梁珊 何亞州 李麗娟
[摘要] 目的 利用生物信息學(xué)分析方法,探討miRNA-494與慢性心力衰竭患者心肌纖維化機(jī)制的聯(lián)系。 方法 利用GEO數(shù)據(jù)庫(kù)篩選出GSE104150數(shù)據(jù)集,分析慢性心力衰竭患者及健康對(duì)照者差異表達(dá)miRNA,對(duì)其中miR-494預(yù)測(cè)靶基因及靶基因集分別進(jìn)行基因本體(GO)富集分析及信號(hào)通路富集分析。 結(jié)果 與對(duì)照者比較,miR-494在慢性心力衰竭患者樣本中呈差異性表達(dá)。在細(xì)胞質(zhì)、細(xì)胞核等細(xì)胞組成,蛋白質(zhì)結(jié)合等分子功能,細(xì)胞增殖與遷移、磷脂酰肌醇介導(dǎo)的信號(hào)傳導(dǎo)等生物功能,以及多條心肌纖維化、慢性心力衰竭相關(guān)信號(hào)通路如轉(zhuǎn)化生長(zhǎng)因子-β、PI3K/Akt、MAPK等信號(hào)通路中富集。 結(jié)論 推測(cè)miR-494在慢性心力衰竭患者中差異性表達(dá),并與心肌纖維化發(fā)生發(fā)展有一定相關(guān)性,有待進(jìn)一步研究證實(shí)。
[關(guān)鍵詞] miRNA;心肌纖維化;慢性心力衰竭;生物信息學(xué)
[中圖分類號(hào)] R541.61? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)08(b)-0007-06
[Abstract] Objective To explore the mechanism of myocardial fibrosis in chronic heart failure patients by using bioinformatics analysis. Methods The GSE104150 dataset through GEO database was filtered out, the differentially expressed miRNAs between heart failure and healthy control was analyzed. The target genes of miR-494 were predicted, which should be performed the gene ontology (GO) enrichment analysis and signal pathway enrichment analysis. Results Compared with the healthy control, miRNA-494 was differentially expressed in the chronic heart failure patients. The GO analysis showed the target genes of miR-494 were enriched in cell components such as cytoplasm and nucleus, molecular functions as protein binding and biological functions as cell proliferation and migration, phosphatidylinositol-mediated signaling. The KEGG biological pathway was mainly enriched in TGFβ, PI3K/Akt, and MAPK signaling pathways. Conclusion It is speculated that miRNA-494 is differentially expressed in patients with chronic heart failure, and it has a certain correlation with the occurrence and development of myocardial fibrosis, further research is needed to confirm.
[Key words] MiRNA; Myocardial fibrosis; Chronic heart failure; Bioinformatics analysis
微小RNA(MicroRNA,miRNA)為非編碼單鏈RNA分子。大量證據(jù)表明,其在癌癥、心血管疾病等的發(fā)生發(fā)展過(guò)程中,常存在不同程度的異常表達(dá)[1-2]。研究發(fā)現(xiàn),miR-208a與內(nèi)皮糖蛋白表達(dá)及心臟纖維化相關(guān),miRNA-221/222可能靶向與轉(zhuǎn)化生長(zhǎng)因子β(TGFβ)信號(hào)傳導(dǎo)相關(guān)的幾個(gè)基因[3-4]。
心肌纖維化心肌成纖維細(xì)胞(cardiac fibroblasts,CFs)異常增殖并分泌大量膠原蛋白,細(xì)胞外基質(zhì)病理性積聚[5]。心力衰竭是由心肌梗死、心肌病等多種原因引起的心肌損傷,造成心肌結(jié)構(gòu)和功能的變化,導(dǎo)致功能低下。慢性心力衰竭多合并心肌纖維化,心肌纖維化程度與心室射血分?jǐn)?shù)關(guān)系密切,心力衰竭的標(biāo)志性心肌損傷是心肌中間質(zhì)和微血管周圍內(nèi)膠原纖維(即Ⅰ型膠原)的彌散積累[6-7]。有效防治心肌纖維化對(duì)慢性心力衰竭的發(fā)生發(fā)展有重大意義?;诖耍狙芯客ㄟ^(guò)生物信息學(xué)分析,為防治慢性心力衰竭心肌纖維化提供新思路。
1 資料與方法
1.1 篩選差異性miRNA
使用Gene Expression Omnibus(GEO)數(shù)據(jù)庫(kù)檢索miRNA、慢性心力衰竭及心肌纖維化相關(guān)基因芯片。
1.2 miRNA靶基因預(yù)測(cè)及分析
使用TargetScanHuman、miRWalk、miRDB數(shù)據(jù)庫(kù),對(duì)miRNA靶基因進(jìn)行檢索。利用網(wǎng)頁(yè)工具Bioinformatics & Evolutionary Genomics對(duì)總靶基因取交集處理。利用DAVID Bioinformatics Resources數(shù)據(jù)庫(kù)工具和KOBAS網(wǎng)頁(yè)工具對(duì)靶基因集進(jìn)行功能富集分析及信號(hào)通路富集分析。
2 結(jié)果
2.1 差異性miRNA
數(shù)據(jù)庫(kù)檢索并篩選出慢性心力衰竭與miRNA相關(guān)數(shù)據(jù)集GSE104150,其中包含人類健康對(duì)照及心力衰竭樣本共16個(gè),miRNA共2571個(gè),將P值和logFC設(shè)定為:P < 0.01,logFC>2 or <-2,取前20個(gè)結(jié)果,繪制熱圖(圖1,封四)。其中miRNA-494在慢性心力衰竭樣本中呈高表達(dá),見(jiàn)圖2。經(jīng)文獻(xiàn)檢索,miR-494在冠心病等心血管疾病中異常表達(dá),并與慢性心力衰竭的發(fā)生發(fā)展相關(guān)。此外,miR-494在纖維化疾病中存在差異性表達(dá),故選擇miRNA-494作為進(jìn)一步研究對(duì)象,探討其在慢性心力衰竭心肌纖維化中的作用及影響。
2.2 miRNA-494靶基因預(yù)測(cè)
miRNA-494靶基因檢索,TargetScan檢索出2864條結(jié)果,miRWalk檢索67 635條結(jié)果,miRDB檢索607條結(jié)果,對(duì)上述數(shù)據(jù)庫(kù)檢索出的靶基因進(jìn)行取交集,最終得到284個(gè)共同的靶基因。靶基因預(yù)測(cè)交集見(jiàn)圖3。
2.3 miR-494靶基因功能預(yù)測(cè)
靶基因GO功能富集分析結(jié)果顯示這些靶基因富集在蛋白質(zhì)結(jié)合、RNA聚合酶Ⅱ核心啟動(dòng)子近端區(qū)序列特異性DNA結(jié)合、轉(zhuǎn)錄因子活性等分子功能中,在RNA聚合酶Ⅱ啟動(dòng)子調(diào)控轉(zhuǎn)錄、細(xì)胞遷移、磷脂酰肌醇介導(dǎo)的信號(hào)傳導(dǎo)等生物過(guò)程中富集。并在細(xì)胞質(zhì)、細(xì)胞核、高爾基膜、細(xì)胞內(nèi)膜結(jié)合細(xì)胞器等細(xì)胞組成中富集(P < 0.01)。見(jiàn)圖4~6。
2.4 靶基因KEGG通路預(yù)測(cè)
KOBAS 3.0網(wǎng)頁(yè)靶基因集進(jìn)行KEGG通路檢索,發(fā)現(xiàn)miRNA-494靶基因在細(xì)胞代謝、腫瘤、鞘磷脂類信號(hào)通路、多能干細(xì)胞調(diào)節(jié)通路、TGFβ信號(hào)通路、MAPK信號(hào)通路信號(hào)傳導(dǎo)等有關(guān)(P < 0.05)。見(jiàn)圖7。
3 討論
3.1 miRNA-494與慢性心力衰竭、心肌纖維化機(jī)制分析
心肌纖維化發(fā)生與發(fā)展機(jī)制涉及各種生長(zhǎng)因子如TGFβ、基質(zhì)金屬蛋白酶(MMP)及其機(jī)制因子(TIMP),以及腎素-血管緊張素-醛固酮系統(tǒng)等[8-9]。研究表明MMP2、MMP9在壓力負(fù)荷誘發(fā)心力衰竭、心肌纖維化過(guò)程中具有重要作用。而有研究表明miR-494的上調(diào)能抑制MMP9的表達(dá)[10]。M?觟hnle等[11]通過(guò)實(shí)驗(yàn)及計(jì)算分析發(fā)現(xiàn)miRNA-494能下調(diào)CB1受體,對(duì)心肌內(nèi)源性大麻素系統(tǒng)產(chǎn)生影響,參與在心力衰竭的發(fā)展。
研究表明,miR-494與慢性心力衰竭相關(guān)的心肌內(nèi)源性大麻素系統(tǒng)有關(guān),并與心肌纖維化相關(guān)的基質(zhì)金屬蛋白酶系統(tǒng)有靶向關(guān)系,此外,結(jié)合本次數(shù)據(jù)分析結(jié)果發(fā)現(xiàn)miR-494與細(xì)胞增殖、分化與遷移相關(guān)。KEGG通路預(yù)測(cè)分析結(jié)果中miR-494涉及心肌纖維化的通路包括TGFβ、PI3K-Akt、AMPK、MAPK信號(hào)通路,且其中TGFβ、PI3K-Akt信號(hào)通路與心力衰竭的發(fā)展具有相關(guān)性[12-13]。由此可推測(cè),miR-494與慢性心力衰竭心肌纖維化的發(fā)生發(fā)展相關(guān)。
3.2 miRNA-494通路預(yù)測(cè)分析
3.2.1 TGFβ信號(hào)通路? TGFβ信號(hào)通路被認(rèn)為是組織修復(fù)和纖維化的公共通路,TGFβ超家族介導(dǎo)細(xì)胞的生長(zhǎng)、增殖、分化,并在細(xì)胞外基質(zhì)的形成等方面具有重要作用。KEGG通路分析發(fā)現(xiàn),miR-494能靶向通路中的SARA、BMPRⅡ、p15等基因。研究發(fā)現(xiàn),SARA的C端序列包含Smad結(jié)合結(jié)構(gòu)域,能夠抑制Smad2/3磷酸化并阻斷Smad2/3和Smad4之間的相互作用,從而抑制纖維化。而p15基因,研究發(fā)現(xiàn)組蛋白去乙?;敢种苿┰谛牧λソ叩呐R床前模型中阻斷心臟纖維化。研究[14-17]表明Ⅰ類蛋白去乙酰化酶抑制劑能通過(guò)抑制編碼細(xì)胞周期蛋白依賴性激酶,阻斷心臟成纖維細(xì)胞周期進(jìn)展。此外,TGFβ除了促進(jìn)心臟纖維化,也能激活反調(diào)節(jié)途徑,用于調(diào)節(jié)心力衰竭中的TGF-β1活性[18]。
3.2.2 PI3K/Akt 信號(hào)通路? ?PI3K/Akt信號(hào)通路中,PI3K可調(diào)控Akt的激活,進(jìn)一步激活或者抑制下游靶蛋白,參與多種細(xì)胞活動(dòng)。KEGG通路分析,在PI3K/Akt通路中,miR-494靶向相關(guān)因子包括JAK、PTEN、PTK、PP2A等。Li等[19]敲除小鼠PP2A基因,發(fā)現(xiàn)PP2A活性的降低導(dǎo)致小鼠心肌細(xì)胞肥大和纖維化增加;而PP2ACα的缺失導(dǎo)致心力衰竭,表現(xiàn)為射血分?jǐn)?shù)、FS、LV、心房利鈉肽、腦利鈉肽的變化;在分子層面上,基因敲除小鼠中Akt/GSK3β/β-連環(huán)蛋白途徑的調(diào)節(jié)受到嚴(yán)重干擾。此外,Zhang等[20]的研究發(fā)現(xiàn)PP2A能在體外使細(xì)胞外調(diào)節(jié)蛋白激酶去磷酸化,從而阻斷Ang Ⅱ刺激的α-SMA表達(dá),即抑制心肌纖維化的發(fā)生。
3.2.3 MAPK信號(hào)通路? 其組成因子能被細(xì)胞因子、激素等因素激活,調(diào)控細(xì)胞的生長(zhǎng)、分化、應(yīng)激適應(yīng)、炎性反應(yīng)等細(xì)胞過(guò)程[21]。KEGG通路分析,其涉及包括經(jīng)典通路的RTK、RSK2以及JNK和p38/MAPK通路的LN1、JNK、JunD等。JNKs是MAPK家族的成員,介導(dǎo)炎癥和細(xì)胞凋亡。有學(xué)者在研究抗氧化劑N-乙酰半胱氨酸(N-acetylcysteine,NAC)對(duì)長(zhǎng)期升主動(dòng)脈瓣狹窄大鼠心臟結(jié)構(gòu)和功能的影響時(shí)發(fā)現(xiàn),NAC能降低p-ERK和p-JNK蛋白表達(dá),調(diào)控MAPK信號(hào)通路,減輕心肌纖維化,并降低右心室肥大的發(fā)生率[22-23]。
綜上所述,此次分析顯示miR-494在慢性心力衰竭患者及健康者之間差異性表達(dá)。其靶基因生物學(xué)功能預(yù)測(cè)結(jié)果涉及蛋白質(zhì)結(jié)合、轉(zhuǎn)錄因子活性以及細(xì)胞遷移等,信號(hào)通路富集分析更與TGFβ信號(hào)通路、MAPK信號(hào)通路等心肌纖維化相關(guān)信號(hào)通路密切相關(guān),可推測(cè)miR-494在慢性心力衰竭心肌纖維化發(fā)生發(fā)展過(guò)程中具有重要作用。miRNA的調(diào)控作用較為復(fù)雜,生物信息學(xué)方法分析、預(yù)測(cè)miRNA的靶基因及其功能等信息能夠?yàn)楹笃趯?shí)驗(yàn)提供依據(jù),減少耗時(shí)及耗材。但由于生物信息分析因?yàn)樗惴ú煌幸欢ǖ木窒扌裕虼嗽谝陨镄畔W(xué)分析結(jié)果基礎(chǔ)上仍需實(shí)驗(yàn)驗(yàn)證。
[參考文獻(xiàn)]
[1]? Huntzinger E,Izaurralde E. Gene silencing by microRNAs:contributions of translational repression and mRNA decay [J]. Nat Rev Genet,2011,12(2):99-110.
[2]? Xu J,Shao T,Ding N,et al. miRNA-miRNA crosstalk:from genomics to phenomics [J]. Brief Bioinform,2017,18(6):1002-1011.
[3]? Verjans R,Peters T,Beaumont FJ,et al. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload-Induced Heart Failure [J]. Hypertension,2018, 71(2):280-288.
[4]? Shyu KG,Wang BW,Cheng WP,et al. MicroRNA-208a Increases Myocardial Endoglin Expression and Myocardial Fibrosis in Acute Myocardial Infarction [J]. Can J Cardiol Can J Cardiol,2015,31(5):679-690.
[5]? Qian W,Xin S,Rui C,et al. Ghrelin Ameliorates Angiotensin Ⅱ-Induced Myocardial Fibrosis by Upregulating Peroxisome Proliferator-Activated Receptor Gamma in Young Male Rats [J]. Biomed Res Int,2018,2018:1-14.
[6]? Roy C,Slimani A,de Meester C,et al. Associations and prognostic significance of diffuse myocardial fibrosis by cardiovascular magnetic resonance in heart failure with preserved ejection fraction [J]. J Cardiovasc Magn Reson,2018,20(1):55.
[7]? Weber KT,Díez J. Targeting the Cardiac Myofibroblast Secretome to Treat Myocardial Fibrosis in Heart Failure [J]. Circ Heart Fail,2016,9(8):e003315.
[8]? Heinzmann D,F(xiàn)u?覻 S,Ungern-Sternberg SV,et al. TGFβ Is Specifically Upregulated on Circulating CD14++ CD16+ and CD14+ CD16++ Monocytes in Patients with Atrial Fibrillation and Severe Atrial Fibrosis [J]. Cell Physiol Biochem,2018,49(1):226-234.
[9]? Iyer RP,Patterson NL,F(xiàn)ields GB,et al. The history of matrix metalloproteinases:milestones,myths,and misperceptions [J]. Am J Physiol Heart Circ Physiol,2012,303(8):H919-H930.
[10]? Sun T,Cheung KSC,Liu ZL,et al. Matrix metallopeptidase 9 targeted by hsa-miR-494 promotes silybin-inhibited osteosarcoma [J]. Mol Carcinog,2018,57(2):262-271.
[11]? M?觟hnle P,Schütz SV,Schmidt M,et al. MicroRNA-665 is involved in the regulation of the expression of the cardioprotective cannabinoid receptor CB2 in patients with severe heart failure [J]. Biochem Biophys Res Commun,2014,451(4):516-521.
[12]? Heger J,Schulz R,Euler G,et al. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure [J]. Br J Pharmacol,2016,173(1):3-14.
[13]? Li L,Zhao D,Jin Z,et al. Phosphodiesterase 5a Inhibition with Adenoviral Short Hairpin RNA Benefits Infarcted Heart Partially through Activation of Akt Signaling Pathway and Reduction of Inflammatory Cytokines [J]. PLoS One,2015,10(12):e0145766.
[14]? Li SC,Ma LN,Chen J,et al. Effect of allicin on myocardial fibrosis after myocardial infarction in rats and its relationship with TGFβ/Smads signal transduction [J]. Zhongguo Zhong Yao Za Zhi,2016,41(13):2517-2521.
[15]? Huang C,Du R,Zhang P,et al. Expression,purification,and functional characterization of recombinant PTD-SARA [J]. Acta Biochim Biophys Sin (Shanghai),2011, 43(2):110-117.
[16]? Williams SM,Golden-Mason L,F(xiàn)erguson BS,et al. Class I HDACs regulate angiotensin Ⅱ-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes [J]. J Mol Cell Cardiol,2014,67:112-125.
[17]? Liu M,Li Z,Liang B,et al. Hydrogen sulfide ameliorates rat myocardial fibrosis induced by thyroxine through PI3K/AKT signaling pathway [J]. Endocr J,2018,65(7):769-781.
[18]? Morine KJ,Qiao X,York S,et al. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure [J]. Circulation,2018,138(5):513-526.
[19]? Li L,F(xiàn)ang C,Xu D,et al. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy [J]. Am J Transl Res,2016,8(4):1769-1779.
[20]? Zhang Y,Gao F,Tang Y,et al. Valproic acid regulates Ang Ⅱ-induced pericyte-myofibroblast trans-differentiation via MAPK/ERK pathway [J]. Am J Transl Res,2018,10(7):1976-1989.
[21]? Lee J,Levin DE. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1 [J]. Mol Biol Cell,2018,29(15):1904-1915.
[22]? Tian J,Zhao Y,Liu Y,et al. Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy:Current Status and Perspective [J]. Oxid Med Cell Longev,2017, 2017:8214541.
[23]? Reyes DRA,Gomes MJ,Rosa CM,et al. N-Acetylcysteine Influence on Oxidative Stress and Cardiac Remodeling in Rats During Transition from Compensated Left Ventricular Hypertrophy to Heart Failure [J]. Cell Physiol Biochem,2017,44(6):2310-2321.
(收稿日期:2018-12-10? 本文編輯:任? ?念)