• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      T、B淋巴細(xì)胞在自身免疫性甲狀腺疾病中的作用機(jī)制研究進(jìn)展

      2019-10-19 20:27李揚(yáng)左新河華川
      關(guān)鍵詞:T淋巴細(xì)胞機(jī)制

      李揚(yáng) 左新河 華川

      [摘要] 自身免疫性甲狀腺疾病(AITD)的發(fā)病率呈現(xiàn)上升趨勢(shì),復(fù)雜的環(huán)境因素、遺傳因素以及內(nèi)分泌激素的相互作用可能是該病的病因,AITD的發(fā)病機(jī)制主要為T淋巴細(xì)胞和B淋巴細(xì)胞活化,產(chǎn)生針對(duì)甲狀腺組織的自身抗體,從而使甲狀腺產(chǎn)生不同程度的損傷并發(fā)生功能變化。T淋巴細(xì)胞中與AITD密切相關(guān)的是輔助性T淋巴細(xì)胞,其存在多種亞型(Th1、Th2、Th17、Treg等),其中Th1/Th2細(xì)胞失衡及Th17細(xì)胞活化均參與了AITD的發(fā)生,而Treg細(xì)胞可發(fā)揮重要免疫抑制功能;B淋巴細(xì)胞活化是Graves病發(fā)生的核心病理過程,而Breg細(xì)胞可抑制自身免疫反應(yīng),并能調(diào)控T淋巴細(xì)胞的效應(yīng),是極具潛力的AITD治療靶點(diǎn)。本文綜述了T、B淋巴細(xì)胞在AITD中的作用機(jī)制,為尋找有效的治療途徑提供一定思路。

      [關(guān)鍵詞] 自身免疫性甲狀腺疾病;T淋巴細(xì)胞;B淋巴細(xì)胞;機(jī)制

      [中圖分類號(hào)] R581? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)08(b)-0049-04

      [Abstract] The incidence rate of autoimmune thyroid diseases (AITD) is on the rise. The interaction of complex environmental factors, genetic factors and endocrine hormone may be the causes of the disease. The pathogenesis of AITD is mainly the activation of T lymphocytes and B lymphocytes, which produce autoantibodies targeted at thyroid tissues, so as to cause different degrees of thyroid injury and produce functional changes. In T lymphocytes, helper T lymphocytes are closely related to AITD. It has many subtypes, such as Th1, Th2, Th17, Treg, and so on. Th1/Th2 cell imbalance and Th17 cell activation are involved in the occurrence of AITD, while Treg cells can play an important role in immune suppression function; B lymphocyte activation is the core pathological process of the occurrence of Graves′ disease, while Breg cells can inhibit the autoimmune response and regulate the effect of T lymphocytes, which is a potential therapeutic target of AITD. This paper reviews the mechanism of T and B lymphocytes involved in AITD, which provides some ideas for finding effective therapeutic approaches.

      [Key words] Autoimmune thyroid disease; T lymphocyte; B lymphocyte; Mechanism

      自身免疫性甲狀腺疾?。ˋITD)主要包括橋本甲狀腺炎(HT)和Graves病(GD)。流行病學(xué)調(diào)查數(shù)據(jù)顯示HT發(fā)病率呈現(xiàn)上升趨勢(shì),接近5%~10%,女性發(fā)病率是男性的5~10倍[1];GD的發(fā)病率約為1%,女性發(fā)病率為男性的4~5倍[2]。

      AITD的病因尚未明確,目前認(rèn)為由復(fù)雜的環(huán)境因素、遺傳因素以及內(nèi)分泌激素的相互作用所致,其發(fā)生可能是由于過度暴露甲狀腺自身抗原,或者修飾后的甲狀腺自身抗原,或者處于與甲狀腺自身抗原高相似性物質(zhì)中,以及多克隆自身抗原的激活等[3-4]。AITD特征為甲狀腺失去免疫耐受狀態(tài),反應(yīng)性淋巴細(xì)胞活化,產(chǎn)生甲狀腺自身抗體和發(fā)生淋巴細(xì)胞浸潤(rùn)。細(xì)胞免疫和體液免疫均參與了AITD的發(fā)病[5],T淋巴細(xì)胞(以下簡(jiǎn)稱“T細(xì)胞”)、B淋巴細(xì)胞(以下簡(jiǎn)稱“B細(xì)胞”)在其病理過程中起著至關(guān)重要的作用。本文綜述了T、B細(xì)胞參與AITD相關(guān)發(fā)病機(jī)制的研究,試圖為尋找有效的治療途徑提供思路。

      1 AITD中T細(xì)胞的作用機(jī)制研究

      T細(xì)胞來源于胎兒肝和骨髓的前體干細(xì)胞,其遷移至胸腺后分化為成熟T細(xì)胞,根據(jù)其功能的不同分為細(xì)胞毒性T細(xì)胞(表達(dá)CD8,主要負(fù)責(zé)細(xì)胞內(nèi)病原體的免疫防御和腫瘤監(jiān)視)、輔助性T細(xì)胞(表達(dá)CD4)[6],后者在AITD中發(fā)揮重要作用。輔助性T細(xì)胞(Th細(xì)胞)由抗原肽激活[6],根據(jù)釋放的細(xì)胞因子分成多個(gè)亞型,主要有Th1、Th2、Th17細(xì)胞[8]。Th1細(xì)胞產(chǎn)生腫瘤壞死因子-β(TNF-β)、γ干擾素(IFN-γ)和白細(xì)胞介素(IL)-2,主要參與細(xì)胞介導(dǎo)的組織損傷反應(yīng);Th2細(xì)胞主要分泌IL-4、IL-5、IL-6、IL-13,在體液免疫中驅(qū)動(dòng)B細(xì)胞產(chǎn)生抗體[9];Th17細(xì)胞主要分泌IL-17[10]。另有一類T細(xì)胞可以抑制免疫炎性反應(yīng),稱為調(diào)節(jié)性T細(xì)胞(Treg)[11]。

      部分觀點(diǎn)認(rèn)為AITD的啟動(dòng)發(fā)生在圍生期,胸腺中的未成熟淋巴細(xì)胞暴露自身抗原,從而誘導(dǎo)產(chǎn)生機(jī)體的免疫耐受,而在這個(gè)關(guān)鍵時(shí)期,如果自身反應(yīng)性T細(xì)胞出現(xiàn)克隆缺失或誘導(dǎo)無能,則可能喪失對(duì)自身抗原的免疫耐受性[12]。

      1.1 Th1和Th2淋巴細(xì)胞在AITD中的作用

      傳統(tǒng)觀點(diǎn)認(rèn)為,HT為Th1介導(dǎo)的細(xì)胞免疫,Th1細(xì)胞可激活細(xì)胞毒性T細(xì)胞和巨噬細(xì)胞,破壞甲狀腺濾泡上皮細(xì)胞,導(dǎo)致隨后的甲狀腺炎和甲狀腺腺體的損傷[13];而GD為Th2細(xì)胞介導(dǎo)的體液免疫,Th2細(xì)胞可激活B細(xì)胞和漿細(xì)胞,產(chǎn)生攻擊甲狀腺的自身抗體。

      但后來更多的研究發(fā)現(xiàn),GD與HT之間有時(shí)可以相互轉(zhuǎn)化,提示這兩者的病理生理機(jī)制具有相關(guān)性[14]。如Chardès等[15]研究發(fā)現(xiàn)GD患者也存在Th1細(xì)胞功能紊亂,也可出現(xiàn)血清TPO抗體、Tg抗體陽性。GD的特異性抗體TSAb來源于IgG1亞類,選擇性的由Th1細(xì)胞激活[16],Th1細(xì)胞還可通過分泌IL-10刺激B細(xì)胞產(chǎn)生抗體TSAb[17]。另一方面,TPO抗體和Tg抗體部分來源于IgG4,后者由Th2細(xì)胞因子激活,提示Th2細(xì)胞也參與了HT的病理過程[18]。這些結(jié)果提示Th1、Th2細(xì)胞可能是GD與HT之間相互轉(zhuǎn)化的重要橋梁因素。

      Eshaghkhani等[19]研究了GD患者中編碼Th1和Th2分化的主要調(diào)控因子(T-BET和GATA3),及重要細(xì)胞因子(IFN-γ和IL-4)的表達(dá)水平,結(jié)果顯示T-BET和IFN-γ表達(dá)水平顯著升高,而GATA3和IL-4表達(dá)水平下調(diào),該研究結(jié)果表明,Th1/Th2失衡可能參與了GD的發(fā)病機(jī)制。

      1.2 Th17淋巴細(xì)胞在AITD中的作用

      Th17淋巴細(xì)胞是以產(chǎn)生IL-17為特征的一類淋巴細(xì)胞,可強(qiáng)化自身免疫反應(yīng),在AITD的發(fā)生發(fā)展中起到重要作用[20]。Th17淋巴細(xì)胞分泌釋放IL-17A、IL-17F、IL-21、IL-22,可顯著增強(qiáng)其他炎性因子(如IL-1β、TNF-α等)的作用,并激活血管內(nèi)皮細(xì)胞、成纖維細(xì)胞、巨噬細(xì)胞,導(dǎo)致自身免疫損傷[21]。AITD患者體內(nèi)IL-21、IL-22水平明顯升高[22-23]。Liu等[24]實(shí)驗(yàn)發(fā)現(xiàn)可調(diào)節(jié)Th17功能的分子有瘦素(直接影響幼稚T細(xì)胞)和GITRL(糖皮質(zhì)激素誘導(dǎo)的腫瘤壞死因子受體配體,與Th17細(xì)胞水平呈正相關(guān))等;同時(shí)還觀察到HT患者的Th17細(xì)胞水平升高,由此推測(cè)Th17細(xì)胞拮抗劑如IL-23、IL-17、IL-6R單克隆抗體或者細(xì)胞因子阻斷劑,具有治療AITD患者的應(yīng)用前景。

      1.3 Treg細(xì)胞在AITD中的作用

      Treg細(xì)胞主要負(fù)責(zé)維持免疫耐受和免疫抑制功能。根據(jù)細(xì)胞表面分子的不同分成不同亞類,現(xiàn)已發(fā)現(xiàn)7類:天然型Treg、誘導(dǎo)型Treg、外周型Treg、Tr1型Treg、Th3型Treg、CD8+Treg和CD69+Treg[5,22,25]。

      叉頭盒蛋白3(forkhead box P3,F(xiàn)oxP3)是Treg細(xì)胞的標(biāo)志分子,在Treg細(xì)胞的分化、穩(wěn)定性及功能方面發(fā)揮著重要作用[26],F(xiàn)oxP3基因多態(tài)性與AITD相關(guān)[27],AITD患者存在FoxP3功能障礙[28]。Kanamori等[29]發(fā)現(xiàn)如果Foxp3表達(dá)不穩(wěn)定,可產(chǎn)生如IL-2、TNF-α、IFN-γ或IL-4等細(xì)胞因子,影響Treg細(xì)胞的穩(wěn)定性。尋找維持Tregs穩(wěn)定的方法,也是AITD的治療方向之一。

      CD25主要介導(dǎo)IL-2信號(hào)傳導(dǎo)[30],其基因遺傳改變可擾亂Treg細(xì)胞功能及外周免疫耐受的充分成熟。細(xì)胞毒性T細(xì)胞相關(guān)抗原4(CTLA-4)是一種跨膜蛋白,局限表達(dá)于CD25+T細(xì)胞表面[31-32],在Tregs的表面與其配體CD80和CD86相結(jié)合,競(jìng)爭(zhēng)CD28(使T細(xì)胞充分激活的信號(hào)蛋白),從而減少T細(xì)胞活化,減少IL-2的產(chǎn)生并阻礙T細(xì)胞進(jìn)一步激活[33]。CTLA-4單克隆抗體可抑制反應(yīng)性T細(xì)胞表達(dá),發(fā)揮免疫抑制功能[34]。

      2 AITD中B細(xì)胞的作用機(jī)制研究

      B細(xì)胞主要代表體液免疫,由造血干細(xì)胞發(fā)育而來,在骨髓中成熟,然后在次級(jí)淋巴器官中激活,如淋巴結(jié)和脾臟[35]。B細(xì)胞主要產(chǎn)生抗體,而它們本身也是抗原提呈細(xì)胞之一,它們有跨膜受體,稱為BCR,能識(shí)別特異性的抗原,將其提呈給輔助性T細(xì)胞[36],輔助性T細(xì)胞反過來也可以激活B細(xì)胞。

      2.1 B細(xì)胞在AITD中的體液免疫機(jī)制

      B細(xì)胞免疫耐受缺陷是GD發(fā)病的重要機(jī)制之一,GD患者體內(nèi)B細(xì)胞被激活,產(chǎn)生TSH受體抗體TRAb,其中刺激性抗體TSAb與甲狀腺濾泡上皮細(xì)胞膜上TSH受體結(jié)合后,導(dǎo)致甲狀腺濾泡細(xì)胞的不斷增殖,引起甲狀腺腫大,并促使三碘甲腺原氨酸(T3)、甲狀腺素(T4)的生成和分泌增多,導(dǎo)致甲亢,這是GD發(fā)生的核心病理機(jī)制。GD患者甲狀腺局部可見大量B細(xì)胞的浸潤(rùn)[37-38],B細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)異常活躍,記憶性B細(xì)胞大量產(chǎn)生和成熟[39]。B細(xì)胞激活因子(BAFF)和B細(xì)胞增殖誘導(dǎo)配體(APRIL)是B細(xì)胞存活的兩個(gè)重要細(xì)胞因子,阻斷BAFF和B細(xì)胞成熟抗原(BCMA)可減輕GD模型小鼠甲狀腺腫大程度[40]。Hong等[41]研究發(fā)現(xiàn)采用CD20單克隆抗體(如利妥昔單抗)治療可抑制甲狀腺的B細(xì)胞激活,改善甲狀腺相關(guān)眼病患者的臨床癥狀,這些研究均提示B細(xì)胞在GD發(fā)生發(fā)展中起到關(guān)鍵作用[42]。

      盡管在HT中B細(xì)胞的作用不及T細(xì)胞,但是B細(xì)胞可產(chǎn)生TgAb、TPOAb,激活CD8+T細(xì)胞和巨噬細(xì)胞,損傷甲狀腺濾泡上皮細(xì)胞,抗體依賴的細(xì)胞介導(dǎo)的細(xì)胞毒作用是HT的主要病理機(jī)制[43]。

      2.2 Breg細(xì)胞在AITD中的作用

      Rosser等[38]研究發(fā)現(xiàn)分泌IL-10的B細(xì)胞具有免疫抑制作用,稱其為調(diào)節(jié)性B細(xì)胞(Breg細(xì)胞),其機(jī)制可能包括產(chǎn)生IL-10、TGF-α、Fas-Ligand以及TNF相關(guān)的細(xì)胞凋亡誘導(dǎo)配體等[43-44]。Breg細(xì)胞分化形成的主要條件不是Breg細(xì)胞譜系特異性因子的表達(dá),而是由B細(xì)胞所處的環(huán)境所誘導(dǎo)[38],未成熟B細(xì)胞、成熟B細(xì)胞或漿母細(xì)胞,都可以分化為Breg細(xì)胞。B細(xì)胞若長(zhǎng)期暴露在高濃度的炎性細(xì)胞因子環(huán)境中,可導(dǎo)致Breg數(shù)量減少,不利于外周免疫耐受[44]。Miyagaki等[45]發(fā)現(xiàn)微生物群在Breg細(xì)胞的產(chǎn)生中也發(fā)揮著一定作用,抗生素治療后的小鼠,其Breg細(xì)胞數(shù)量減少。

      Breg細(xì)胞能改變T細(xì)胞分化,并能調(diào)控Treg細(xì)胞的生成。B細(xì)胞缺陷的小鼠,Treg細(xì)胞的數(shù)量大幅減少。Breg細(xì)胞可通過IL-10抑制Th1免疫反應(yīng),也能通過抑制樹突狀細(xì)胞來間接抑制Th1、Th17細(xì)胞分化[38,46]。Breg細(xì)胞產(chǎn)生TGF-β可誘導(dǎo)CD8+T細(xì)胞無能及CD4+效應(yīng)T細(xì)胞凋亡。GD患者與健康人群比較,Breg細(xì)胞顯著減少,提示Breg細(xì)胞對(duì)控制甲狀腺自身免疫反應(yīng)有重要作用[47],是極具潛力的AITD治療靶點(diǎn)。

      3 結(jié)語

      T細(xì)胞和B細(xì)胞在AITD的發(fā)生發(fā)展過程中發(fā)揮著重要的免疫介導(dǎo)或免疫抑制作用,如何調(diào)控并恢復(fù)免疫平衡是治療AITD的難點(diǎn),越來越多的研究聚焦于T、B細(xì)胞在AITD中的免疫功能研究,以探尋治療AITD的有效方法。

      [參考文獻(xiàn)]

      [1]? Pyzik A,Grywalska E,Matyjaszek-Matuszek B,et al. Immune disorders in Hashimoto′s thyroiditis:what do we know so far? [J]. J Immunol Res,2015,2015:979167.

      [2]? Carlé A,Pedersen IB,Knudsen N,et al. Epidemiology of subtypes of hyperthyroidism in Denmark:a population-based study [J]. Eur J Endocrinol,2011,164(5):801-809.

      [3]? Volpé R,Iitaka M. Evidence for an antigen-specific defect in suppressor T-lymphocytes in autoimmune thyroid disease [J]. Exp Clin Endocrinol,1991,97(2/3):133-138.

      [4]? Tanda ML,Piantanida E,Lai A,et al. Thyroid autoimmunity and environment [J]. Horm Metab Res,2009,41(6):436-442.

      [5]? Rydzewska M,Jaromin M,Pasierowska IE,et al. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases [J]. Thyroid Res,2018,11:2.

      [6]? Yang Q,Jeremiah Bell J,Bhandoola A. T-cell lineage determination [J]. Immunol Rev,2010,238(1):12-22.

      [7]? Romagnani S. Regulation of the T cell response [J]. Clin Exp Allergy,2006,36(11):1357-1366.

      [8]? J?覿ger A,Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation [J]. Scand J Immunol,2010,72(3):173-184.

      [9]? Mosmann TR,Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol,1989,7:145-173.

      [10]? Ochs HD,Oukka M,Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases [J]. J Allergy Clin Immunol,2009,123(5):977-983,quiz 984-985.

      [11]? Ohkura N,Kitagaua Y,Sakaguchi S. Development and maintenance of regulary T cells [J]. Immunity,2013,38(3):414-423.

      [12]? Van Parijs L,Abbas AK. Homeostasis and self-tolerance in the immune system:turning lymphocytes off [J]. Science,1998,280(5361):243-248.

      [13]? Ben-Skowronek I,Szewczyk L,Kulik-Rechberger B,et al. The differences in T and B cell subsets in thyroid of children with Graves′ disease and Hashimoto's thyroiditis [J]. World J Pediatr,2013,9(3):245-250.

      [14]? Kraiem Z,Baron E,Kahana L,et al. Changes in stimulating and blocking TSH receptor antibodies in a patient undergoing three cycles of transition from hypo to hyper-thyroidism and back to hypothyroidism [J]. Clin Endocrinol(Oxf),1992,36(2):211-214.

      [15]? Chardès T,Chapal N,Bresson D,et al. The human anti-thyroid peroxidase autoantibody repertoire in Graves' and Hashimoto′s autoimmune thyroid diseases [J]. Immunogenetics,2002,54(3):141-157.

      [16]? Michalek K,Morshed SA,Latif R,et al. TSH receptor autoantibodies [J]. Autoimmun Rev,2009,9(2):113-116.

      [17]? Le?觟vey A,Nagy E,Balazs G,et al. Lymphocytes resided in the thyroid are the main source of TSH-receptor antibodies in Basedow′s-Graves′ disease? [J]. Exp Clin Endocrinol,1992,99(3):147-150.

      [18]? Rapoport B,Mclachlan SM. Graves′ hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease [J]. J Clin Endocrinol Metab,2014,99(11):4060-4061.

      [19]? Eshaghkhani Y,Sanati MH,Nakhjavani M,et al. Disturbed Th1 and Th2 balance in patients with Graves′ disease [J]. Minerva Endocrinol,2016,41(1):28-36.

      [20]? Amatya N,Garg AV,Gaffen SL. IL-17 Signaling:The Yin and the Yang [J]. Trends Immunol,2017,38(5):310-322.

      [21]? Wilson NJ,Boniface K,Chan JR,et al. Development,cytokine profile and function of human interleukin 17-producing helper T cells [J]. Nat Immunol,2007,8(9):950-957.

      [22]? González-Amaro R,Marazuela M. T regulatory(Treg)and T helper 17(Th17)lymphocytes in thyroid autoimmunity [J]. Endocrine,2016,52(1):30-38.

      [23]? Song RH,Yu ZY,Qin Q,et al. Different levels of circulating Th22 cell and its related molecules in Graves' disease and Hashimoto′s thyroiditis [J]. Int J Clin Exp Pathol,2014,7(7):4024-4031.

      [24]? Liu Y,Tang X,Tian J,et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto's thyroiditis [J]. Int J Mol Sci,2014,15(12):21674-21686.

      [25]? Cortés JR,Sánchez-Díaz R,Bovolenta ER,et al. Maintenance of immune tolerance by Foxp3+ regulatory T cells requires CD69 expression [J]. J Autoimmun,2014,55:51-62.

      [26]? Allan SE,Passerini L,Bacchetta R,et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs [J]. J Clin Invest,2005,115(11):3276-3284.

      [27]? Inoue N,Watanabe M,Morita M,et al. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases [J]. Clin Exp Immunol,2010,162(3):402-406.

      [28]? Mao C,Wang S,Xiao Y,et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves′ disease [J]. J Immunol,2011,186(8):4734-4743.

      [29]? Kanamori M,Nakatsukasa H,Okada M,et al. Induced Regulatory T Cells:Their Development,Stability,and Applications [J]. Trends Immunol,2016,37(11):803-811.

      [30]? Cerosaletti K,Schneider A,Schwedhelm K,et al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi)T cells of type 1 diabetic and multiple sclerosis patients [J]. PLoS One,2013, 8(12):e83811.

      [31]? Maloy KJ,Powrie F. Regulatory T cells in the control of immune pathology [J]. Nat Immunol,2001,2(9):816-822.

      [32]? Levings MK,Sangregorio R,Roncarolo MG. Human cd25(+)cd4(+)t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function [J]. J Exp Med,2001,193(11):1295-1302.

      [33]? Vandenborre K,Van Gool SW,Kasran A,et al. Interaction of CTLA-4(CD152)with CD80 or CD86 inhibits human T-cell activation [J]. Immunology,1999,98(3):413-421.

      [34]? Sakaguchi S,Wing K,Onishi Y,et al. Regulatory T cells:how do they suppress immune responses? [J]. Int Immunol,2009,21(10):1105-1111.

      [35]? Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors [J]. Immunol Rev,2010,238(1):37-46.

      [36]? Kambayashi T,Laufer TM. Atypical MHC class Ⅱ-expressing antigen-presenting cells:can anything replace a dendritic cell? [J]. Nat Rev Immunol,2014,14(11):719-730.

      [37]? Kuklina EM,Smirnova EN,Nekrasova IV,et al. Role of B cells in presentation of autoantigens to CD4(+)T cells in patients with autoimmune thyroiditis [J]. Dokl Biol Sci,2015,464:263-266.

      [38]? Rosser EC,Mauri C. Regulatory B cells:origin,phenotype,and function [J]. Immunity,2015,42(4):607-612.

      [39]? Morshed SA,Davies TF. Graves′ Disease Mechanisms:The Role of Stimulating,Blocking,and Cleavage Region TSH Receptor Antibodies [J]. Horm Metab Res,2015,47(10):727-734.

      [40]? Gilbert JA,Kalled SL,Moorhead J,et al. Treatment of autoimmune hyperthyroidism in a murine model of Graves′ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology [J]. Endocrinology,2006,147(10):4561-4568.

      [41]? Hong SH,Braley-Mullen H. Follicular B cells in thyroids of mice with spontaneous autoimmune thyroiditis contribute to disease pathogenesis and are targets of anti-CD20 antibody therapy [J]. J Immunol,2014,192(3):897-905.

      [42]? Salvi M. Immunotherapy for Graves′ ophthalmopathy [J]. Curr Opin Endocrinol Diabetes Obes,2014,21(5):409-414.

      [43]? Kristensen B,Hegedüs L,Lundy SK,et al. Characterization of Regulatory B Cells in Graves′ Disease and Hashimoto′s Thyroiditis [J]. PLoS One,2015,10(5):e0127949.

      [44]? Maravillas-Montero JL,Acevedo-Ochoa E. Human B Regulatory Cells:The New Players in Autoimmune Disease [J]. Rev Invest Clin,2017,69(5):243-246.

      [45]? Miyagaki T,F(xiàn)ujimoto M,Sato S. Regulatory B cells in human inflammatory and autoimmune diseases:from mouse models to clinical research [J]. Int Immunol,2015,27(10):495-504.

      [46]? Kristensen B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls [J]. Dan Med J,2016,63(2).

      [47]? Qin J,Zhou J,F(xiàn)an C,et al. Increased Circulating Th17 but Decreased CD4(+)Foxp3(+)Treg and CD19(+)CD1d(hi)CD5(+)Breg Subsets in New-Onset Graves' Disease [J]. Biomed Res Int,2017,2017:8431838.

      (收稿日期:2019-02-26? 本文編輯:張瑜杰)

      猜你喜歡
      T淋巴細(xì)胞機(jī)制
      構(gòu)建“不敢腐、不能腐、不想腐”機(jī)制的思考
      自制力是一種很好的篩選機(jī)制
      黃芪皂苷I對(duì)Th1免疫反應(yīng)的調(diào)節(jié)效應(yīng)及機(jī)制研究
      兒童急性B淋巴細(xì)胞白血?。˙—ALL)調(diào)節(jié)性T淋巴細(xì)胞變化及調(diào)節(jié)機(jī)制分析
      阿奇霉素與紅霉素治療兒童支原體肺炎的效果比較及其對(duì)免疫球蛋白、T淋巴細(xì)胞亞群細(xì)胞因子的影響
      人RAG2基因5′近端染色質(zhì)結(jié)構(gòu)定量差異分析及可接近區(qū)域轉(zhuǎn)錄調(diào)控機(jī)制研究
      定向培養(yǎng) 還需完善安置機(jī)制
      破除舊機(jī)制要分步推進(jìn)
      注重機(jī)制的相互配合
      打基礎(chǔ) 抓機(jī)制 顯成效
      南部县| 化州市| 广德县| 北辰区| 西峡县| 广平县| 胶南市| 东山县| 靖边县| 淮北市| 拉孜县| 双城市| 炉霍县| 永清县| 松江区| 昌邑市| 紫阳县| 新竹县| 龙里县| 天镇县| 新巴尔虎右旗| 洪江市| 平武县| 马公市| 且末县| 大庆市| 天门市| 宝鸡市| 甘洛县| 阳山县| 汉寿县| 浏阳市| 社旗县| 图木舒克市| 民乐县| 华蓥市| 于都县| 高邮市| 秀山| 东安县| 白玉县|