishra S K, et al. Solar driven mass cultivation and the extraction of lipids from chlorella variabilis: A case study[J]. Algal Research, 2016(14): 137-142.
[3] 徐玉福,俞輝強,朱利華,等. 小球藻粉水熱催化液化制備生物油[J]. 農業(yè)工程學報,2012,28(19):194-199.
Xu Yufu, Yu Huiqiang, Zhu Lihua, et al. Preparation of bio-fuel from Chlorella pyrenoidosa by hydrothermal catalytic liquefaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012. 28(19): 194-199. (in Chinese with English abstract)
[4] 曲磊,崔翔,楊海平,等. 微藻水熱液化制取生物油的研究進展[J]. 化工進展,2018,37(8):2962-2969.
Qu Lei, Cui Xiang, Yang Haiping, et al. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969. (in Chinese with English abstract)
[5] 徐春明,焦志亮,王曉丹,等. 微藻作原料生產生物柴油的研究現(xiàn)狀和前景[J]. 現(xiàn)代化工,2015,35(8):1-5.
Xu Chunming, Jiao Zhiliang, Wang Xiaodan, et al. Biodiesel production from microalgae: Current status and potential[J]. Modern Chemical Industry, 2015, 35(8): 1-5. (in Chinese with English abstract)
[6] 張冀翔,蔣寶輝,王東,等. 微藻水熱液化生物油化學性質與表征方法綜述[J]. 化工學報,2016(5):1644-1653.
Zhang Yixiang, Jiang Baohui, Wang Dong, et al. Chemical properties and characterization methods for hydrothermalliquefaction bio-crude from microalgae: A review[J]. CIESC Journal, 2016(5): 1644-1653. (in Chinese with English abstract)
[7] Peterson A A, Vogel F, Lachance R P, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32-65.
[8] 王定美,王躍強,袁浩然,等. 水熱炭化制備污泥生物炭的碳固定[J]. 化工學報,2013(7):2625-2632.
Wang Dingmei, Wang Yueqiang, Yuan Haoran, et al. Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013(7): 2625-2632. (in Chinese with English abstract)
[9] Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2010, 4(2): 160-177.
[10] 李音,單勝道,楊瑞芹,等. 低溫水熱法制備竹生物炭及其對有機物的吸附性能[J]. 農業(yè)工程學報,2016,32(24):240-247.
Li Yin, Shan Shengdao, Yang Ruiqin, et al. Preparation of bamboo biochars by low-temperature hydrothermal method and its adsorption of organics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 240-247. (in Chinese with English abstract)
[11] Cao X, Ro K S, Chappell M, et al. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy[J]. Energy & Fuels, 2011, 25(1): 388-397.
[12] Falco C, BaccileN, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J]. Green Chemistry, 2011, 13(11): 3273-3281.
[13] Cheng F, Cui Z, Chen L, et al. Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry[J]. Applied Energy, 2017, 206: 278-292.
[14] Heilmann S M, Davis H T, Jader L R, et al. Hydrothermal carbonization of microalgae [J]. Biomass & Bioenergy, 2010, 34(6): 875-882.
[15] Xu Q, Qian Q, Quek A, et al. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(9): 1092-1101.
[16] Park K Y, Lee K, Kim D. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization[J]. Bioresource Technology, 2018, 258: 119-124.
[17] Lee J, Lee K, Sohn D, et al. Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel[J]. Energy, 2018, 153: 913-920.
[18] Marin-Batista J D, Villamil J A, Rodriguez J J, et al. Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion[J]. Bioresource Technology, 2019, 274: 395-402.
[19] 張進紅,林啟美,趙小蓉,等. 水熱炭化溫度和時間對雞糞生物質炭性質的影響[J]. 農業(yè)工程學報,2015,31(24):239-244.
Zhang Jinhong, Lin Qimei, Zhao Xiaorong, et al. Effect of hydrothermal carbonization temperature and time on characteristics of bio-chars from chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 239-244. (in Chinese with English abstract)
[20] Kohansal K, Tavasoli A, Bozorg A. Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction ofmicroalgae[J]. Bioresource Technology, 2019, 277: 136-147.
[21] Channiwala S A, Parikh P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels[J]. Fuel, 2002, 81(8): 1051-1063.
[22] 王慶峰. 中高硫煤浮選脫硫脫灰試驗研究[D]. 青島:青島理工大學,2013.
Wang Qingfeng. Research on Desulphurization and Deashing for Medium-High Sulphur Coal with Flotation[D]. Qingdao: Qingdao Technological University, 2013. (in Chinese with English abstract)
[23] Jaber J O, Probert S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions[J]. Fuel Processing Technology, 2000, 63(1): 57-70.
[24] White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.
[25] 張進紅,林啟美,趙小蓉,等. 不同炭化溫度和時間下牛糞生物炭理化特性分析與評價[J]. 農業(yè)機械學報,2018,49(11):298-305.
Zhang Jinhong, Lin Qimei, Zhao Xiaorong, et al. Physico-chemical characteristics and evaluation of cow manure hydrocharat different carbonization temperatures and durations[J]. Journal of Agricultural Machinery, 2018, 49(11): 298-305. (in Chinese with English abstract)
[26] 馬騰,郝彥輝,姚宗路,等. 秸稈水熱生物炭燃燒特性評價[J]. 農業(yè)機械學報,2018,49(12):340-346.
Ma Teng, Hao Yanhui, Yao Zonglu, et al. Evaluation on combustion characteristics of straw hydrothermal bio-char[J]. Journal of Agricultural Machinery, 2018, 49(12): 340-346. (in Chinese with English abstract)
[27] 張曾,單勝道,吳勝春,等. 炭化條件對豬糞水熱炭主要營養(yǎng)成分的影響[J]. 浙江農林大學學報,2018,35(3):398-404.
Zhang Zeng, Shan Shengdao, Wu Shengchun, et al. Carbonization with main nutrients in pig manure hydrochar[J]. Journal of Zhejiang A&F University, 2018, 35(3): 398-404. (in Chinese with English abstract)
[28] He C, Zhao J, Yang Y, et al. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493.
[29] Van Krevelen D W. Graphical-statistical method for the study of structure and reaction processes of coal[J]. Fuel, 1950, 29: 228-269.
[30] Zhang B, Feng H, He Z, et al. Bio-oil production from hydrothermal liquefaction of ultrasonic pre-treated[J]. Energy Conversion and Management, 2018, 159: 204-212.
[31] Sabio E, Alvarez-Murillo A, Roman S, et al. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables[J]. Waste Management, 2016, 47: 122-132.
[32] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.
[33] Vyazovkin S, Burnham A K, Criado J M, et al. Kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
[34] Maliutina K, Tahmasebi A, Yu J. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds[J]. Bioresour Technol, 2018, 256: 160-169.
[35] Zhao H, Yan H, Dong S, et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(3): 1685-1690.
[36] Liu H M, Li M F, Yang S, et al. Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues[J]. Energies, 2013, 6(3): 1590-1603.
[37] 武宏香,李海濱,趙增立. 煤與生物質熱重分析及動力學研究[J]. 燃料化學學報,2009(5):538-545.
Wu Hongxiang, Li Haibin, Zhao Zengli. Thermogravimetricanalysisandpyrolytickineticstudyoncoal/biomassblends[J]. Journal of Fuel Chemistry and Technology, 2009(5): 538-545. (in Chinese with English abstract)
[38] 范方宇,邢獻軍,施蘇薇,等.水熱生物炭燃燒特性與動力學分析[J]. 農業(yè)工程學報,2016,32(15):219-224.
Fan Fangyu, Xing Xianjun, Shi Suwei, et al. Combustion characteristic and kinetics analysis of hydrochars[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 219-224. (in Chinese with English abstract)
Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural
Liu Huihui1, Qu Lei1, Chen Yingquan1, Zhang Wennan2,Yang Haiping1, Wang Xianhua1※, Chen Hanping1
(1.,,430074,; 2.,,SE-85170,)
In order to explore the utilization of natural microalgae, the naturalwas selected to carry out hydrothermal carbonization experiments, and the characterization of its hydrochars was determined using Fourier transform infrared spectroscopy,-ray diffraction analysis,-ray fluorescence spectroscopy, environmental scanning electron microscopy and thermogravimetric analyzer. The results showed that the ash content of naturalwas 44.66%, and the lipid and protein content of naturalwere 1.4% and 15.1%, respectively. The natural microalgae ash components were mostly water-insoluble components. The main components included (Mg0.064Ca0.936CO3), SiO2, NaCl, Al2O3, CaSO4, Mg3S2O8(OH)2. After hydrothermal carbonization treatment, NaCl was dissolved in water, and the water-insoluble components were enriched in hydrochars. Compared with the natural, the ash content of hydrochars increased, in the range from 57.41% to 71.47%. It was worth noting that the naturaland its derived hydrochars had no fixed carbon. With the increase of hydrothermal temperature, the hydrothermal carbon yield decreased from 47.29% (180℃) to 43.01% (240℃). This phenomenon was on account of the organic components in the naturalunderwent hydrolysis, dehydration, decarboxylation, aromatization, condensation and polymerization. The carbon remaining ratio was the largest, the oxygen was the smallest, and the remaining ratios of carbon, hydrogen and oxygen decreased as the hydrothermal temperature increased. For HC-240, the removal rates of H and O were 69.88% and 93.88%, respectively, and the C remaining ration rate was 33.97%. The O/C molar ratio of hydrochars decreased from 1.45 to 0.28. Dehydration and decarboxylation were the main pathways in hydrothermal carbonization of the natural, and the demethylation pathway was negligible. Oxygen was removed in the form of H2O and CO2. The degree of carbonization was enhanced and hydrochars had the potential to be applied to solid fuels. Since hydrochars contained a large amount of ash, its calorific value was in the range of 8.43-9.67 MJ/kg. Hence, the pretreatment of deashing was a necessary process. The hydrothermal carbonization treatment effectively improved the pore structure of hydrochars, and the absorption-desorption capacity of hydrochars was obviously enhanced. Compared with natural(4.36 m2/g), the specific surface area of hydrochars was in the range of 28.7-35.26 m2/g. The naturalhad a dense block-like without pores or pathways. However, the morphologies of hydrochars changed significantly. The fragmentation and porosity of hydrochars increased, which attributed to the release of volatile matter during hydrothermal carbonization process and chemical bond decomposition of feedstock. The thermogravimetric analysis experiments were carried out to reveal the pyrolysis characteristics of hydrochars. It was found that the weight loss peak at 300 ℃ gradually disappeared with the increased of hydrothermal temperature. This was owing to the degree of naturalincreased and the volatile matter content decreased. When the hydrothermal temperature was higher than 220 ℃, the maximum weight loss rate peak moved to the high temperature zone. The pyrolysis kinetics results showed that the thermal stability of hydrochars increased with the increase of hydrothermal temperature. The hydrochars were more hydrophobic than that of the natural. The research results provide a theoretical reference for the resource utilization of natural microalgae.
carbonization; pyrolysis; kinetics; natural; hydrochar; physicochemical characteristics
2019-01-05
2019-06-27
國家自然科學基金:生物質熱化學轉化基礎(51622604)
劉慧慧,博士生,主要從事生物質水熱綜合利用研究工作。Email:liuhh@hust.edu.cn
王賢華,副教授,博士生導師,主要從事生物質熱化學利用研究。Email:wangxianhua@hust.edu.cn.
10.11975/j.issn.1002-6819.2019.14.030
TK16
A
1002-6819(2019)-14-0235-08
劉慧慧,曲 磊,陳應泉,張文楠,楊海平,王賢華,陳漢平. 天然微藻水熱炭理化特性及熱解動力學研究[J]. 農業(yè)工程學報,2019,35(14):235-242. doi:10.11975/j.issn.1002-6819.2019.14.030 http://www.tcsae.org
Liu Huihui, Qu Lei, Chen Yingquan, Zhang Wennan, Yang Haiping, Wang Xianhua, Chen Hanping. Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 235-242. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.030 http://www.tcsae.org