趙嫦清 王志明 楊麗霞
[摘 要] 動脈粥樣硬化(atherosclerosis,AS)是一種復(fù)雜的慢性血管炎癥疾病,由多種AS相關(guān)細胞與其表達的促炎因子相互作用促進其發(fā)生發(fā)展。核因子-kB(NF-kB)信號通路是由多種細胞因子介導(dǎo)的經(jīng)典信號通路,不僅參與炎癥反應(yīng),也調(diào)控細胞損傷、氧化應(yīng)激、細胞凋亡等過程。而自噬是細胞穩(wěn)態(tài)的溶酶體降解過程,在一定范圍內(nèi)的自噬激活可調(diào)節(jié)炎癥反應(yīng)。AS多伴有炎癥反應(yīng)并與自噬密切相關(guān),NF-kB的激活可介導(dǎo)自噬,而自噬的過度激活抑制NF-kB活性。本研究主要對NF-kB與自噬在AS中的相互關(guān)系做一綜述。
[關(guān)鍵詞] 動脈粥樣硬化;炎癥反應(yīng);核因子-kB;自噬;斑塊穩(wěn)定性
中圖分類號:R543? 文獻標識碼:A? 文章編號:1009-816X(2019)04-0355-03
動脈粥樣硬化(atherosclerosis,AS)是一種復(fù)雜的慢性血管炎癥疾病,具有經(jīng)典的炎癥變性、滲出及增生等特點。炎癥反應(yīng)貫穿動脈粥樣硬化病變的各個階段,可能是多種致動脈粥樣硬化機制的共同環(huán)節(jié)和通路。其整個過程涉及到炎癥因子的刺激、血管內(nèi)皮細胞(ECs)損傷、平滑肌細胞(VSMCs)增殖遷移及巨噬細胞浸潤等[1]。而核因子-kB(NF-kB)信號通路及自噬均參與AS發(fā)生、發(fā)展的多個過程。
1 NF-kB信號通路與AS
NF-kB是一類廣泛存在于真核細胞胞質(zhì)中,與一種抑制蛋白(IkB)結(jié)合存在,當應(yīng)激和損傷狀態(tài)時腫瘤壞死因子(TNF-α)、脂多糖(LPS)等促炎因子能與細胞膜TNF受體結(jié)合,最先激活I(lǐng)KKα和IKKβ,導(dǎo)致NF-kB與IkB解離,NF-kB得以活化,活化的NF-kB進入細胞核,作用于相應(yīng)基因的啟動子,作為調(diào)節(jié)炎癥反應(yīng)、氧化應(yīng)激和免疫的主要核轉(zhuǎn)錄因子[2]。NF-kB信號通路是一種炎癥通路,在動脈粥樣硬化部位和斑塊中可發(fā)現(xiàn)活化的NF-kB,而在正常血管中很少檢測到其表達[3]。鄭學(xué)忠等[4]的研究顯示,NF-kB信號通路在AS中參與氧化應(yīng)激、炎癥反應(yīng)、ECs損傷、VSMCs的增殖、巨噬細胞浸潤等。炎癥細胞向血管壁的浸潤需先與內(nèi)皮細胞粘附,此過程涉及大量粘附分子的產(chǎn)生,進一步引起內(nèi)皮細胞的損傷,大量研究顯示該過程均有NF-kB信號通路激活。DebRoy等[5]在LPS介導(dǎo)的ECs中發(fā)現(xiàn),基質(zhì)相互作用分子(STIM1)能調(diào)節(jié)ECs外鈣離子內(nèi)流,使ECs的通透性增加。LPS誘導(dǎo)后可致STIM1表達增加,而抑制NF-kB通路后,STIM1的表達則明顯降低,并證明了NF-kB信號通路的激活可促使NF-kB與STIM1啟動子的結(jié)合,從而增加STIM1的表達而引起ECs的損傷。Shen等[6]的研究中表明,Ang Ⅱ通過AT1受體激活NF-kB信號通路而誘導(dǎo)VSMC表型由靜止型轉(zhuǎn)化為增殖型。既往研究亦證實NF-kB的激活可促使ECs、VSMCs、巨噬細胞的浸潤[7]。
2 自噬與AS
自噬即細胞的自我吞噬,是細胞穩(wěn)態(tài)的溶酶體降解途徑。自噬作為炎癥的負調(diào)節(jié)劑,可通過清除受損的細胞器和抑制促炎復(fù)合物的形成,減緩炎癥反應(yīng)。很多學(xué)者認為自噬的受損和缺乏而激活炎性體是加劇動脈粥樣硬化進程的原因之一[8]。既往的實驗研究發(fā)現(xiàn),自噬核心基因的消融加劇了鼠動脈粥樣硬化;然而自噬同樣調(diào)節(jié)炎癥反應(yīng)、ECs損傷、VSMC增殖遷移和巨噬細胞浸潤。
3 NF-kB信號通路與自噬
在動脈粥樣硬化中,NF-kB信號通路作為一種炎癥通路,與自噬之間存在正負反饋調(diào)節(jié),共同調(diào)節(jié)斑塊穩(wěn)定性。
3.1 NF-kB信號通路正向調(diào)節(jié)自噬水平:NF-kB可以正向調(diào)節(jié)AS中自噬水平。在一項關(guān)于小鼠紋狀體細胞的研究中發(fā)現(xiàn),p53是NF-kB的靶基因,NF-kB的核轉(zhuǎn)位上調(diào)p53的表達,抑制NF-kB核轉(zhuǎn)位可下調(diào)p53的表達[9]。最近的研究發(fā)現(xiàn),p53上調(diào)表達能通過激活其下游基因(DRAM)從而激活自噬,進一步說明NF-kB的激活上調(diào)自噬水平。同時在神經(jīng)元中也發(fā)現(xiàn),激活谷氨酸受體可誘發(fā)IkBα的降解而激活NF-kB,引發(fā)神經(jīng)元自噬。近年Xie等[10]在野百合堿誘導(dǎo)的大鼠肺動脈高壓(PAH)模型中也發(fā)現(xiàn),NF-kB可誘導(dǎo)自噬激活引起高脂血癥介導(dǎo)的心臟重塑,而抑制NF-kB或自噬可防止右心室收縮壓(RVSP)、右心室肥厚指數(shù)(RVHI)的增加和肺動脈重塑,這些結(jié)果表明抑制NF-κB或自噬可阻止PAH的發(fā)展??傊?,NF-kB信號通路在心血管中正向調(diào)節(jié)自噬水平,減緩AS進展。
3.1.1 NF-kB信號通路激活自噬減輕炎癥反應(yīng):近年Xia等[11]發(fā)現(xiàn),PM2.5在小鼠主動脈內(nèi)皮細胞中可通過FHL2(四個半LIM結(jié)構(gòu)域2)激活NF-kB信號通路,從而激活自噬,導(dǎo)致白介素-6(IL-6)等炎癥因子的表達降低。同時也有研究發(fā)現(xiàn),TG2作為TGM2基因編碼的80kDa酶,與癌細胞密切相關(guān),其過量表達可激活NF-kB信號通路,引起IL-6/STAT3表達增加,從而激活自噬,抑制IL-2、4等炎癥因子的表達。當抑制TG2或者NF-kB后,IL-6/STAT3的表達明顯降低,炎癥因子表達明顯升高[12]。進一步證實NF-kB/IL-6/STAT3/自噬通路的存在。
3.1.2 NF-kB信號通路激活自噬減輕內(nèi)皮細胞損傷:NF-kB信號通路正向調(diào)節(jié)自噬水平,對ECs也產(chǎn)生一定的影響。Peng等[13]在ApoE-小鼠中發(fā)現(xiàn),甲基胞嘧啶雙加氧酶2(TET2)的過表達可通過降低自噬標志Beclin 1啟動子的甲基化水平,增加ECs自噬通量,下調(diào)炎癥反應(yīng)。而抑制TET2的表達導(dǎo)致內(nèi)皮型一氧化氮合酶(eNOS)水平的上調(diào)和內(nèi)皮素-1水平的下調(diào),導(dǎo)致ECs損傷,增加AS的發(fā)生[14]。在Guo等[15]的研究中,自噬可誘導(dǎo)eNOS表達,減少人體中的氧化應(yīng)激,減輕內(nèi)皮損傷,減緩AS進程。
3.1.3 NF-kB信號通路激活自噬減少VSMCs的增殖遷移:VSMCs在AS中也同樣參與自噬過程。VSMCs可分泌多種細胞因子,減輕炎癥反應(yīng),其大量增殖遷移可加劇AS進程[16]。Grootaer等[17]在VSMCs中發(fā)現(xiàn),脂質(zhì)過氧化產(chǎn)物4-羥基壬烯醛(4-HNE)可通過單磷酸腺苷活化蛋白激酶(AMPK)和雷帕霉素靶蛋白(mTOR)獨立機制增強自噬,使VSMCs免受4-HNE誘導(dǎo)的細胞死亡,減少其增殖遷移。Wu等[18]的研究同樣發(fā)現(xiàn),上調(diào)自噬和激活A(yù)MPK/mTOR信號通路可減少ROS的產(chǎn)生而抑制VSMCs的增殖遷移。
3.1.4 NF-kB信號通路激活自噬抑制巨噬細胞浸潤:最近的研究表明,巨噬細胞自噬可通過促進膽固醇外流和抑制炎性體激活來抑制AS的進展[19],巨噬細胞中自噬的缺乏被證明損害膽固醇流出,并可導(dǎo)致IL-1β分泌增加和膽固醇結(jié)晶[20]。Wang等[21]在巨噬細胞自噬過程中發(fā)現(xiàn),巨噬細胞可通過miR-384-5p介導(dǎo)的Beclin-1調(diào)節(jié)AS進展。激活的巨噬細胞抑制mTOR通路來穩(wěn)定斑塊,而巨噬細胞自噬受損刺激其極化為M1型巨噬細胞。已有研究發(fā)現(xiàn),抑制PI3K/Akt/mTOR通路可誘導(dǎo)自噬,減少斑塊中巨噬細胞的浸潤和炎癥因子的表達[22]??梢?,自噬可抑制巨噬細胞浸潤。
3.2 自噬負向調(diào)節(jié)NF-kB信號通路:在AS中NF-kB信號通路正向調(diào)節(jié)自噬水平的同時,自噬也負向調(diào)節(jié)NF-kB信號通路。自噬抑制NF-kB信號通路可減輕炎癥反應(yīng)、內(nèi)皮細胞損傷,減弱VSMCs的增殖遷移,減少巨噬細胞浸潤。
3.2.1 自噬抑制NF-kB信號通路減輕炎癥反應(yīng):近年發(fā)現(xiàn),自噬可特異性降解NF-kB信號通路中非經(jīng)典途徑中的關(guān)鍵酶(NIK)和I-kB激酶(IKK)水平,從而減輕炎癥反應(yīng),減緩AS進程[23]。隨后在AS中研究也發(fā)現(xiàn),自噬激活導(dǎo)致NF-kB信號通路上游的促炎介質(zhì)的自噬體降解,導(dǎo)致促炎基因表達減少,從而減輕炎癥反應(yīng)[24]。
3.2.2 自噬抑制NF-kB信號通路減輕內(nèi)皮細胞損傷:近年在小鼠肺泡上皮細胞缺氧復(fù)氧模型中發(fā)現(xiàn),自噬增強可通過抑制NF-kB信號通路和調(diào)節(jié)炎癥介質(zhì)的釋放來減少肺泡上皮細胞損傷[25]。而在小鼠的腸黏膜上皮細胞中同樣也發(fā)現(xiàn),缺氧介導(dǎo)自噬的激活,從而降低NF-kB信號通路的表達,減輕腸黏膜上皮細胞的損傷[26]??梢娮允煽赏ㄟ^抑制NF-kB信號通路減輕內(nèi)皮細胞損傷。
3.2.3 自噬抑制NF-kB信號通路減少VSMCs的增殖遷移:Ramadan等[27]在關(guān)于自噬與VSMCs研究中發(fā)現(xiàn),自噬受許多自噬相關(guān)基因(ATG)調(diào)節(jié),其中ATG7是自噬的必需調(diào)節(jié)因子,因為它是過氧化物酶體和液泡膜融合所必需的,導(dǎo)致自噬體產(chǎn)生。血管緊張素II(AngII)刺激主動脈內(nèi)皮細胞后,ATG7合成增加,VSMCs大部分處于靜止狀態(tài),而SiRNA干擾ATG7后,VSMCs表型由靜止型轉(zhuǎn)化成增殖遷移型。也有相繼研究發(fā)現(xiàn)自噬的激活抑制NF-kB信號通路表達的同時,也抑制VSMCs的增殖[28]。
3.2.4 自噬抑制NF-kB信號通路減少巨噬細胞浸潤:在AS中,巨噬細胞的浸潤加劇斑塊的不穩(wěn)定性,NF-KB信號通路調(diào)節(jié)巨噬細胞水平,自噬同樣也調(diào)節(jié)巨噬細胞。M1型巨噬細胞主要分泌IL-1b等促炎因子和細胞因子,NF-kB信號通路的激活可促進M1型巨噬細胞的活化,自噬增強抑制了NF-kB信號通路,而自噬抑制劑(3-MA)作用后增加了M1型巨噬細胞的活化[29]。在一項關(guān)于黃曲霉素(AFB1)的研究中發(fā)現(xiàn),AFB1作用于巨噬細胞后,氧自由基和自噬明顯增加,M1型巨噬細胞量明顯減少[30]。巨噬細胞中通過核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體家族含熱蛋白結(jié)構(gòu)域3(NLRP3)炎癥小體的激活調(diào)節(jié)自噬,自噬的激活通過靶向泛素化來抑制IL-1β的分泌和促進前IL-1β的溶酶體降解[31]。雷帕霉素介導(dǎo)的自噬在巨噬細胞中通過減少線粒體活性氧和前IL-1β的釋放,IL-1β的減少降低了IL-1β-p38 MAP激酶(MAPK)-NF-kB途徑的活性。抑制自噬后,巨噬細胞產(chǎn)生的IL-1β和IL-18明顯減少。間接說明雷帕霉素通過抑制NLRP3的正反饋回路炎性體-p38 MAPK-NF-kB途徑負向調(diào)節(jié)巨噬細胞活性[32]。
參考文獻
[1]Tabas I, GarciaCardena G, Owens G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Bio,2015,209(1):13.
[2]Yu XH, Zheng XL, Tang CK. Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis[J]. Adv Clin Chem,2015,70(4):1-30.
[3]Morita M, Yano S, Yamaguchi T, et al. Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells[J]. JYDiabetes Complications,2013,27(1):11-15.
[4]鄭學(xué)忠,萬怡軒,王清岑,等.NF-κB信號通路在動脈粥樣硬化中的作用及機制研究進展 [J].西南國防醫(yī)藥,2018,28(3):285-287.
[5]Debroy A, Vogel Stephen M, Soni D, et al. Cooperative signaling via transcription factors NF-κB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin[J]. J Biol Chem,2015,289(35):24188-24201.
[6]Shen YJ, Zhu XX, Yang X, et al. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation[J]. J Nat Med,2014,68(3):623-629.
[7]Tan SZ, Ooi DS, Shen HM, et al. The atherogenic effects of serum amyloid A are potentially mediated via inflammation and apoptosis[J]. J Atheroscler Thromb,2014,21(8):854-867.
[8]Ding Z, Liu S, Wang X, et al. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis[J]. Can J Physiol Pharmacology,2014,92(7):524-530.
[9]Wang Y, Dong XX, Cao Y, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms[J]. Neurosci,2010,68(12):e452.
[10]Xie X, Wang G, Zhang D, et al. Activation of peroxisome proliferator-activated receptor γ ameliorates monocrotaline-induced pulmonary arterial hypertension in rats[J]. Biomed Rep,2015,3(4):537-542.
[11]Xia WR, Fu W, Wang Q, et al. Autophagy inducedFHL2Upregulation promotes IL-6 production by activating the NF-κB pathway in mouse aortic endothelial cells after exposure to PM2.5[J]. Inter J Mole Sci,2017,18(7):1484.
[12]Zhang H, Chen Z, Miranda RN, et al. TG2 and NF-kB signaling coordinates the survival of mantle cell lymphoma cells via IL-6-mediated autophagy [J]. Cancer Research,2016,76(21):6410-6423.
[13]Peng J, Yang Q, Li AF, et al. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE-/- mice[J]. Oncotarget,2016,7(47):76423-76436.
[14]Yang Q, Li X, Li R, et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation[J]. Ann Bio Eng,2015,44(7):2218-2227.
[15]Guo FX, Li XH, Peng J, et al. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system[J]. Ann Biomed Eng,2014,42(9):1978-1988.
[16]Ho KJ, Spite M, Owens CD, et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis[J]. Am J Pathol,2010,177(4):2116-2123.
[17]Grootaert M, Roth L, Schrijvers DM, et al. Defective autophagy in atherosclerosis: to die or to senesce?[J]. Oxid Med Cell Longev,2018,2018,(2):1-12.
[18]Wu H, Song A, Hu W, et al. The Anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Front Pharmacol,2017,8(1):948.
[19]Yu MI, Hwang S, Cadwell K. Autophagy and inflammation [J]. Clin Trans Med,2017,6(1):24.
[20]Suzuki E, Maverakis E, Sarin R, et al. T cell-independent mechanisms associated with neutrophil extracellular trap formation and selective autophagy in IL-17A-mediated epidermal hyperplasia[J]. J Immuno,2016,197(11):4403.
[21]Wang B,Yuan Z, Dong H, et al. Macrophage autophagy regulated by miR-384-5p-mediated control of Beclin-1 plays a role in the development of atherosclerosis[J]. Am J Transl Res,2016,8(2):606-614.
[22]Zhai C, Cheng J, Mujahid H, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque[J]. Plos One,2014,9(3):e90563.
[23]Pawlowska E, Szczepanska J, Wisniewski K, et al. NF-κB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role?[J]. Int J Mol Sci,2018,19(4):1-12.
[24]Williamsbey Y, Boularan C, Vural A, et al. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy[J]. Plos One,2014,9(6):e97957.
[25]Xia WR, Fu W, Wang Q, et al. Autophagy induced FHL2 upregulation promotes IL-6 production by activating the NF-κB pathway in mouse aortic endothelial cells after exposure to PM2.5[J]. Int J Mol Sci,2017,18(7):1484.
[26]Cosinroger J, Simmen S, Melhem H, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation[J]. Nature Communications,2017,8(1):98.
[27]Ramaan A, Singh K, Quan A, et al. Abstract 15196: autophagy regulates vascular smooth muscle cell phenotypic switching: translational implications for aneurysm formation[J]. Circulation,2013,128(22):A15196.
[28]Li QS, Kang J, Xiong XJ, et al. Protoporphyrin IX-mediated sonodynamic therapy promotes autophagy in vascular smooth muscle cells[J]. Oncology Letters,2017,14(2):2097-2102.
[29]Aflaki E, Moaven N, Borger D K, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages[J]. Aging Cell,2016,15(1):77-88.
[30]An YN, Shi XC, Tang XD, et al. Aflatoxin B1 induces reactive oxygen species-mediated autophagy and extracellular trap formation in macrophages[J]. Front Cell Infect Microbiol,2017,7(2):53.
[31]Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction[J]. Nature Immunology,2012,13(3):255-263.
[32]Ko JH, Yoon SO, Lee HJ, et al. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy-and p62-dependent manners[J]. Oncotarget,2017,8(25):40817-40831.