• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      自尋優(yōu)最近鄰算法估算有限氣象數(shù)據(jù)區(qū)潛在蒸散量

      2019-12-19 01:42:08馮克鵬田軍倉(cāng)
      關(guān)鍵詞:測(cè)試數(shù)據(jù)集上復(fù)雜度

      馮克鵬,田軍倉(cāng),洪 陽(yáng)

      自尋優(yōu)最近鄰算法估算有限氣象數(shù)據(jù)區(qū)潛在蒸散量

      馮克鵬1,3,5,田軍倉(cāng)1,3,5※,洪 陽(yáng)2,4

      (1. 寧夏大學(xué)土木與水利工程學(xué)院,銀川 750021;2. School of Civil Engineering and Environmental Science, University of Oklahoma,Norman, OK 73072, USA;3. 寧夏節(jié)水灌溉與水資源調(diào)控工程技術(shù)研究中心,銀川 750021; 4. 北京大學(xué)遙感與地理信息系統(tǒng)研究所,北京 100084;5. 旱區(qū)現(xiàn)代農(nóng)業(yè)水資源高效利用教育部工程研究中心,銀川 750021)

      FAO-56 Penman-Monteith估算ET0方法被廣泛使用,但計(jì)算時(shí)需要輸入多個(gè)氣象數(shù)據(jù)。開發(fā)一種替代方法,在使用盡可能少的氣象數(shù)據(jù)情況下,仍可以提供準(zhǔn)確的或至少接近FAO-56 Penman-Monteith的ET0估算值是該領(lǐng)域研究熱點(diǎn)之一。該文結(jié)合典型相關(guān)分析(canonical correlation analysis,CCA)和最近鄰算法(-nearest neighbor,-NN),提出自尋優(yōu)最近鄰算法的潛在蒸散量計(jì)算方法(CCA--NN),利用較少氣象數(shù)據(jù)實(shí)現(xiàn)潛在蒸散量的估算。核心思想是用CCA算法尋找與潛在蒸散量最相關(guān)的氣象數(shù)據(jù),實(shí)現(xiàn)后續(xù)估算ET0時(shí)的氣象數(shù)據(jù)降維,然后利用-NN算法估算ET0。選擇西北地區(qū)為例,將該區(qū)域氣象數(shù)據(jù)分別從時(shí)間和空間尺度,分為訓(xùn)練數(shù)據(jù)集,驗(yàn)證數(shù)據(jù)集和測(cè)試數(shù)據(jù)集,分別在3類數(shù)據(jù)集上用該文方法估算ET0,并以FAO-56 Penman-Monteith作為參照,評(píng)估了該文CCA--NN方法的估算精度和適用性。結(jié)果表明,CCA--NN方法與FAO-56 Penman-Monteith保持了較高的相關(guān)性(相關(guān)系數(shù)大于0.9),有好的估算精度,均方根誤差和平均絕對(duì)誤差均小于1 mm/d,空間尺度上算法納什效率系數(shù)均大于0.5,時(shí)間尺度上納什效率系數(shù)均大于0.8,在時(shí)空尺度均適用。同時(shí),相對(duì)于其他替代方法該文算法具有低的時(shí)間復(fù)雜度,在計(jì)算大量數(shù)據(jù)時(shí)可有效降低時(shí)間成本。

      蒸散量;相關(guān)分析;氣象數(shù)據(jù);最近鄰算法;西北地區(qū)

      0 引 言

      蒸散發(fā)是水循環(huán)過程重要的組成部分之一。準(zhǔn)確估算蒸散發(fā),對(duì)作物灌溉、灌區(qū)用水調(diào)度、流域水資源管理、生態(tài)環(huán)境評(píng)估、不同尺度水資源平衡研究以及水文、生態(tài)系統(tǒng)模型建模都是必須且極其重要的。到目前為止,學(xué)者們提出了20余種蒸散發(fā)估算方法。這些方法可分為3類:基于溫度的估算方法(Hargreaves-Samani、Thornthwaite等方法),基于輻射的估算方法(Priestley-Taylor、Turc等方法)和組合方法(Penman-Monteith,PM;Kimberly-Penman等方法)。這些方法都需要輸入氣象觀測(cè)數(shù)據(jù)[1]。PM方法以能量平衡和水汽擴(kuò)散理論為基礎(chǔ),同時(shí)考慮了作物的生理特征和空氣動(dòng)力學(xué)參數(shù)變化,能適應(yīng)于不同氣候地區(qū)。它被聯(lián)合國(guó)糧農(nóng)組織(food and agriculture organization of the united nations,F(xiàn)AO)推薦為標(biāo)準(zhǔn)ET0估算方法(FAO-56 PM),在世界范圍內(nèi)被廣泛應(yīng)用,也常作為標(biāo)準(zhǔn)參照方法來驗(yàn)證其他ET0估算方法的適用性[2]。然而,由于PM方法估算ET0時(shí),需要輸入較多的氣象觀測(cè)數(shù)據(jù),這造成該方法在一些發(fā)展中國(guó)家或觀測(cè)設(shè)備不具備地區(qū)難以適用[3]。其他基于溫度或輻射的方法,需要輸入的數(shù)據(jù)少,但正是因?yàn)樗脭?shù)據(jù)少,不夠全面,導(dǎo)致它們估算的ET0精度較低。因此,學(xué)者們一直致力于開發(fā)一種替代方法,在使用盡可能少的氣象數(shù)據(jù)情況下,與上述傳統(tǒng)方法相比,該替代方法仍可以提供準(zhǔn)確的或至少接近FAO-56 PM的ET0估算值。

      隨著機(jī)器學(xué)習(xí)技術(shù)和人工智能的興起,學(xué)者們開始探索如何將智能算法和傳統(tǒng)估算方法結(jié)合,準(zhǔn)確有效地估算ET0。1998年Tahir等學(xué)者將人工神經(jīng)網(wǎng)絡(luò)算法(artificial neural network,ANN)用于蒸散發(fā)預(yù)測(cè),隨后眾多學(xué)者用4~7種氣象及其他輔助數(shù)據(jù)作為輸入,圍繞ANN及其衍生算法估算ET0開展了一系列研究[4-8],研究結(jié)果表明基于ANN的估算模型可有效地估算ET0,比基于溫度或輻射的方法估算結(jié)果更優(yōu)。近年來,也有學(xué)者利用多于5種以上的氣象數(shù)據(jù),通過Bayesian方法[9],多變量相關(guān)向量機(jī)(multivariable relevance vector machine,MVRVM),多層感知機(jī)(multilayer perceptron,MLP)以及最小二乘支持向量機(jī)算法(least-square support vector machines,LSSVM)估計(jì)ET0,結(jié)論表明上述方法可滿足ET0估算的需要,MVRVM較MLP有很好的穩(wěn)定性和魯棒性[10],最小二乘支持向量機(jī)的ET0計(jì)算模型,其模擬精度高于Hargreaves公式和Priestley-Talor公式[11]。

      從2014年至今,學(xué)者們?cè)跈C(jī)器學(xué)習(xí)算法中深耕,挖掘其在ET0估算中的潛力。一個(gè)方向是以多種氣象數(shù)據(jù)作為輸入(多于5種),評(píng)估多個(gè)機(jī)器學(xué)習(xí)算法估算ET0的性能。主要的結(jié)論包括:遺傳算法,極限學(xué)習(xí)機(jī)和廣義回歸神經(jīng)網(wǎng)絡(luò)方法ET0均優(yōu)于Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等經(jīng)驗(yàn)方法[12-14]。模糊邏輯(fuzzy logic)和支持向量回歸(least squares support vector regression,LS-SVR)方法能夠較好地利用現(xiàn)有的氣候數(shù)據(jù)對(duì)日蒸發(fā)過程進(jìn)行建模[15]。ANN算法ET0預(yù)測(cè)性能比-SVR算法更有效[16]。LSSVM,MARS和M5 Tree 3種算法估算月尺度ET0時(shí),LSSVM算法在測(cè)試期具有最小的相對(duì)誤差[17]。另一個(gè)方向是不斷嘗試用新機(jī)器學(xué)習(xí)算法估算ET0。王升等以5個(gè)氣象要素作為輸入,建立基于基因表達(dá)編程(gene expression programming,GEP)智能算法的ET0估算模型,其估算結(jié)果與FAO-56 PM估算值非常接近,比傳統(tǒng)的Hargreaves and Samani、Irmak以及Turc方法精確[18-19]。也有學(xué)者考慮到輸入數(shù)據(jù)較多,嘗試通過主成分分析(principal component analysis,PCA)進(jìn)行數(shù)據(jù)降維(7種降到5種),再結(jié)合ANN算法估算ET0,該方法在節(jié)省計(jì)算時(shí)間成本的同時(shí)保持了估算的精度[20]。

      上述研究運(yùn)用機(jī)器學(xué)習(xí)算法,為準(zhǔn)確估算ET0開辟了諸多有效的路徑。但存在2方面可提高之處:1)這些機(jī)器學(xué)習(xí)算法的時(shí)間復(fù)雜度較高。如簡(jiǎn)單3層ANN算法的時(shí)間復(fù)雜度為(2),樸素貝葉斯算法的時(shí)間復(fù)雜度為(3),支持向量機(jī)SVM的時(shí)間復(fù)雜度為(2),支持向量回歸算法SVR和最小二乘支持向量機(jī)的時(shí)間復(fù)雜度可達(dá)到樣本數(shù)的3次方,即(3)。時(shí)間復(fù)雜度表示了執(zhí)行某個(gè)算法所需要的計(jì)算工作量。可見,當(dāng)需要估算的ET0樣本數(shù)增加時(shí),上述算法的時(shí)間成本相當(dāng)高。2)前人運(yùn)用機(jī)器學(xué)習(xí)算法估算ET0時(shí)仍需要較多的氣象數(shù)據(jù)作為輸入。因此,本文嘗試使用盡可能少的氣象數(shù)據(jù),運(yùn)用低時(shí)間復(fù)雜度的機(jī)器學(xué)習(xí)算法,建立準(zhǔn)確估算ET0的方法。為了評(píng)估本文方法估算ET0的精度和效用,選擇中國(guó)西北地區(qū)作為案例,將估算結(jié)果同F(xiàn)AO-56 PM對(duì)比,研究本文所提出方法的適用性。

      1 材料與方法

      1.1 研究方法

      1.1.1 FAO-56 Penman-Monteith算法

      本文訓(xùn)練樣本數(shù)據(jù)集中的ET0由FAO-56 PM算法估算而得,其定義如下[21]:

      式中ET0為潛在蒸散量,mm/d;R為輸入冠層凈輻射量,MJ/(m2·d);為土壤熱通量,MJ/(m2·d);為干濕溫度計(jì)常數(shù),kPa/℃;2為2 m高處風(fēng)速,m/s;e為飽和水汽壓,kPa;e為實(shí)際水汽壓,kPa;為日平均溫度,℃;D為飽和水汽壓與溫度關(guān)系曲線在某處的斜率,kPa/℃。

      1.1.2 典型相關(guān)分析算法

      典型相關(guān)分析(canonical correlation analysis,CCA)是通過計(jì)算2組隨機(jī)向量的交叉協(xié)方差矩陣分析相關(guān)性。

      設(shè):

      1.1.3最鄰近算法

      最鄰近算法(-nearest neighbor,-NN)是機(jī)器學(xué)習(xí)技術(shù)中一種非參數(shù)惰性監(jiān)督分類算法,原理簡(jiǎn)單且易于代碼實(shí)現(xiàn),算法時(shí)間復(fù)雜度只有()。算法的核心思想是對(duì)于一個(gè)新輸入的數(shù)據(jù),計(jì)算給定訓(xùn)練樣本數(shù)據(jù)集中每個(gè)樣本與新輸入數(shù)據(jù)的距離,按照距離遞增排序并找到與該新輸入的數(shù)據(jù)最相近的個(gè)樣本,最后在這個(gè)樣本數(shù)據(jù)中統(tǒng)計(jì)樣本占多數(shù)的類別,則新輸入的數(shù)據(jù)就屬于該類別[26-28]。

      2)計(jì)算新輸入氣象數(shù)據(jù),與所有訓(xùn)練樣本數(shù)據(jù)集中樣本之間的近似程度。通常,這個(gè)近似程度用歐氏距離,曼哈頓距離等方法來定量描述。本文選用了最易于理解且復(fù)雜度低的歐式距離,它來源于歐氏空間中2點(diǎn)間距離公式

      式中為樣本間距離,xy是分別來自新輸入氣象數(shù)據(jù)和訓(xùn)練樣本數(shù)據(jù)集的樣本。

      計(jì)算出所有樣本距離之后,按照距離遞增排序,找出與該新輸入氣象數(shù)據(jù)最相近的個(gè)樣本。

      需要注意的2個(gè)方面:①是-NN算法中,屬于超參數(shù),不同值對(duì)算法結(jié)果有較大影響[29]。若選擇較小值,則只有與輸入數(shù)據(jù)最近的少量訓(xùn)練樣本形成最終的預(yù)測(cè),易導(dǎo)致過擬合。若選擇較大值,則有較多的訓(xùn)練樣本對(duì)預(yù)測(cè)結(jié)果產(chǎn)生貢獻(xiàn)。其優(yōu)點(diǎn)是一定程度上可減少估算誤差,但缺點(diǎn)是會(huì)導(dǎo)致樣本近似誤差增大,使得與輸入數(shù)據(jù)距離較遠(yuǎn)的訓(xùn)練樣本也會(huì)對(duì)估算起作用。因此,在實(shí)際應(yīng)用中,需要進(jìn)行值優(yōu)選。②是在計(jì)算輸入數(shù)據(jù)與訓(xùn)練樣本之間的距離之前,應(yīng)對(duì)特征向量進(jìn)行歸一化處理。因?yàn)?,不在同一值域的特征向量?duì)距離計(jì)算產(chǎn)生的影響是顯著的,較大值域的特征在計(jì)算距離的過程中,使算法忽略其他小值域的特征,這會(huì)降低估算的準(zhǔn)確度。

      1.1.4 有限氣象數(shù)據(jù)CCA-NN潛在蒸散量估算方法構(gòu)建

      本文嘗試用盡可能有限的氣象數(shù)據(jù)作為輸入,運(yùn)用時(shí)間復(fù)雜度低的機(jī)器學(xué)習(xí)算法,建立較準(zhǔn)確估算ET0的方法。上述2個(gè)基本機(jī)器學(xué)習(xí)算法尚不能直接用來估算ET0,還需要建立一個(gè)機(jī)制將二者有機(jī)耦合,協(xié)同工作,構(gòu)建能夠較準(zhǔn)確估算ET0的方法。核心思路是:通過CCA找出與ET0最相關(guān)的氣象要素,然后用少量最相關(guān)氣象要素作為輸入,通過NN算法估算ET0。其中,在-NN估算ET0之前對(duì)特征向量進(jìn)行歸一化;在估算過程中,初始化值范圍,建立迭代器,并通過性能評(píng)估指標(biāo),自動(dòng)逐步尋找最優(yōu)值;最后按照最優(yōu)值完成ET0估算。方法流程圖如圖1所示。

      注:k為適宜的樣本數(shù)。

      1.2 評(píng)估指標(biāo)

      本文選用5種統(tǒng)計(jì)評(píng)估指標(biāo):相對(duì)偏差(Bias),均方根誤差(root mean square error,RMSE),平均絕對(duì)誤差(mean absolute error,MAE),相關(guān)系數(shù)(correlation coefficient,CC)以及Nash-Sutcliffe納什效率系數(shù)(Nash-Sutcliffe coefficient of efficiency,NSCE),用于值優(yōu)選以及定量評(píng)估本文CCA--NN估算方法相較于FAO-56 Penman Monteith的估算精度。

      1.3 研究區(qū)域與數(shù)據(jù)

      本文選擇中國(guó)西北地區(qū)作為案例,檢驗(yàn)本文CCA--NN潛在蒸散量估算方法的適用性。西北地區(qū)地域遼闊,行政區(qū)劃包括陜西﹑甘肅﹑寧夏﹑青海﹑新疆以及內(nèi)蒙古的一部分,其地域面積約占中國(guó)總國(guó)土面積的1/3。該區(qū)域內(nèi)干旱、半干旱、半濕潤(rùn)氣候并存,山巒、戈壁、綠洲、荒漠等地形地貌交織,生態(tài)脆弱,對(duì)氣候變化敏感性高。選擇該區(qū)域有利于評(píng)估本文算法在氣候多樣性和下墊面條件復(fù)雜區(qū)域的ET0估算性能。

      本文采用中國(guó)氣象局氣象數(shù)據(jù)中心(http://data.cma.cn/)提供的西北地區(qū)184個(gè)氣象站的日尺度平均最高氣溫、平均最低氣溫、平均氣溫、日照時(shí)數(shù)、平均風(fēng)速以及平均相對(duì)濕度6種氣象數(shù)據(jù)。對(duì)該數(shù)據(jù)進(jìn)行預(yù)處理,舍棄數(shù)據(jù)缺失嚴(yán)重的站點(diǎn),進(jìn)行均一化,氣候界限值、異常值,臺(tái)站極值等檢查,并根據(jù)檢查結(jié)果對(duì)數(shù)據(jù)進(jìn)行了必要的插補(bǔ)和訂正。經(jīng)過以上步驟,得到148個(gè)氣象站1960-2018年完整的氣象數(shù)據(jù)。

      為了從時(shí)間和空間2個(gè)角度,評(píng)估本文CCA--NN潛在蒸散量估算方法的適用性,將上述數(shù)據(jù)在時(shí)空尺度上分別分為3部分。其中,空間尺度上是將全部148個(gè)氣象站點(diǎn)中60%的站點(diǎn)(89個(gè))作為訓(xùn)練數(shù)據(jù)集,30%的站點(diǎn)作為驗(yàn)證數(shù)據(jù)集(44個(gè)),運(yùn)行經(jīng)過訓(xùn)練的模型,剩余10%的站點(diǎn)(15個(gè))作為測(cè)試數(shù)據(jù)集。時(shí)間尺度上,將1960-2018共59 a的數(shù)據(jù),前60%的年份(1960-1994,35a)作為訓(xùn)練數(shù)據(jù)集,中間30%的年份(1995-2012年,18a)作為驗(yàn)證數(shù)據(jù)集,其余10%的年份(2013-2018年,6年)作為測(cè)試數(shù)據(jù)集。訓(xùn)練數(shù)據(jù)集用于訓(xùn)練模型,找出最佳的超參數(shù),驗(yàn)證數(shù)據(jù)集用于確定模型超參數(shù),測(cè)試數(shù)據(jù)集用于對(duì)訓(xùn)練好的參數(shù)和算法進(jìn)行性能評(píng)估。

      研究區(qū)域內(nèi)氣象臺(tái)站分布見圖2。表1提供了西北地區(qū)1960—2018年氣象數(shù)據(jù)從時(shí)空2種尺度劃分為3類數(shù)據(jù)集的統(tǒng)計(jì)參數(shù):日平均風(fēng)速,日平均最高氣溫,日平均最低氣溫,日平均氣溫,日照時(shí)數(shù),日平均相對(duì)濕度。

      圖2 研究區(qū)域內(nèi)氣象站點(diǎn)分布

      表1 西北地區(qū)1960-2018年氣象數(shù)據(jù)時(shí)空尺度劃分不同數(shù)據(jù)集的統(tǒng)計(jì)參數(shù)

      注:對(duì)于均值、最小值、中值、最大值,氣溫的單位均為℃;日照時(shí)數(shù)單位為h,風(fēng)速單位為m·s-1,相對(duì)濕度單位為%。

      Note: For mean, minimum, median and maximum values, unit of air temperature, sunshine hours, wind velocity and relative humidity are ℃, h, m·s-1and %, respectively.

      2 結(jié)果與分析

      2.1 與ET0最相關(guān)氣象要素

      本文在訓(xùn)練樣本數(shù)據(jù)集上,運(yùn)用CCA算法,從風(fēng)速,平均氣溫,最高氣溫,最低氣溫,日照時(shí)數(shù)和相對(duì)濕度中(這6項(xiàng)氣象數(shù)據(jù)是FAO-56 PM方法計(jì)算ET0時(shí)的常規(guī)輸入數(shù)據(jù)項(xiàng)),提取與ET0最相關(guān)氣象要素。CCA算法在訓(xùn)練樣本數(shù)據(jù)集上找到了一個(gè)典型相關(guān)變量,記為。典型變量與ET0的相關(guān)系數(shù)達(dá)到0.975,且通過了0.01水平的顯著性檢驗(yàn)。

      由圖3可知,原變量與之間有很好的相關(guān)性,按相關(guān)系數(shù)絕對(duì)值將相關(guān)性從高到底排序,依次是最高溫度,相對(duì)濕度,平均溫度,風(fēng)速,最低溫度,日照時(shí)數(shù)。因此,本文選取最高氣溫和相對(duì)濕度作為西北地區(qū)與ET0最為相關(guān)的氣象要素。

      圖3 氣象要素與ET0相關(guān)系數(shù)結(jié)構(gòu)圖

      2.2 k值優(yōu)選

      在訓(xùn)練數(shù)據(jù)集上以最高氣溫和相對(duì)濕度作為輸入,運(yùn)用-NN算法進(jìn)行ET0估算。如前文所述,值對(duì)估算結(jié)果優(yōu)劣影響較大。因此,在進(jìn)行最終估算之前,需要優(yōu)選出西北地區(qū)各氣象站的值。設(shè)值范圍為1~200,初始值為1。將不同值估算的ET0同F(xiàn)AO-56 Penman Monteith估算結(jié)果對(duì)比,以相關(guān)系數(shù)CC≥0.9,NSCE≥ 0.50作為值優(yōu)選迭代的收斂條件。西北地區(qū)各氣象站的優(yōu)選值如圖4所示。

      由圖4可知,優(yōu)選的值分布在值域?yàn)閇15,32]的區(qū)間;從空間分布角度觀察,值呈現(xiàn)一定的地域相似分布規(guī)律,尤其在陜西,內(nèi)蒙古,寧夏,甘肅地區(qū)較為明顯。

      得到各氣象站點(diǎn)優(yōu)選值后,分別在時(shí)間和空間尺度的訓(xùn)練數(shù)據(jù)集,驗(yàn)證數(shù)據(jù)集以及測(cè)試數(shù)據(jù)集上,以最高氣溫和相對(duì)濕度作為輸入,運(yùn)用-NN算法進(jìn)行ET0估算,并將估算結(jié)果與FAO-56 Penman Monteith結(jié)果對(duì)比。通過對(duì)訓(xùn)練數(shù)據(jù)集上的結(jié)果分析,判斷是否找出了最佳的超參數(shù),驗(yàn)證數(shù)據(jù)集上的結(jié)果分析用于確定模型超參數(shù),最后用測(cè)試數(shù)據(jù)集上的結(jié)果分析對(duì)CCA--NN算法進(jìn)行整體性能評(píng)估。

      圖4 西北地區(qū)各氣象站的優(yōu)選k值空間分布

      2.3 時(shí)間尺度CCA-k-NN潛在蒸散量估算方法的性能

      將CCA--NN潛在蒸散量估算方法在時(shí)間尺度不同數(shù)據(jù)集上的估算結(jié)果同F(xiàn)AO-56 Penman Monteith結(jié)果對(duì)比,評(píng)估本文方法在時(shí)間尺度上的適用性。如圖5和表2所示,本文CCA--NN方法在時(shí)間尺度的訓(xùn)練數(shù)據(jù)集上得到的ET0估算結(jié)果,與FAO-56 PM計(jì)算結(jié)果具有高的相關(guān)性,相關(guān)系數(shù)CC分別達(dá)到了0.921,且通過了0.05水平的顯著性檢驗(yàn),這說明本文優(yōu)選的超參數(shù)值是最佳的。驗(yàn)證數(shù)據(jù)集上本文算法估算結(jié)果同與FAO-56 PM計(jì)算結(jié)果的相關(guān)系數(shù)為0.906,結(jié)果略有低估,這可能由近鄰樣本加權(quán)平均誤差造成。

      本文估算結(jié)果與FAO-56 PM計(jì)算結(jié)果的RMSE和MAE誤差分別為0.851、0.652 mm/d,良好的統(tǒng)計(jì)結(jié)果也進(jìn)一步說明該超參數(shù)值合理。再將優(yōu)選的超參數(shù)應(yīng)用于測(cè)試數(shù)據(jù)集,其結(jié)果相關(guān)系數(shù)為0.905,在0.05水平顯著相關(guān);Bias指標(biāo)為2.33%,盡管相對(duì)于前2個(gè)數(shù)據(jù)集略有增大,但RMSE和MAE誤差均不足1 mm/d;NSCE指標(biāo)為0.834,達(dá)到了優(yōu)秀級(jí)別。

      綜上,整體觀察本文CCA--NN潛在蒸散量估算方法在上述3個(gè)數(shù)據(jù)集上的表現(xiàn),說明該方法在時(shí)間尺度上是適用的,超參數(shù)的優(yōu)選值以及算法的設(shè)計(jì)是可行的。

      圖5 CCA-k-NN ET0估算方法在時(shí)間尺度不同數(shù)據(jù)集同F(xiàn)AO-56 PM對(duì)比

      表2 時(shí)間尺度上CCA-k-NN潛在蒸散量估算方法性能統(tǒng)計(jì)

      注:*,<0.05。CC,相關(guān)系數(shù)。下同。

      Note: *,<0.05. CC is correlation coefficient, same as below.

      2.4 空間尺度CCA-k-NN潛在蒸散量估算方法的性能

      圖6和圖7描述了在空間尺度不同數(shù)據(jù)集上本文算法的估算性能。

      如圖6所示,本文CCA--NN ET0估算方法同F(xiàn)AO-56 Penman Monteith結(jié)果在空間尺度訓(xùn)練數(shù)據(jù)集和驗(yàn)證數(shù)據(jù)集上有高的相關(guān)性,相關(guān)系數(shù)都大于0.9;線性擬合線接近于45°直線,斜率接近于1,截距只有0.5左右,接近于0。結(jié)合表3對(duì)估算誤差的統(tǒng)計(jì),本文CCA--NN ET0估算結(jié)果的RMSE在訓(xùn)練數(shù)據(jù)集上為0.847 mm/d,驗(yàn)證數(shù)據(jù)集上為0.830 mm/d;MAE分別為0.637、0.632 mm/d;Bias在驗(yàn)證數(shù)據(jù)集上相較于訓(xùn)練數(shù)據(jù)集略大,但也只有1.28%。由此說明本文CCA--NN ET0方法的估算結(jié)果與FAO-56 Penman Monteith非常接近。

      圖6 CCA-k-NN ET0估算方法在空間尺度不同數(shù)據(jù)集上同F(xiàn)AO-56 PM對(duì)比

      a. 訓(xùn)練數(shù)據(jù)集a. Training datasetb. 驗(yàn)證數(shù)據(jù)集b. Validating datasetc. 測(cè)試數(shù)據(jù)集c. Testing dataset

      表3 空間尺度上CCA-k-NN潛在蒸散量估算方法性能統(tǒng)計(jì)

      Table 3 Performance statistics of CCA-k-NN potential evapotranspiration estimation method on spatial scale

      注:訓(xùn)練數(shù)據(jù)集有89個(gè)站點(diǎn),驗(yàn)證數(shù)據(jù)集有44個(gè)站點(diǎn),測(cè)試數(shù)據(jù)集有15個(gè)站點(diǎn)。

      Note: The training dataset has 89 sites, the verification dataset has 44 sites, and the testing dataset has 15 sites.

      觀察NSCE效率系數(shù)(圖7a和圖7b),無論在訓(xùn)練數(shù)據(jù)集還是驗(yàn)證數(shù)據(jù)集,NSCE都大于0.5,即都達(dá)到“適用”及以上。其中,在訓(xùn)練數(shù)據(jù)集89個(gè)站點(diǎn)中,達(dá)到“適用”的站點(diǎn)有5個(gè),“良好”7個(gè),“優(yōu)秀”77個(gè),占比分別為5.6%,7.9%,86.5%。在驗(yàn)證數(shù)據(jù)集44個(gè)站點(diǎn)中,達(dá)到“適用”的站點(diǎn)有1個(gè),“良好”11個(gè),“優(yōu)秀”32個(gè),占比分別為2.3%,25%,72.7%。

      為進(jìn)一步驗(yàn)證本文CCA--NN ET0估算方法在空間尺度的適用性,在訓(xùn)練及驗(yàn)證數(shù)據(jù)集之外,選擇15個(gè)獨(dú)立氣象站點(diǎn)(隨機(jī)選擇但在西北整個(gè)地區(qū)空間近似均勻分布)作為測(cè)試數(shù)據(jù)集,分別用本文算法和FAO-56 Penman Monteith估算ET0,并對(duì)估算結(jié)果進(jìn)行評(píng)估,如圖7c所示。

      在測(cè)試數(shù)據(jù)集上,本文CCA--NN ET0估算結(jié)果同F(xiàn)AO-56 Penman Monteith結(jié)果非常接近,相關(guān)系數(shù)達(dá)到0.912。根據(jù)表4對(duì)估算誤差的統(tǒng)計(jì),RMSE為0.823 mm/d,MAE為0.621 mm/d,Bias為1.77%。在全部15個(gè)氣象站點(diǎn),NSCE效率系數(shù)達(dá)到“適用”的站點(diǎn)1個(gè),“良好”4個(gè),“優(yōu)秀”10個(gè),占比分別為6.6%,26.7%,66.7%??梢姡疚腃CA--NN ET0估算方法,在測(cè)試數(shù)據(jù)集上保持了穩(wěn)定性,由此也表明該方法的空間適用性。

      3 結(jié) 論

      本文提出了一種基于自尋優(yōu)最近鄰算法的潛在蒸散量計(jì)算方法(canonical correlation analysis--nearest neighbor CCA--NN),利用與ET0最相關(guān)的2個(gè)氣象要素實(shí)現(xiàn)了潛在蒸散量的估算,并選擇中國(guó)西北地區(qū)作為檢驗(yàn)算法適用性的案例,將該區(qū)域的氣象數(shù)據(jù)分別從時(shí)間和空間尺度,分為訓(xùn)練數(shù)據(jù)集、驗(yàn)證數(shù)據(jù)集和測(cè)試數(shù)據(jù)集,在時(shí)空尺度上用本文算法估算ET0,并將估算結(jié)果同F(xiàn)AO-56 Penman Monteith估算結(jié)果對(duì)比,其結(jié)果接近FAO-56 Penman Monteith方法估算結(jié)果,相關(guān)系數(shù)大于0.9,均方根誤差和平均絕對(duì)誤差均小于1 mm/d,空間尺度上算法納什效率系數(shù)均大于0.5,時(shí)間尺度上NSCE均大于0.8。結(jié)論顯示本文方法無論在時(shí)間尺度還是空間尺度都是適用的。

      [1] Nema M K, Khare D, Chandniha S K. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley[J]. Applied Water Science, 2017, 7(7): 3903-3910.

      [2] Manikumari N, Murugappan A, Vinodhini G. Time series forecasting of daily reference evapotranspiration by neural network ensemble learning for irrigation system[C]// IOP Conference Series: Earth and Environmental Science. Tamil Nadu: IOP Publishing, 2017: 012069.

      [3] Yassin M A, Alazba A A, Mattar M A. Modelling daily evapotranspiration using artificial neural networks under hyper arid conditions[J]. Pakistan Journal of Agricultural Sciences, 2016, 53(3):695-712.

      [4] Tahir S. Estimating Potential Evaporation Using Artificial Neural Network[M]. Notes. Jakarta: INACID, 1998: 1-12.

      [5] 鄭重,馬富裕,李江全,等. 基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)田蒸散量預(yù)報(bào)模型[J].水利學(xué)報(bào),2008(2):230-234.

      Zhen Zhong, Ma Fuyu, Li Jiangquan et al. Forecast model for field evaportranspiration based on BP ANN[J] Journal of Hydraulic Engineering, 2008(2): 230-234. (in Chinese with English abstract)

      [6] Kumar M, Bandyopadhyay A, Raghuwanshi N S, et al. Comparative study of conventional and artificial neural network-based ET0estimation models[J]. Irrigation Science, 2008, 26(6): 531-537.

      [7] Landeras G, Ortiz-Barredo A, López J J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) [J]. Agricultural water management, 2008, 95(5): 553-565.

      [8] Huo Z, Feng S, Kang S, et al. Artificial neural network models for reference evapotranspiration in an arid area of northwest China[J]. Journal of Arid Environments, 2012, 82: 81-90.

      [9] Hern S, Morales L, Sallis P. Estimation of reference evapotranspiration using limited climatic data and Bayesian model averaging[C]// 2011 UKSim 5th European Symposium on Computer Modeling and Simulation. IEEE, 2011: 59-63.

      [10] Torres A F, Walker W R, McKee M. Forecasting daily potential evapotranspiration using machine learning and limited climatic data[J]. Agricultural Water Management, 2011, 98(4): 553-562.

      [11] 侯志強(qiáng),楊培嶺,蘇艷平,等. 基于最小二乘支持向量機(jī)的ET0模擬計(jì)算[J]. 水利學(xué)報(bào),2011,42(6):743-749.

      Hou Zhiqiang, Yang Peiling, Su Yanping, et al. Simulation of ET0based on LS-SVM method[J]. Journal of Hydraulic Engineering, 2011, 42(6): 743-749. (in Chinese with English abstract)

      [12] 江顯群,陳武奮. BP神經(jīng)網(wǎng)絡(luò)與GA-BP農(nóng)作物需水量預(yù)測(cè)模型對(duì)比[J]. 排灌機(jī)械工程學(xué)報(bào),2018,36(8):762-766.

      Jiang Xianqun, Chen Wufeng. Comparison between BP neural network and GA-BP crop water demand forecasting model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(8): 762-766. (in Chinese with English abstract)

      [13] 馮禹,崔寧博,龔道枝,等. 基于極限學(xué)習(xí)機(jī)的參考作物蒸散量預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):153-160.

      Feng Yu, Cui Ningbo, Gong Daozhi, et al. Prediction model of reference crop evapotranspiration based on extreme learning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp1): 153-160. (in Chinese with English abstract)

      [14] 馮禹,崔寧博,龔道枝,等. 利用溫度資料和廣義回歸神經(jīng)網(wǎng)絡(luò)模擬參考作物蒸散量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):81-89

      Feng Yu, Cui Ningbo, Gong Daozhi, et al. Modeling reference evapotranspiration by generalized regression neural network combined with temperature data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 81-89. (in Chinese with English abstract)

      [15] Goyal M K, Bharti B, Quilty J, et al. Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS[J]. Expert Systems with Applications, 2014, 41(11): 5267-5276.

      [16] Tezel G, Buyukyildiz M. Monthly evaporation forecasting using artificial neural networks and support vector machines[J]. Theoretical and Applied Climatology, 2016, 124(1/2): 69-80.

      [17] Kisi O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree[J]. Journal of Hydrology, 2015, 528: 312-320.

      [18] 王升,陳洪松,聶云鵬,等. 基于基因表達(dá)式編程算法的參考作物騰發(fā)量模擬計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):106-112.

      Wang Sheng, Chen Hongsong, Nie Yunpeng, et al. Simulation of reference evapotranspiration based on gene-expression programming method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 106-112. (in Chinese with English abstract)

      [19] Mattar M A. Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt[J]. Agricultural Water Management, 2018, 198: 28-38.

      [20] Adnan M, Latif M A, Nazir M. Estimating evapotranspiration using machine learning techniques[J]. International journal of Advanced Computer Science and Applications, 2017, 8(9): 108-113.

      [21] Allen R G, Pereira L S, Raes D, et al. FAO Irrigation and drainage paper No.56[J]. Rome: Food and Agriculture Organization of the United Nations, 1998, 56(97): e156.

      [22] 馮克鵬. 寧夏水資源優(yōu)化配置決策支持系統(tǒng)研究[D]. 銀川:寧夏大學(xué),2014.

      Feng Kepeng. Research on Decision Support System for Optimal Allocation of Water Resources in Ningxia[D]. Yinchuan: Ningxia University, 2014. (in Chinese with English abstract)

      [23] Lai P L, Fyfe C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 2000, 10(5): 365-377.

      [24] Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614.

      [25] Cherry S. Singular value decomposition analysis and canonical correlation analysis[J]. Journal of Climate, 1996, 9(9): 2003-2009.

      [26] 毋雪雁,王水花,張煜東. K最近鄰算法理論與應(yīng)用綜述[J]. 計(jì)算機(jī)工程與應(yīng)用,2017,53(21):1-7.

      Wu Xueyan, Wang Shuihua, Zhang Yudong. Survey on theory and application of k-Nearest-Neighbors algorithm[J]. Computer Engineering and Applications, 2017, 53(21): 1-7. (in Chinese with English abstract)

      [27] Xue K, Li Q, Xu H, et al. Vibration-based terrain classification for robots using-nearest neighbors algorithm[J]. Journal of Vibration Measurement & Diagnosis, 2013, 33(1): 88-92.

      [28] Paolino J P. Using the rasch model and k-nearest neighbors algorithm for response classification.[J]. Journal of Applied Measurement, 2016, 17(2): 185.

      [29] 李曉瑜. K近鄰協(xié)同過濾推薦算法中的最優(yōu)近鄰參數(shù)[J]. 計(jì)算機(jī)與數(shù)字工程,2018,46(8):1525-1528,1619.

      Li Xiaoyu. Optimal neighbor parameter of k-nearest neighbor algorithm for collaborative filtering recommendation[J]. Computer and Digital Engineering, 2018, 46(8): 1525-1528, 1619. (in Chinese with English abstract)

      [30] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.

      Method for estimating potential evapotranspiration by self-optimizing nearest neighbor algorithm

      Feng Kepeng1,3,5, Tian Juncang1,3,5※, Hong Yang2,4

      (1.750021,; 2.,,73072,; 3.750021,; 4.,100084,; 5.,750021,)

      The FAO-56 Penman-Monteith method for estimating potential evapotranspiration is widely used, but multiple meteorological data are required. In this study, the potential evapotranspiration calculation method (CCA--NN) of self-optimizing nearest neighbor algorithm combining the canonical correlation analysis algorithm and the k-nearest neighbor algorithm was proposed to estimate potential evapotranspiration by using less meteorological data. This study chose the northwest China as a case. In this area, the arid, semi-arid and semi-humid climates coexist, and the topography of the mountains, Gobi, oasis, and desert are intertwined, it is ecologically fragile, and highly sensitive to climate change. Meteorological data included daily average wind speed, daily average maximum temperature, daily average minimum temperature, daily average temperature, sunshine hours, daily average relative humidity of 148 meteorological stations. They were divided into training datasets, verification datasets and test datasets. On the spatial scale, 60% of all 148 meteorological sites (89 sites) were used as training data sets, 30% of sites were used as verification data sets (44 sites) and the remaining 10% of sites (15 sites) as the test dataset. On the time scale, the data of 1960-2018, the first 60% of the period (1960-1994) was as the training data set, the middle 30% of the year (1995-2012) was as the verification data set and the remaining 10% of the year (2013-2018) was as a test data set. For the training sample dataset, the most relevant meteorological elements in Northwest China with potential evapotranspiration were the highest temperature and relative humidity using typical correlation algorithms. Then, the highest temperature and relative humidity were used as input for the model. The optimal k value was selected by iteration and the results showed that the k value (15-32) of each weather station in northwestern China was suitable. Then, the verification data set and the test data set were respectively input with the highest temperature and relative humidity and the k nearest neighbor algorithm was used for potential evapotranspiration estimation. Models were evaluated by using relative deviation, root mean square error, mean absolute error, correlation coefficient and Nash-Sutcliffe efficiency coefficient. The results showed that the CCA--NN method maintained a high correlation with the FAO-56 Penman-Monteith (correlation coefficient greater than 0.9), with good estimation accuracy, and the root mean square error and the mean absolute error were less than 1 mm/d. On the spatial scale, the Nash efficiency coefficient of the algorithm was greater than 0.5, and the Nash efficiency coefficient on the time scale was greater than 0.8, which was applicable at both space and time scales. At the same time, the algorithm had low time complexity compared to other alternative methods, and could effectively reduce the time cost when calculating large amounts of data.

      evapotranspiration; correlation analysis; meteorological data;nearest neighbor algorithm; northwestern China

      馮克鵬,田軍倉(cāng),洪 陽(yáng). 自尋優(yōu)最近鄰算法估算有限氣象數(shù)據(jù)區(qū)潛在蒸散量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):76-83.doi:10.11975/j.issn.1002-6819.2019.20.010 http://www.tcsae.org

      Feng Kepeng, Tian Juncang, Hong Yang. Method for estimating potential evapotranspiration by self-optimizing nearest neighbor algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 76-83. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.010 http://www.tcsae.org

      2019-04-11

      2019-09-10

      寧夏自然科學(xué)基金(2019AAC03049);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC0408104);國(guó)家自然科學(xué)基金(51869024);寧夏高等學(xué)校一流學(xué)科建設(shè)項(xiàng)目(NXYLXK2017A03);寧夏重點(diǎn)研發(fā)計(jì)劃重大項(xiàng)目(2018BBF02022);寧夏高等學(xué)校科研項(xiàng)目(NGY2017026)

      馮克鵬,副教授,博士,主要從事氣候變化與水文水資源研究。Email:fengkp@nxu.edu.cn

      田軍倉(cāng),博士,博士生導(dǎo)師,主要從事水資源高效利用研究。Email:slxtjc@163.com

      10.11975/j.issn.1002-6819.2019.20.010

      P426.2

      A

      1002-6819(2019)-20-0076-08

      猜你喜歡
      測(cè)試數(shù)據(jù)集上復(fù)雜度
      Cookie-Cutter集上的Gibbs測(cè)度
      鏈完備偏序集上廣義向量均衡問題解映射的保序性
      一種低復(fù)雜度的慣性/GNSS矢量深組合方法
      測(cè)試數(shù)據(jù)管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
      復(fù)扇形指標(biāo)集上的分布混沌
      求圖上廣探樹的時(shí)間復(fù)雜度
      基于自適應(yīng)粒子群優(yōu)化算法的測(cè)試數(shù)據(jù)擴(kuò)增方法
      空間co-location挖掘模式在學(xué)生體能測(cè)試數(shù)據(jù)中的應(yīng)用
      體育科技(2016年2期)2016-02-28 17:06:21
      某雷達(dá)導(dǎo)51 頭中心控制軟件圈復(fù)雜度分析與改進(jìn)
      出口技術(shù)復(fù)雜度研究回顧與評(píng)述
      呼玛县| 皋兰县| 宁武县| 呈贡县| 乌拉特前旗| 敦煌市| 渭源县| 浙江省| 资中县| 阜城县| 南康市| 普格县| 永和县| 金山区| 繁昌县| 辽阳市| 肃北| 乐至县| 西丰县| 曲阳县| 岚皋县| 巴彦县| 修文县| 仙游县| 英超| 从化市| 平顺县| 文昌市| 惠安县| 五指山市| 东海县| 札达县| 天津市| 比如县| 成武县| 凤山市| 永定县| 陆良县| 三明市| 滁州市| 玉田县|