• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      氮素在植物中的利用綜述

      2020-04-16 12:55白文欽胡明瑜王春萍蔣曉英雷開榮吳紅
      江蘇農(nóng)業(yè)科學(xué) 2020年4期
      關(guān)鍵詞:吸收氮素儲存

      白文欽 胡明瑜 王春萍 蔣曉英 雷開榮 吳紅

      摘要:氮素是植物生長的必需營養(yǎng)元素,世界范圍內(nèi)常施用大量氮肥以提高作物的產(chǎn)量。然而,氮肥不僅價格昂貴,還會污染環(huán)境,威脅人類身體健康。解決這一問題的其中一個策略是開發(fā)一些能夠固氮和高效利用氮肥的作物,這樣可以在減少氮肥施用的情況下獲得較高的作物產(chǎn)量。本文梳理了植物對氮元素從源到庫器官的吸收、重組和利用的整個過程,分析了植物中參與分配和瞬時存儲的無機氮和有機氮的形式,以及它們?nèi)绾斡绊懙目捎眯?、代謝和再活化。同時,介紹了氮素轉(zhuǎn)運蛋白在源和庫器官中的基本功能及其在調(diào)節(jié)氮的運輸、氮信號傳導(dǎo)調(diào)控中的重要性。認(rèn)為氮素轉(zhuǎn)運蛋白是提高氮素利用效率和作物產(chǎn)量有效靶標(biāo),這為如何結(jié)合當(dāng)前的研究發(fā)現(xiàn)來推動未來的作物工程發(fā)展提供了有價值的線索。

      關(guān)鍵詞:氮素;吸收;同化;儲存;分配;運輸調(diào)控;作物改良

      中圖分類號: S143.1文獻標(biāo)志碼: A

      氮是植物生長和繁殖所需的基本營養(yǎng)元素。植物根系主要吸收無機氮(硝酸鹽和銨鹽)作為氮源,但在特定生態(tài)系統(tǒng)中生長的一些植物也能夠從土壤吸收有機氮[1-4]。除了從土壤中直接獲得氮化合物之外,豆科(Leguminosae)植物能夠通過與根瘤中的細(xì)菌共生來固定大氣中的氮元素。根據(jù)植物種類和環(huán)境條件,獲得的無機氮被還原為結(jié)瘤、根或光合活性源葉中的氨基酸,在一些熱帶豆科植物的根瘤中,這些氨基酸被用來生產(chǎn)脲類化合物[5]。所產(chǎn)生的氨基酸或脲主要通過長距離運輸?shù)男问綇脑矗ɡ绺?、結(jié)節(jié)和成熟葉)運輸?shù)綆臁T跔I養(yǎng)生長期,根系和葉片是主要的氮庫,而生殖生長期的花、果實和種子是主要的氮同化物導(dǎo)入庫[6]。

      植物通過木質(zhì)部將氮從根部運輸?shù)窖浚鴱脑慈~到庫的氮運輸發(fā)生在韌皮部中,同時,庫器官通常也存在有少量的木質(zhì)部運輸形式[7-8]。在氮從土壤向源到庫的運輸過程中,定位在質(zhì)膜上的轉(zhuǎn)運蛋白是必不可少的。它們能夠調(diào)節(jié)根系對氮的吸收、運輸和種子中氮的存儲[9-10]。在植物的營養(yǎng)生長階段,氮可利用程度和利用率主要取決于植物對土壤中氮的吸收、同化和運輸?shù)綆斓男?在植物的生殖生長階段,種子中的氮利用效率不僅僅取決于土壤中氮的可利用程度和吸收效率,還取決于從源葉、莖或根中的蛋白質(zhì)和氮的臨時存儲庫中可獲得的氮量,以及氨基酸(或脲)遷移效率[6]。

      本文綜述了植物對氮的吸收、同化和從源到庫分配的分子機制,以及無機氮(即硝酸鹽和銨態(tài)氮)和有機氮(即氨基酸和脲)在植物中的分配機理,并闡述了它們在源和庫中的生理作用,以及它們對植物生產(chǎn)力的重要性。

      1?氮素吸收與同化

      科學(xué)家們已經(jīng)在根中鑒定出各種具有不同底物親和性和特異性的無機和有機氮轉(zhuǎn)運蛋白。這些高度多樣化的吸收系統(tǒng)使植物根系能夠適應(yīng)(包括養(yǎng)分脅迫條件下)不同氮成分和濃度的土壤環(huán)境。盡管這方面的研究不斷深入,但是不同的轉(zhuǎn)運蛋白及下游因子是如何來協(xié)調(diào)氮的同化過程的,仍不完全清楚。

      1.1?根系對硝酸鹽和銨鹽的吸收

      植物根系通過硝酸鹽轉(zhuǎn)運蛋白的介導(dǎo),從土壤中吸收硝酸鹽和硝酸銨[10]。硝酸鹽轉(zhuǎn)運蛋白家族根據(jù)對硝酸鹽的轉(zhuǎn)運活性,可分為低親和性和高親和性兩大類,其中硝酸鹽轉(zhuǎn)運蛋白1(NRT1)屬于低親和力系統(tǒng),在擬南芥的53種NPF/NRT1蛋白中,迄今為止已經(jīng)有16種蛋白的功能被鑒定出。除了擬南芥中的NPF6.3/NRT1.1和水稻中的NRT 1.1B之外,它們都只具有低硝酸鹽親和力[11-14]。高親和力硝酸鹽轉(zhuǎn)運蛋白屬于NRT2家族,在擬南芥中有7個NRT2蛋白,而在水稻中則有3個NRT2蛋白[10]。NPF/NRT1和NRT2轉(zhuǎn)運體家族成員是質(zhì)子偶聯(lián)蛋白,除了雙重功能的NPF7.3/NRT1.5轉(zhuǎn)運蛋白[15]和NPF2.7/硝酸輸出轉(zhuǎn)運蛋白(NAXT1)之外,它們都能夠介導(dǎo)硝酸鹽的外流[16]。此外,研究發(fā)現(xiàn)氯化物通道蛋白(CLC)家族也具有轉(zhuǎn)運硝酸鹽的功能[17]。

      在擬南芥中,至少有6種轉(zhuǎn)運蛋白參與了根系對硝酸根的吸收。NPF63/NRT1.1[也稱氯酸鹽抗性蛋白1(CHL1)]和NPF4.6/NRT1.2主要在高硝酸鹽環(huán)境下發(fā)揮作用;NRT2.1、NRT2.2、NRT2.4和NRT2.5則在硝酸鹽匱乏環(huán)境中發(fā)揮作用,這4種蛋白吸收的硝酸鹽占植物吸收的硝酸鹽總量的95%,其中NRT2.1和NRT2.2起主要作用。基于基因表達分析和蛋白定位的結(jié)果,研究者認(rèn)為NRT2.4和NRT2.5可能主要參與了通過根毛區(qū)表皮和皮層從土壤中直接獲得硝酸鹽的過程,而NRT2.1和NRT2.2則是介導(dǎo)了硝酸鹽通過質(zhì)外體途徑進入皮質(zhì)和內(nèi)皮層細(xì)胞的過程[18-21]。近年來,研究者們在番茄(Solanum lycopersicum)、水稻(Oryza sativa)、小麥(Triticum aestivum)和玉米(Zea mays)等植物中也鑒定出了大量硝酸鹽運輸?shù)鞍譡10,22-23]。

      除了硝酸鹽之外,植物也能夠吸收NH+4作為氮源,但是過量的銨會對植物細(xì)胞產(chǎn)生毒害,因此植物對銨態(tài)氮的吸收和同化受到嚴(yán)格的調(diào)控。在植物中,存在一類銨轉(zhuǎn)運蛋白(AMT)來實現(xiàn)銨鹽的吸收,根據(jù)其對銨鹽的親和性,也可以將其分為高親和轉(zhuǎn)運蛋白和低親和轉(zhuǎn)運蛋白。AMT在植物中廣泛存在,研究者們分別在擬南芥(6種)、水稻(10種)、楊樹(14種)和松樹(3種)中發(fā)現(xiàn)了大量的AMT編碼基因[24-27]。在擬南芥中,有4種AMT蛋白參與了根系對銨鹽的吸收,其中AMT1;1、AMT1;3、AMT1;5蛋白通過表皮直接吸收土壤中的銨,而AMT1;2蛋白則在皮層和內(nèi)皮層細(xì)胞中表達,介導(dǎo)了銨鹽的質(zhì)外體吸收。進一步研究發(fā)現(xiàn),擬南芥通過AMT1;1、AMT1;2和AMT1;3蛋白吸收的銨鹽占銨鹽吸收總量的90%~95%[28]。在水稻中,銨鹽的吸收是由OsAMT1;1、OsAMT1;2和OsAMT1;3蛋白來完成,其中OsAMT1;1和OsAMT1;2基因表達水平隨著環(huán)境銨鹽濃度提高而上調(diào);而OsAMT1;3基因則在氮匱乏狀態(tài)下表達,使得水稻能夠適應(yīng)低銨鹽環(huán)境[29-30]。

      1.2?根系對氨基酸的吸收

      植物根系對有機氮的吸收的研究主要集中在氨基酸方面[1,31]。在擬南芥中,預(yù)計已鑒定出超過100種氨基酸轉(zhuǎn)運蛋白,大多屬于氨基酸-多胺-膽堿(APC)轉(zhuǎn)運蛋白超家族和屬于DMT超家族的多種酸轉(zhuǎn)運進出蛋白家族(UMAMIT)[32]。研究較多的氨基酸轉(zhuǎn)運蛋白家族包括氨基酸通透酶家族(AAPs)、賴氨酸和組氨酸轉(zhuǎn)運蛋白家族(LHTs)、脯氨酸轉(zhuǎn)運蛋白家族(ProTs)、γ-氨基丁酸轉(zhuǎn)運蛋白家族(GATs)、生長素轉(zhuǎn)運蛋白家族(AUXs)、芳香氨基酸和中性氨基酸轉(zhuǎn)運蛋白家族(ANTs)。一般而言,底物特異性和親和力在不同轉(zhuǎn)運子蛋白家族之間存在差異。AAPs被認(rèn)為具有廣泛底物特異性的中等親和力,擬南芥中的AAP1蛋白參與了根系吸收谷氨酸和中性氨基酸的過程[33],而AAP5蛋白則具有轉(zhuǎn)運堿性氨基酸的能力[34]。LHTs被推測具有高親和力運輸能力。AtLHT1定位于根表皮和葉肉細(xì)胞,能夠?qū)⒅行院退嵝园被釋?dǎo)入根部,同時能夠運輸作為乙烯前體的1-氨基環(huán)丙烷-1-羧酸(ACC)[35-37]。擬南芥AtProt2蛋白參與了脯氨酸和甜菜堿的導(dǎo)入過程,超量表達該基因能夠提高植物的耐鹽性,這表明在缺水情況下受脅迫的植物根系細(xì)胞會提高內(nèi)部溶質(zhì)的濃度以提高滲透壓[38]。

      1.3?氮同化與氨基酸合成和運輸

      硝酸鹽還原酶將硝酸鹽還原為亞硝酸鹽[39]。而亞硝酸鹽還原酶則將轉(zhuǎn)運到質(zhì)體中的亞硝酸鹽進一步還原為銨鹽[40]。擬南芥中存在2種硝酸還原酶編碼基因AtNIA1和AtNIA2,在2種基因同時突變的擬南芥突變體nia1、nia2中,其硝酸還原酶活性只有野生型擬南芥的0.5%[41]。

      谷氨酰胺合成酶(GS)是氮同化的關(guān)鍵酶,其與谷氨酸合酶(GOGAT)一起形成所謂的GS-GAGOT環(huán),將銨鹽轉(zhuǎn)化成為谷氨酰胺。根據(jù)GS定位的不同,可以將GS分為胞質(zhì)型GS(GS1)和質(zhì)體型GS(GS2)。葉綠體GS2主要參與了氨的初級同化和葉肉中的光呼吸銨的同化作用[42]。GS1參與了根中氨的初級同化,特別是在高硝酸鹽環(huán)境下對氮同化有一定的作用[43]。有研究表明,擬南芥中的GS1型蛋白GLN1;2在成熟葉片中定位于伴細(xì)胞中,能夠促進韌皮部的氮裝載到庫中[44]。在葉片衰老過程中,GS1酶的活性被誘導(dǎo)提高,將從氨基酸分解代謝中得到的原料重新進行氮同化[45]。根據(jù)電子供體的不同,植物中的谷氨酸合酶(GOGAT)分為鐵氧還蛋白依賴的GOGAT(Fd-GOGAT)和NADP依賴的GOGAT(NADH-GOGAT),前者主要位于葉肉細(xì)胞的葉綠體中,后者則存在于葉和根伴隨細(xì)胞的質(zhì)體中,二者均可促進氮的同化和分配[46]。水稻中存在Fd-GOGAT抑制因子的編碼基因OsARE1,突變該基因可以延緩植物的衰老,提高低氮條件下氮的利用效率,進而提高水稻產(chǎn)量[47]。

      葉綠體(和細(xì)胞質(zhì))是大量蛋白來源氨基酸開始合成的部位,氨基酸的轉(zhuǎn)運依賴轉(zhuǎn)運蛋白來完成。研究發(fā)現(xiàn),擬南芥中存在一種谷氨酸/蘋果酸轉(zhuǎn)運蛋白(AtDiT2),該蛋白能夠?qū)被徂D(zhuǎn)運出葉綠體[48]。矮牽牛中則存在一種陽離子氨基酸轉(zhuǎn)運蛋白(PhpCAT),該蛋白能夠?qū)⒎枷阕灏被釓馁|(zhì)體中運輸出來[49]。

      1.4?根-芽氮運移

      木質(zhì)部參與了根-芽的硝態(tài)氮流、氮同化物、其他營養(yǎng)元素和水分的運輸。地面組織的運動是由葉片表面的蒸騰作用引起的,木質(zhì)部的靜水壓力可梯度向下延伸到根部[50]。氨基酸的運輸往往發(fā)生在木質(zhì)部(和韌皮部)中,其中天門冬氨酸、谷氨酸、天冬酰胺和谷氨酰胺含量最為豐富[51]。在結(jié)瘤的熱帶豆科植物中,木質(zhì)部中90%以上的氮以脲的形式出現(xiàn),脲也是韌皮部中主要含氮化合物[52]。在外施不添加氮的營養(yǎng)液時,結(jié)瘤大豆木質(zhì)部中的氮主要以氨基酸和脲的形式存在,無機氮的含量極低[53]。然而,當(dāng)葉片中氮發(fā)生同化作用時,木質(zhì)部硝酸鹽的濃度可能超過有機氮化合物的濃度[54]。木質(zhì)部不僅保證了植物各個組織生理功能的直接氮供應(yīng),而且還能夠沿著其運輸途徑實現(xiàn)氮的回收,在根、莖、葉主脈以及木質(zhì)部到韌皮部的轉(zhuǎn)移中建立氮貯藏池,以用于快速供應(yīng)生長需求旺盛的庫。

      2?營養(yǎng)組織中氮的儲存

      在各種源器官、組織或亞細(xì)胞結(jié)構(gòu)中沉積的氮化合物的類型和數(shù)量對氮的運輸和分配到庫具有相當(dāng)大的影響。此外,氮儲藏池的形成能有效地控制胞質(zhì)和質(zhì)外體的氮濃度,從而通過前饋或反饋控制影響氮的吸收、運輸和同化。

      2.1?硝酸鹽和銨儲存

      有研究發(fā)現(xiàn),在葉和根的液泡/細(xì)胞質(zhì)中硝酸鹽的濃度較高[55],當(dāng)細(xì)胞質(zhì)中硝酸鹽的濃度較高時,硝酸鹽會儲存在液泡中,當(dāng)細(xì)胞質(zhì)中硝酸鹽濃度降低,影響氮同化時,硝酸鹽又會從液泡中轉(zhuǎn)移到細(xì)胞質(zhì)中。在擬南芥中,AtCLCa基因編碼的氯離子通道蛋白AtCLCA能夠通過偶聯(lián)硝酸鹽和質(zhì)子的轉(zhuǎn)運,將硝酸鹽存儲到液泡中,并影響植物體中的硝酸鹽濃度[56-57]。擬南芥中AtNRT2.7基因編碼液泡膜轉(zhuǎn)運蛋白,主要是在種子特別是干種子中表達,對于在種子中累積硝酸鹽具有重要的作用[58-63]。在水稻中,OsNPF7.2基因編碼硝酸鹽低親和轉(zhuǎn)運蛋白,該蛋白定位于水稻根系伸長區(qū)和成熟區(qū)細(xì)胞的液泡膜。敲除OsNPF7.2基因?qū)?dǎo)致水稻在高硝酸鹽條件下的生長延遲,表明缺少該蛋白會影響硝酸鹽在根細(xì)胞中的分配,使得液泡不能起到調(diào)控細(xì)胞內(nèi)氮元素含量的作用[64]。

      過量的銨鹽會導(dǎo)致植物中毒,為避免銨鹽濃度過高帶來的毒性,大量的銨鹽被存儲在液泡中,其在液泡中的濃度可達1 mmol/L,以維持細(xì)胞質(zhì)內(nèi)較低的銨鹽濃度[60-61]。與成熟葉相比,老葉和幼葉中的銨鹽濃度通常更高,這是由氨基酸分解代謝和光呼吸作用造成的。與液泡膜上硝酸鹽轉(zhuǎn)運蛋白相比,參與液泡內(nèi)銨鹽存儲的轉(zhuǎn)運蛋白有待研究[62]。

      2.2?氨基酸的儲存

      在發(fā)育過程中或受到非生物/生物脅迫,植物葉片中游離氨基酸成分及其濃度的變化較大[63]。隨著葉片衰老,葉片中氨基酸的總濃度穩(wěn)步下降,而韌皮部汁液中的總氨基酸含量增加[64]。此外,氨基酸的種類隨著植物的年齡和氮素營養(yǎng)的變化而變化[65]。例如,在煙葉的幼葉中,脯氨酸含量占總氨基酸含量的20%,而在成熟和衰老的葉片中只有2%。與低硝酸鹽條件相比,在高硝酸鹽條件下油菜(Brassica napus)葉片中的游離氨基酸含量更高,氨基酸組成更豐富[66]。此外,干旱和鹽脅迫等環(huán)境條件能夠引起葉片中氨基酸的積累,這可能是相關(guān)氨基酸合成能力加強或者蛋白質(zhì)降解釋放所造成的[67]。逆境脅迫解除后,植物在恢復(fù)過程中,暫時儲存的氨基酸可參與新陳代謝過程或轉(zhuǎn)運到新的沉淀物中。葉片儲存氨基酸的種類隨植物種類而變化,主要是谷氨酸、天冬氨酸、谷氨酰胺、脯氨酸,而在C4植物玉米中主要為天冬酰胺[68]??傮w而言,在不同的膜轉(zhuǎn)運系統(tǒng)、不斷變化的轉(zhuǎn)運機制以及底物特異性和親和力的作用下,大量的氨基酸在細(xì)胞或儲存池中的含量、種類頻繁地發(fā)生變化。

      運用蛋白質(zhì)組學(xué),可鑒定出擬南芥液泡膜的氨基酸轉(zhuǎn)運蛋白,其中就包括了陽離子氨基酸轉(zhuǎn)運蛋白(CAT)[69]。亞細(xì)胞定位試驗證實,擬南芥CAT2和CAT4定位于液泡膜上[70],但是它們在液泡運輸中的直接功能尚需進一步研究。番茄中也存在定位于液泡膜的氨基酸轉(zhuǎn)運蛋白SlCAT9,該蛋白的編碼基因在果實成熟期大量表達,進一步研究發(fā)現(xiàn),SlCAT9蛋白介導(dǎo)了GABA(γ-氨基丁酸)與GLU/ASP的交換[71]。除了CAT蛋白,研究者在擬南芥中發(fā)現(xiàn)了負(fù)責(zé)芳香和中性氨基酸轉(zhuǎn)運的ANT1蛋白和負(fù)責(zé)丙氨酸和脯氨酸轉(zhuǎn)運的AtAVT3蛋白[72-73]。

      2.3?脲類儲藏

      在熱帶豆科植物中,氮主要以尿素的形式存儲在莖、葉柄或葉組織中[74]。在葉中,脲可能存儲在葉肉細(xì)胞的液泡中。固氮大豆有一類特化的旁側(cè)葉肉組織,研究表明,脲主要存在于這個組織之中,該組織也是營養(yǎng)生長過程中蛋白質(zhì)儲存的主要場所[75]。然而,參與上述過程的轉(zhuǎn)運蛋白還未被鑒定出。有研究表明,尿囊素濃度上升可能會引發(fā)植物體對非生物和生物脅迫的一般反應(yīng)[76]。

      2.4?蛋白質(zhì)的儲存

      理論上講,植物體中的所有蛋白質(zhì)均可認(rèn)為是氮元素的存儲池。許多酶可能在營養(yǎng)組織中的氮存儲中發(fā)揮著作用。研究發(fā)現(xiàn),相當(dāng)大比例的核酮糖-1,5-二磷酸羧化/加氧酶是非活性的,在葉片衰老過程中,大亞基和小亞基似乎被獨立降解以用于再活化[77]。葉片中GS實際酶活性總是比根據(jù)GS2含量推測出的酶活理論值低,這暗示了GS2也可能具有氮存儲功能。此外,有研究發(fā)現(xiàn),核糖體蛋白可以通過自噬作用實現(xiàn)氮元素的回收和再活化[78],這意味著核糖體蛋白也是一種重要的氮源存儲池。營養(yǎng)貯藏蛋白(VSPs)是植物營養(yǎng)組織中氮存儲的主要形式,所有植物物種中都存在VSPs。在植物氮吸收能力下降時,VSPs在氮的累積和流動過程中具有重要的作用。也有研究發(fā)現(xiàn),VSPs在植物適應(yīng)非生物或生物脅迫中有一定的作用[79-80]。

      3?氮素的分配

      大多數(shù)的氮是以氨基酸形式從源葉中被運輸出,而在一些物種中則是以脲類的形式被運出。在衰老過程中,葉片成為氮/氨基酸的主要來源[81],氮源的再活化和隨后的氮在庫中的使用對于保持種子產(chǎn)量十分重要[82]。

      3.1?蛋白質(zhì)降解與氮的再活化

      在受到脅迫或者衰老時,葉片中會發(fā)生有機氮的再活化,自噬相關(guān)蛋白和液泡蛋白酶參與了這個過程[64]。在營養(yǎng)缺乏的情況下,自噬程度會加劇,這有助于對氮的再活化[83]。在植物中,一些衰老誘導(dǎo)合成的氨基酸轉(zhuǎn)運蛋白已經(jīng)被鑒定出來,但是其在氮再活化中的作用還未知[64]。有研究發(fā)現(xiàn),在葉片衰老過程中,韌皮部中天冬酰胺和谷氨酰胺的濃度增加,這意味著發(fā)生了一系列的轉(zhuǎn)氨基反應(yīng),增加了谷氨酸和酰胺類物質(zhì)的合成[84]。

      3.2?有機氮和無機氮在庫中的分配

      韌皮部中的篩分子(SEs)和伴胞(CCs)形成長距離的運輸管道,可使氮向庫運輸。氮常以氨基酸或脲的形式從葉片向庫運輸[85]。韌皮部的硝酸鹽濃度相對較低,硝酸鹽與氨基酸的比例通常為1 ∶(10~100)[19,54]。氮的葉外運輸則是通過胞間連絲這種共質(zhì)體途徑[86]。

      通過被動運輸,氨基酸、脲類和硝酸鹽從薄壁組織或束鞘細(xì)胞中釋放,進入葉片質(zhì)外體,然后被導(dǎo)入韌皮部[87-89]。參與硝酸鹽運輸?shù)饺~/韌皮部質(zhì)外體的轉(zhuǎn)運蛋白尚未被發(fā)現(xiàn),但韌皮部裝載硝酸鹽過程中發(fā)揮作用的轉(zhuǎn)運蛋白已經(jīng)被鑒定出,包括NPF2.13/NRT1.7、NRT2.4和NRT2.5[1-3]。NPF2.13/NRT1.7 定位于葉片細(xì)脈的SEs/CCs中,促進老葉中韌皮部的裝載。NRT2.4在葉片韌皮部(可能是韌皮部薄壁組織)或接近韌皮部中表達,在缺乏氮條件下,從質(zhì)外體中回收硝酸鹽,從而使氮向SEs/CCs運動。NRT2.5基因在擬南芥葉片的細(xì)脈中表達,并與NRT2.4一起影響葉片中硝酸鹽的再活化和其在韌皮部的運輸。NPF1.2/NRT1.11和NPF1.1/NRT1.12基因在葉片主脈伴細(xì)胞表達,它們除了在硝酸鹽從木質(zhì)部到韌皮部傳遞中發(fā)揮作用外,還在硝酸鹽向幼嫩組織的分配中起重要的作用[90]。

      對于從葉片中導(dǎo)出氨基酸的轉(zhuǎn)運蛋白的研究相對較少[91]。有研究表明,擬南芥中的雙向氨基酸轉(zhuǎn)運蛋白(BAT1)可能在氨基酸從韌皮部向庫組織的運輸中發(fā)揮作用[92],AAPs可能參與了從葉質(zhì)體中攝取氨基酸到SEs/CCs復(fù)合體的過程[93]。對擬南芥的研究表明,AAP8在源葉中韌皮部表達,在氨基酸韌皮部裝載過程中起著關(guān)鍵作用,并且能強烈地影響庫的大小和數(shù)量[94]。在菜豆中,PvUPS1基因能夠在整株植物的韌皮部位中表達,其編碼的蛋白對于尿囊素在韌皮部的轉(zhuǎn)載以及運輸?shù)秸诎l(fā)育的庫中具有重要的作用[95]。

      3.3?參與分配的氮素來源

      植物從土壤中吸收氮元素,而氮的含量則取決于作物種類、基因型和環(huán)境條件[45]。例如,在油菜中,硝酸根轉(zhuǎn)運蛋白的表達和活性在生殖生長階段降低,硝酸鹽吸收較營養(yǎng)階段少[96-97]。此外,氮的吸收取決于土壤水分的有效性,多雨條件下,研究者發(fā)現(xiàn)田間生長的油菜植株的根系在生長發(fā)育過程中能夠大量地吸收氮元素[98]。在某些情況下有些地區(qū)夏季降水量不足,在這種情況下,植物需要將氮從蛋白質(zhì)和氮儲存池中再活化,以確保生殖庫的氮營養(yǎng)需求。在擬南芥中,相較于高氮環(huán)境,植株氮利用效率(NUE)和氮活化效率(NRE)在低氮條件下更高。同時,在低氮條件下,同位素標(biāo)記的14NO3 主要集中在植物的種子當(dāng)中[99]。對玉米而言,籽粒中有62%的氮來自氮的再活化作用,其余38%的氮來源于根的吸收[1-3]。有研究表明,在土壤氮含量充足的情況下,植物在整個生長周期中,根系都能夠持續(xù)吸收氮元素[100],于是,由于常在植物生長早期施用硝酸鹽肥料,在植物生育階段土壤中的硝態(tài)氮可能會被耗盡。

      4?氮進入庫

      種子是主要的氮庫,而在營養(yǎng)生長和多年生植物中,根、發(fā)育的葉和莖或樹干是主要的氮庫。有研究表明,溶質(zhì)和大分子物質(zhì)在根和莖中韌皮部的卸載方式有所不同[101]?,F(xiàn)有研究表明,來自韌皮部的氨基酸的釋放發(fā)生在維管結(jié)構(gòu)的末端,由UmamiT轉(zhuǎn)運蛋白家族來完成。其中UMAMIT11和UMAMIT14定位于與原生木質(zhì)部和韌皮部相鄰的細(xì)胞質(zhì)膜,能夠促進氮卸載和運輸?shù)椒N子。SIAR1(UMAMIT18)蛋白定位于細(xì)胞膜上,其編碼基因在能夠維管組織中表達,也具有將氮源卸載并運輸?shù)椒N子中的作用[102-103]。進一步研究發(fā)現(xiàn),UMAMIT14和UMAMIT18不僅僅在種子發(fā)育中起作用,它們對氨基酸在根韌皮部的卸載也具有重要的作用[104]。在種皮中,氨基酸和硝酸鹽通過被動運輸輸出到種子質(zhì)外體,然后被一些轉(zhuǎn)運蛋白導(dǎo)入到正在發(fā)育的胚中,并影響種子中蛋白的累積[105-106]。研究者發(fā)現(xiàn),在豌豆中,氨基酸通透酶編碼基因PvAAP1在種皮和子葉表皮轉(zhuǎn)移細(xì)胞以及貯藏薄壁細(xì)胞中表達,對于種子中儲存蛋白的累積具有重要的作用[107]。在水稻中,OSAAP6蛋白定位于細(xì)胞內(nèi)質(zhì)網(wǎng)上,調(diào)控種子內(nèi)蛋白質(zhì)的積累,OsAAP6基因表達水平高的植株的種子內(nèi)蛋白質(zhì)含量也相應(yīng)增加[108]。

      硝酸鹽的運輸過程會影響種子的發(fā)育和休眠過程[109]。擬南芥NPF2.12/NRT1.6存在于角果和珠柄的微管組織中,可促進硝酸鹽向胚的運輸,從而影響種子發(fā)育和種子內(nèi)硝酸鹽的積累[110]。此外,NPF5.5基因在擬南芥的胚中表達,該基因突變會減少胚中氮的含量,但似乎對種子發(fā)育沒有影響[111]。NRT2.7定位于胚細(xì)胞液泡膜,調(diào)節(jié)硝酸鹽在液泡中的積累,從而影響種子萌發(fā)[58]。

      5?源到庫中的氮運輸和代謝的關(guān)系

      氮從源到庫分配受源器官中氮的吸收和代謝、源輸出和庫輸入氮的能力的影響。在擬南芥和豆科植物中的研究已經(jīng)證明,芽中氨基酸運輸能夠調(diào)控根中氮的吸收、源的代謝和庫的分配。在豌豆中,增加氨基酸在韌皮部的累積和裝載可以正向調(diào)控根中氮的吸收,進而影響源和庫中可利用氮的同化和使用[37,112-113]。此外,參與韌皮部裝載過程的氨基酸轉(zhuǎn)運蛋白能影響氮從源到庫的量,并影響種子發(fā)育[94]。相反,韌皮部氨基酸的濃度似乎對胚對氮的吸收沒有影響。例如,AAP8基因突變的擬南芥植株韌皮部中,降低氨基酸濃度對種子的氮含量沒有影響,但種子數(shù)量會顯著減少[94,114]。一般來說,定位于種子的氨基酸和硝酸鹽轉(zhuǎn)運蛋白可能調(diào)控了導(dǎo)入胚中的氮含量,轉(zhuǎn)運蛋白編碼基因表達水平的改變會影響種子中貯藏蛋白的積累[113,115-116]。然而,與單個種子所吸收的氮量相比,分配給許多庫(即水果和種子)的氮量,不僅取決于源和庫中轉(zhuǎn)運蛋白的活性,而且受植物中可用的總氮量以及在生殖生長前期建立的總庫數(shù)的影響。

      6?氮運輸調(diào)控

      為了實現(xiàn)氮的有效吸收和利用,植物在不同層面上發(fā)展出了一整套氮運輸?shù)恼{(diào)控機制[117-118]。

      6.1?細(xì)胞水平調(diào)節(jié)

      硝酸鹽能夠調(diào)節(jié)包括NPF63/NRT1.1、NPF7.3/NRT1.5、NPF7.2/NRT1.8、NRT2.1和NRT2.2在內(nèi)的硝酸鹽轉(zhuǎn)運蛋白的轉(zhuǎn)錄水平,從而影響氮在植物中的運輸[119]。在擬南芥中,NPF63/NRT1.1不僅僅參與硝酸鹽的吸收和轉(zhuǎn)運,也能夠作為外界硝酸鹽信號的感受器,通過調(diào)控多種生理學(xué)和形態(tài)學(xué)上的變化(如種子休眠和形成側(cè)根)對外界硝酸鹽的變化作出應(yīng)答[120]。包括NLP7在內(nèi)的大量轉(zhuǎn)錄因子參與了硝酸鹽的信號傳導(dǎo)和轉(zhuǎn)運[121-124]。NLP7可結(jié)合與硝酸鹽信號傳導(dǎo)和硝酸鹽同化相關(guān)的基因。有趣的是,硝酸鹽并不能影響NLP7基因的表達水平,而是通過調(diào)節(jié)NLP7蛋白在細(xì)胞核中的留存實現(xiàn)NLP7蛋白的大量累積[124]。此外,植物中存在一種CPSF蛋白,這種蛋白有2種剪切形式:CPSF30-S和CPSF30-L,其中CPSL30-L能夠通過調(diào)節(jié)NPF63/NRT1.1參與植物硝酸鹽信號的調(diào)控。此外,轉(zhuǎn)錄組分析發(fā)現(xiàn),在cpsf30突變體中,許多氮轉(zhuǎn)運及同化相關(guān)基因的表達水平發(fā)生了明顯的變化,說明該蛋白對于調(diào)控硝酸鹽信號通路具有重要的作用[125]。

      研究表明,銨鹽可以通過依賴時間或者濃度變化的形式調(diào)控AMT蛋白的磷酸化,從而影響其功能。進一步研究表明,擬南芥中的AtAMT1;1和AtAMT1;2能夠被CIPK23磷酸化,從而抑制銨鹽的吸收和轉(zhuǎn)運,以避免植物細(xì)胞的銨中毒[126-127]。大量研究表明,硝酸鹽和銨鹽會對彼此的吸收、同化、分配產(chǎn)生影響,其分子機理在一定程度上得到了的解釋[67,128]。

      除了硝酸鹽和銨鹽之外,氮轉(zhuǎn)運蛋白編碼基因的表達還受細(xì)胞和組織發(fā)育狀態(tài)的調(diào)節(jié)。同時,非生物或生物因素的影響,如光、鹽和干旱脅迫,線蟲或病原體攻擊等都會對轉(zhuǎn)運蛋白在基因或者蛋白水平上產(chǎn)生影響[32]。

      氮轉(zhuǎn)運蛋白在植物氮素吸收和代謝中扮演著重要角色,然而,它們在轉(zhuǎn)錄或翻譯后如何相互影響,如何共同影響氮同化、儲存和反饋或前反饋路徑,現(xiàn)在尚未完全清楚,已有研究結(jié)果暗示可能存在核心調(diào)控能協(xié)調(diào)氮元素的分配。此外,研究表明,硝酸鹽和氨基酸轉(zhuǎn)運蛋白可能參與了植物激素在植物體內(nèi)的運輸[129-130],暗示氮素轉(zhuǎn)運蛋白介導(dǎo)的植物激素轉(zhuǎn)運可能也參與了氮素在運輸或分配中的調(diào)控。

      6.2?整個植株水平上的氮元素遠距離信號系統(tǒng)

      由于氮素在土壤中分布不均,因此植物具一套系統(tǒng)的長距離運輸機制,即當(dāng)根系一側(cè)的氮缺乏時,氮元素豐富的另一側(cè)則會補償性地吸收更多的氮元素。由氮元素缺乏的根部產(chǎn)生的由根向莖移動的肽激素CEP(C-末端編碼肽)誘發(fā)了這種運輸機制。CEP能夠調(diào)控韌皮部特異性肽CEPD1和CEPD2作為長距離移動信號轉(zhuǎn)移到根部,并上調(diào)NRT2.1的表達水平,促進氮的吸收[131]。

      7?作物改良應(yīng)用

      氮元素吸收、分配的遺傳調(diào)控和氮代謝的調(diào)控是提高作物產(chǎn)量和氮利用效率(NUE)的主要途徑[132]。研究者們希望通過超量表達相關(guān)基因以提高植物的氮利用效率,目前已取得了一定進展。例如,在水稻中超量表達高親和力的硝酸鹽轉(zhuǎn)運蛋白編碼基因OsNRT2.3b,能夠提高植物的氮利用效率,從而增加籽粒產(chǎn)量[133]。根據(jù)作物種類、當(dāng)?shù)卦耘喹h(huán)境、最終產(chǎn)品(例如根、葉、果實或種子)及其用途(例如人類營養(yǎng)、動物飼料或生物燃料)的不同,制定有針對性的改進策略可能更有效。例如,利用OsNAR2.1基因的特異性啟動子控制的OsNRT2.1的過量表達會提高水稻地上部分生物量和籽粒產(chǎn)量[134]。在根中過量表達的大麥丙氨酸氨基轉(zhuǎn)移酶(AlaAT)編碼基因的油菜與非轉(zhuǎn)基因油菜相比,在氮源不充沛的條件下,可以提高植物對氮的利用效率,從而提高產(chǎn)量[135]。研究者們將豌豆來源的PvAAP1基因置于其啟動子控制下轉(zhuǎn)入豌豆,與野生型對照相比,轉(zhuǎn)基因豌豆的氮元素運輸能力得到了顯著提高,從而增加了其種子的產(chǎn)量[113]。也有研究者嘗試在豌豆種子中特異表達氨基酸轉(zhuǎn)運蛋白編碼基因VfAAP1,結(jié)果發(fā)現(xiàn)轉(zhuǎn)基因植株種子的大小以及氮含量明顯提高,但是單株植物的種子產(chǎn)量卻沒有明顯變化[136]。值得一提的是,研究者們也試圖通過提高銨鹽轉(zhuǎn)運蛋白編碼基因的表達來促進植物的生長。例如,超量表達OsAMT1;1能夠在適量銨鹽或者低銨鹽的條件下促進水稻的生長,但是在銨鹽濃度過高的環(huán)境中卻因為在水稻根系中大量累積銨鹽從而影響其生長發(fā)育。此外,超量表達OsAMT1;3的水稻中氮吸收轉(zhuǎn)運能力呈下降趨勢[137-139]。

      8?總結(jié)

      氮是植物體內(nèi)重要的營養(yǎng)因子和信號物質(zhì),對于植物生長發(fā)育具有重要的作用。為適應(yīng)外界氮元素含量的變化,植物演化出了一套復(fù)雜的調(diào)控網(wǎng)絡(luò)。近年來,無機氮的運輸、代謝及其調(diào)控的研究取得了長足的進展。盡管氨基酸和脲是氮元素長距離運輸?shù)闹饕问剑菍τ谟袡C氮的相關(guān)研究卻相對較少。不同類型的氮素轉(zhuǎn)運蛋白在氨基酸和脲的源-庫分配中的轉(zhuǎn)運對于氮的獲取、源的新陳代謝和庫的強度具有非常重要的作用。比如,氨基酸(或脲)的積累對于無機氮轉(zhuǎn)運蛋白的表達具有負(fù)向反饋作用,這種負(fù)反饋可以通過增加有機氮向庫運輸?shù)耐縼肀苊猓沁@種負(fù)反饋作用仍有許多細(xì)節(jié)需要進一步完善。

      氮素轉(zhuǎn)運蛋白作為氮吸收、轉(zhuǎn)運、同化等過程的重要參與者,一直是研究的熱點,其功能已經(jīng)在許多植物中得到鑒定。目前,筆者所知道的大量氮素轉(zhuǎn)運蛋白主要承擔(dān)了植物根部氮素的吸收和轉(zhuǎn)運,對植物地上部分參與氮素分配和再活化、利用,特別是在生殖生長階段促進源-庫互作的轉(zhuǎn)運蛋白了解很少。這部分知識的缺失,使得我們尚不能構(gòu)建出完整的氮素吸收和利用的調(diào)控網(wǎng)絡(luò),但這卻為未來的研究指出了方向。

      植物的氮利用效率受到作物物種(亞種)、植株發(fā)育水平、環(huán)境等多種復(fù)雜因素的影響,這對研究者進行作物的氮高效利用遺傳改良提出了挑戰(zhàn)。進行作物改良時,需要盡可能兼顧無機氮和有機氮轉(zhuǎn)運系統(tǒng),如它們表達的時空性和相互關(guān)系,以精細(xì)調(diào)節(jié)氮吸收、代謝、瞬時儲存和整株植物分配?,F(xiàn)代生物技術(shù)的發(fā)展,包括全基因組關(guān)聯(lián)分析、(GWAS)高通量測序、代謝組學(xué)、蛋白組學(xué)和表型組學(xué),將有助于研究者進一步理解和整合氮分配過程中源和庫的關(guān)系,并選擇最有希望的候選者,通過基因聚合育種的方式培育出能夠高效利用氮元素的“完美”作物。

      參考文獻:

      [1]Nasholm T,Kielland K,Ganeteg U. Uptake of organic nitrogen by plants[J]. New Phytologist,2009,182(1):31-48.

      [2]Tegeder M,Rentsch D. Uptake and partitioning of amino acids and peptides[J]. Molecular Plant,2010,3(6):997-1011.

      [3]Bloom A J. The increasing importance of distinguishing among plant nitrogen sources[J]. Current Opinion in Plant Biology,2015,25:10-16.

      [4]Rentsch D,Schmidt S,Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants[J]. FEBS Letters,2007,581(12):2281-2289.

      [5]Pate J S,Atkins C A,White S T,et al. Nitrogen nutrition and xylem transport of nitrogen in ureide-producing grain legumes[J]. Plant Physiology,1980,65(5):961-965.

      [6]Masclaux-Daubresse C,Daniel-Vedele F,Dechorgnat J,et al. Nitrogen uptake,assimilation and remobilization in plants:challengesfor sustainable and productive agriculture[J]. Annals of Botany,2010,105(7):1141-1157.

      [7]van Bel A J E. Quantification of the xylem-to-phloem transfer of amino-acids by use of inulin[14C]carboxylic acid as xylem transport marker[J]. Plant Science Letters,1984,35(1):81-85.

      [8]van Bel A J E. Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in dicotyledons[J]. Journal of Experimental Botany,1996,47:1129-1140.

      [9]Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides:opportunities for crop improvement[J]. Journal of Experimental Botany,2014,65(7):1865-1878.

      [10]Fan X R,Naz M,F(xiàn)an X R,et al. Plant nitrate transporters:from gene function to application[J]. Journal of Experimental Botany,2017,68(10):2463-2475.

      [11]Wang R C,Liu D,Crawford N M. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):15134-15139.

      [12]Huang N C,Liu K H,Lo H J,et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J]. Plant Cell,1999,11(8):1381-1392.

      [13]Bouguyon E,Brun F,Meynard D,et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1[J]. Nature Plants,2015,1:1-8.

      [14]Liu K H,Huang C Y,Tsay Y F. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake[J]. Plant Cell,1999,11(5):865-874.

      [15]Lin S H,Kuo H F,Canivenc G,et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. Plant Cell,2008,20(9):2514-2528.

      [16]Segonzac C,Boyer J C,Ipotesi E,et al. Nitrate efflux at the root plasma membrane:identification of an Arabidopsis excretion transporter[J]. Plant Cell,2007,19(11):3760-3777.

      [17]De Angeli A,Monachello D,Ephritikhine G,et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles[J]. Nature,2006,442(715):939-942.

      [18]Lezhneva L,Kiba T,F(xiàn)eria-Bourrellier A B,et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. Plant Journal,2014,80(2):230-241.

      [19]Kiba T,F(xiàn)eria-Bourrellier A B,Lafouge F,et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-straved plants[J]. Plant Cell,2012,24(1):245-258.

      [20]Li W B,Wang Y,Okamoto M,et al. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology,2007,143(1):425-433.

      [21]Garnett T,Conn V,Plett D,et al. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle[J]. New Phytologist,2013,198(1):82-94.

      [22]Fu Y L,Yi H Y,Bao J,et al. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato[J]. FEBS Letters,2015,589(10):1072-1079.

      [23]Xia X D,F(xiàn)an X R,Wei J,et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long distance transport[J]. Journal of Experimental Botany,2015,66(1):317-331.

      [24]Gazzarrini S,Lejay L,Gojon A,et al. Three functional transporters for constitutive,diurnally regulated,and starvation-induced uptake of ammonium into Arabidopsis roots[J]. Plant Cell,1999,11(5):937-947.

      [25]Sonoda Y,Ikeda A,Saiki S,et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice[J]. Plant and Cell Physiology,2003,44(7):726-734.

      [26]Couturier J,Montanini B,Martin F,et al. The expanded family of ammonium transporters in the perennial poplar plant[J]. New Phytologist,2007,174(1):137-150.

      [27]Castro-Rodriguez V,Assaf-Casals I,Perez-Tienda J,et al. Deciphering the molecular basis of ammonium uptake and transport in maritime pine[J]. Plant,Cell & Environment,2016,39(8):1669-1682.

      [28]Yuan LX,Loque D,Kojima S,et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell,2007,19(8):2636-2652.

      [29]Li C,Tang Z,Wei J,et al. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges[J]. Journal of Genetics and Genomics,2016,43(11):639-649.

      [30]Ferreira LM,de Souza VM,Tavares O C H,et al. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology[J]. Plant Biotechnology Reports,2015,9(4):221-229.

      [31]Paungfoo-Lonhienne C,Lonhienne TGA,Rentsch D,et al. Plants can use protein as a nitrogen source without assistance from other organisms[J]. Proceedings of the National Academy of Sciences of the United State of America,2008,105(11):4524-4529.

      [32]Pratelli R,Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants[J]. Journal of Experimental Botany,2014,65(19):5535-5556.

      [33]Perchlik M,F(xiàn)oster J,Tegeder M. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake[J]. Journal of Experimental Botany,2014,65(18):5193-5204.

      [34]Svennerstam H,Jamtgard S,Ahmad I,et al. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations[J]. New Phytologist,2011,191(2):459-467.

      [35]Svennerstam H,Ganeteg U,Bellini C,et al. Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids[J]. Plant Physiology,2007,143(4):1853-1860.

      [36]Ganeteg U,Ahmad I,Jmtgrd S,et al. Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil[J]. Plant,Cell & Environment,2017,40(3):413-423.

      [37]Shin K,Lee S,Song WY,et al. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana[J]. Plant Cell Physiology,2015,56(3):572-582.

      [38]Lehmann S,Gumy C,Blatter E,et al. In planta function of compatible solute transporters of the AtProT family[J]. Journal of Experimental Botany,2011,62(2):787-796.

      [39]Srivastava H S. Regulation of nitrate reductase activity in higher plants[J]. Phytochemistry,1980,19(5):725-733.

      [40]Maeda S,Konishi M,Yanagisawa S,et al. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts[J]. Plant and Cell Physiology,2014,55(7):1311-1324.

      [41]Wilkinson J Q,Crawford N M. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes Nia1 and Nia2[J]. Molecular and General Genetics MGG,1993,239(1/2):289-297.

      [42]Cren M,Hirel B. Glutamine synthetase in higher plants:regulation of gene and protein expression from the organ to the cell[J]. Plant Cell Physiology,1999,40(12):1187-1193.

      [43]Guan M,de Bang T C,Pedersen C,et al. Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity[J]. Plant Physiology,2016,171:1921-1933.

      [44]Lothier J,Gaufichon L,Sormani R,et al. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting[J]. Journal of Experimental Botany,2011,62(4):1375-1390.

      [45]Masclaux C,Valadier M,Brugiere N,et al. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence[J]. Planta,2000,211(4):510-518.

      [46]Suzuki A,Knaff D B. Glutamate synthase:structural,mechanistic and regulatory properties,and role in the amino acid metabolism[J]. Photosynthesis Research,2005,83(2):191-217.

      [47]Wang Q,Nian J Q,Xie X Z,et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications,2018,9:735.

      [48]Renné P,Dreβen U,Hebbeker U,et al. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2[J]. The Plant Journal,2003,35(3):316-331.

      [49]Widhalm J R,Gutensohn M,Yoo H,et al. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network[J]. Nature Communications,2015,6:8142.

      [50]Tyree M T. Plant hydraulics:the ascent of water[J]. Nature,2003,423:923.

      [51]Delrot S,Rochat C,Tegeder M,et al. Amino acid transport[M]//Lea P,Morot-Gaudry J F. Plant nitrogen. Paris:INRA-Springer,2001:215-235.

      [52]Thomas R J,Schrader L E. Ureide metabolism in higher plants[J]. Phytochemistry,1981,20(3):361-371.

      [53]McClure P R,Israel D W. Transport of nitrogen in the xylem of soybean plants[J]. Plant Physiology,1979,64:411-416.

      [54]Peuke A D. Correlations in concentrations,xylem and phloem flows,and partitioning of elements and ions in intact plants. A summary and statistical reevaluation of modelling experiments in Ricinus communis[J]. Journal of Experimental Botany,2010,61(3):635-655.

      [55]Miller A,Smith S. Nitrate transport and compartmentation in cereal root cells[J]. Journal of Experimental Botany,1996,47(5):843-854.

      [56]Wege S,JossierM,F(xiàn)illeur S,et al. The proline 160 in the selectivity filter of the Arabidopsis NO-3/H+ exchanger AtCLCa is essential for nitrate accumulation in planta[J]. Plant Journal,2010,63(1):861-869.

      [57]Monachello D,Allot M,Oliva S,et al. Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways[J]. New Phytologist,2009,183(5):88-94.

      [58]Chopin F,Orsel M,Dorbe MF,et al. The Arabidopsis AtNRT2.7 nitrate transporter controls nitrate content in seeds[J]. Plant Cell,2007,19(5):1590-1602.

      [59]Hu R,Qiu DY,Chen Y,et al. Knock down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply[J]. Frontiers in Plant Science,2016,7:1-13.

      [60]Loque D,Ludewig U,Yuan L X,et al. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole[J]. Plant Physiology,2005,137(2):671-680.

      [61]Roberts J,Pang M. Estimation of ammonium ion distribution between cytoplasm and vacuole using nuclear magnetic resonance spectroscopy[J]. Plant Physiology,1992,100(3):1571-1574.

      [62]Liu Y,von Wiren N. Ammonium as a signal for physiological and morphological responses in plants[J]. Journal of Experimental Botany,2017,68(10):2581-2592.

      [63]Watanabe M,Balazadeh S,Tohge T,et al. Comprehensive dissection of spatiotemporal metabolic shifts in primary,secondary and lipid metabolism during developmental senescence in Arabidopsis[J]. Plant Physiology,2013,62(3):1290-1310.

      [64]Havé M,Marmagne A,Chardon F,et al. Nitrogen remobilisation during leaf senescence:lessons from Arabidopsis to crops[J]. Journal of Experimental Botany,2016,68(10):2513-2529.

      [65]Lemaétre T,Gaufichon L,Boutet-Mercey S,et al. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession[J]. Plant and Cell Physiology,2008,49(7):1056-1065.

      [66]Clément G,Michaёl M,Soulay F,et al. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves[J]. Journal of Experimental Botany,2018,69(4):891-903.

      [67]Verbruggen N,Hermans C. Proline accumulation in plants:a review[J]. Amino Acids,2008,35(4):752-759.

      [68]Caas R A,Quilleré I,Lea P,et al. Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs[J]. Plant Biotechnology Journal,2010,8(9):966-978.

      [69]Jaquinod M,Villiers F,Kieffer-Jaquinod S,et al. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture[J]. Molecular & Cellular Proteomics,2007,3(3):394-412.

      [70]Yang H,Krebs M,Stierhof Y,et al. Characterization of the putative amino acid transporter genes AtCAT2,3 & 4:the tonoplast localized AtCAT2 regulates soluble leaf amino acids[J]. Journal of Plant Physiology,2014,171(8):594-601.

      [71]Snowden C,Thomas B,Baxter C,et al. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition[J]. Plant Journal,2015,81(5):651-660.

      [72]Chen L S,Ortiz-Lopez A,Jung A,et al. ANT1,an aromatic and neutral amino acid transporter in Arabidopsis[J]. Plant Physiology,2001,125(4):1813-1820.

      [73]Fujiki Y,Teshima H,Kashiwao S,et al. Functional identification of AtAVT3,a family of vacuolar amino acid transporters,in Arabidopsis[J]. FEBS Letters,2017,591(1):5-15.

      [74]Streeter J. Allantoin and allantoic acid in tissues and stem exudate from filed grown soybean plants[J]. Plant Physiology,1979,63(3):478-480.

      [75]Costigan S A,F(xiàn)ranceschi V R,Ku M S. Allantoinase activity and ureide content of mesophyll and paravenous mesophyll of soybean leaves[J]. Plant Science,1987,50(3):179-187.

      [76]Takagi H,Ishiga Y,Watanabe S,et al. Allantoin,a stress related purine metabolite,can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner[J]. Journal of Experimental Botany,2016,67(8):2519-2532.

      [77]Ishida H,Nishimori Y,Shimizu S,et al. The large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat[J]. Plant and Cell Physiology,1997,38(4):471-479.

      [78]Guiboileau A,Avila-Ospina L,Yoshimoto K,et al. Physiological and metabolic consequences of autophagy defisciency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability[J]. New Phytologist,2013,199(3):683-694.

      [79]Liu Y L,Ahn J E,Datta S,et al. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase[J]. Plant Physiology,2005,139(3):1545-1556.

      [80]Lee B R,Lee D G,Avice J C,et al. Characterization of vegetative storage protein (VSP) and low molecular proteins induced by water deficit in stolon of white clover[J]. Biochemical and Biophysical Research Communications,2014,443(1):229-233.

      [81]White A C,Rogers A,Rees M,et al. How can we make plants grow faster A source-sink perspective on growth rate[J]. Journal of Experimental Botany,2016,67(1):31-45.

      [82]Barneix A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain[J]. Journal of Plant Physiology,2007,164(5):581-590.

      [83]Avila-Ospina L,Marmagne A,Soulay F,et al. Identification of barley (Hordeum vulgare L.) autophagy genes and their expression levels during leaf senescence,chronic nitrogen limitation and in response to dark exposure[J]. Agronomy,2016,6:15.

      [84]Peoples M B,Dalling M J. The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation[M]// Noodén L D,Leopold A C. Senescence and aging in plants. San Diego:Academic Press,1988:181-217.

      [85]Winter H,Lohaus G,Heldt H W. Phloem transport of amino-acids in relation to their cytosolic levels in barley leaves[J]. Plant Physiology,1992,99(3):996-1004.

      [86]Rennie E A,Turgeon R. A comprehensive picture of phloem loading strategies[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(33):14162-14167.

      [87]Okumoto S,Pilot G. Amino acid export in plants:a missing link in nitrogen cycling[J]. Molecular Plant,2011,4(3):453-463.

      [88]Tegeder M,Ward J M. Molecular evolution of plant AAP and LHT amino acid transporters[J]. Frontiers in Plant Science,2012,3:21.

      [89]Avice J C,le Dily F,Goulas E,et al. Vegetative storage proteins in overwintering storage organs of forage legumes:roles and regulation[J]. Canadian Journal of Botany-Revue Canadienne De Botanique,2003,81(12):1198-1212.

      [90]Hsu P K,Tsay Y F. Two phloem nitrate transporters,NRT1.11 and NRT1.12,are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology,2013,163(2):844-856.

      [91]Tegeder M,Offler C E,F(xiàn)rommer W B,et al. Amino acid transporters are localized to transfer cells of developing pea seeds[J]. Plant Physiology,2000,122(2):319-325.

      [92]Dündar E,Bush DR. BAT1,a bidirectional amino acid transporter in Arabidopsis[J]. Planta,2009,229:1047-1056.

      [93]Tegeder M. Transporters for amino acids in plant cells:some functions and many unknowns[J]. Current Opinion in Plant Biology,2012,15(3):315-321.

      [94]Santiago J P,Tegeder M. Connecting source with sink:the role of Arabidopsis AAP8 in phloem loading of amino acids[J]. Plant Physiology,2016,171(1):508-521.

      [95]Pelissier H C,Tegeder M. PvUPS1 plays a role in source-sink transport of allantoin in French bean (Phaseolus vulgaris)[J]. Functional Plant Biology,2007,34(4):282-291.

      [96]Beuve N,Rispail N,Laine P,et al. Putative role of gamma-aminobutyric acid (GABA) as a longdistance signal in up-regulation of nitrate uptake in Brassica napus L.[J]. Plant,Cell & Environment,2004,27(8):1035-1046.

      [97]Malagoli P,Laine P,Rossato L,et al. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest[J]. Annals of Botany,2005,95(5):853-861.

      [98]Schjoerring J K,Bock J G H,Gammelvind L,et al. Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation[J]. Plant and Soil,1995,177(2):255-264.

      [99]Masclaux-Daubresse C,Chardon F. Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana[J]. Journal of Experimental Botany,2011,62(6):2131-2142.

      [100]Taulemesse F,le Gouis J,Gouache D,et al. Bread wheat (Triticum aestivum L.) grain protein concentration is related to early post-flowering nitrate uptake under putative control of plant satiety level[J]. PLoS One,2016,11(2):e0149668.

      [101]Ross-Elliott T J,Jensen K H,Haaning K S,et al. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem pole pericycle[J]. eLife,2017,6(6):e24125.

      [102]Müller B,F(xiàn)astner A,Karmann J,et al. Amino acid export in developing Arabidopsis seeds depends on UmamiT facilitators[J]. Current Biology,2015,25(23):3126-3131.

      [103]Ladwig F,Stahl M,Ludewig U,et al. Siliques Are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques[J]. Plant Physiology,2012,158(4):1643-1655.

      [104]Besnard J,Pratelli R,Zhao C S,et al. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots[J]. Journal of Experimental Botany,2016,67(22):6385-6397.

      [105]Todd C D,Tipton P A,Blevins D G,et al. Update on ureide degradation in legumes[J]. Journal of Experimental Botany,2006,57(1):5-12.

      [106]Schmidt R,Stransky H,Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana[J]. Planta,2007,226(4):805-813.

      [107]Tegeder M,Tan Q,Grennan A K,et al. Amino acid transporter expression and localisation studies in pea (Pisum sativum)[J]. Functional Plant Biology,2007,34(11):1019-1028.

      [108]Peng B,Kong H L,Li Y B,et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications,2014,5:4847.

      [109]Alboresi A,Gestin C,Leydecker M T,et al. Nitrate,a signal relieving seed dormancy in Arabidopsis[J]. Plant,Cell & Environment,2005,28(4):500-512.

      [110]Almagro A,Lin S H,Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. Plant Cell,2008,20(12):3289-3299.

      [111]Léran S,Garg B,Boursiac Y,et al. AtNPF5.5,a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo[J]. Scientific Reports,2015,5:7962.

      [112]Tan Q M,Grennan A K,Pelissier H C,et al. Characterization and expression of French bean amino acid transporter PvAAP1[J]. Plant Science,2008,174(3):348-356.

      [113]Zhang L Z,Garneau M G,Majumdar R,et al. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids[J]. Plant Journal,2015,81(1):134-146.

      [114]Schmidt R,Stransky H,Koch W .The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana[J]. Planta,2007,226(4):805-813.

      [115]Rolletschek H,Hosein F,Miranda M,et al. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins[J]. Plant Physiology,2005,137(4):1236-1249.

      [116]Weigelt K,Kuster H,Radchuk R,et al. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism,and highlights the importance of mitochondrial metabolism[J]. Plant Journal,2008,55(6):909-926.

      [117]Gent L,F(xiàn)orde B G. How do plants sense their nitrogen status[J]. Journal of Experimental Botany,2017,68(10):2531-2539.

      [118]Jacquot L,Li Z,Gojon A,et al. Post-translational regulation of nitrogen transporters in plants and microorganisms[J]. Journal of Experimental Botany,2017,68(10):2567-2580.

      [119]Nacry P,Bouguyon E,Gojon A. Nitrogen acquisition by roots:physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource[J]. Plant and Soil,2013,370(1/2):1-29.

      [120]Bailey K J,Leegood R C. Nitrogen recycling from the xylem in rice leaves:dependence upon metabolism and associated changes in xylem hydraulics[J]. Journal of Experimental Botany,2016,67(9):2901-2911.

      [121]Wang R,Xing X,Wang Y,et al. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1[J]. Plant Physiol,2009,151(1):472-478.

      [122]Gan Y,Bernreiter A,F(xiàn)illeur,S et al. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant Cell Physiol,2012,53(6):1003-1016.

      [123]Konishi M and Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications,2013,4:1617.

      [124]Marchive C,Roudier F,Castaings L,et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communication,2013,4:1713.

      [125]Li Z,Wang R,Gao Y,et al. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1[J]. New Phytol,2017,216(4):1205-1222.

      [126]Lanquar V,Loque D,Hormann F,et al. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis[J]. Plant Cell,2009,21(11):3610-3622.

      [127]Straub T,Ludewig U,Neuhauser B. The kinaseCIPK23 inhibits ammonium transport in Arabidopsis thaliana[J]. Plant Cell,2017,29(2):409-422.

      [128]Hachiya T,Sakakibara H. Interactions between nitrate and ammonium in their uptake,allocation,assimilation,and signaling in plants[J]. Journal of Experimental Botany,2017,68(10):2501-2512.

      [129]Krouk G,Lacombe B,Bielach A,et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Developmental Cell,2010,18(6):927-937.

      [130]David L C,Berquin P,Kanno Y,et al. N availability modulates the role of NPF3.1,a gibberellin transporter,in GA mediated phenotypes in Arabidopsis[J]. Planta,2016,244(6):1315-1328.

      [131]Ohkubo Y,Tanaka M,Tabata R,et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants,2017,3(4):17029.

      [132]Li H,Hu B,Chu C. Nitrogen use efficiency in crops:lessons from Arabidopsis and rice[J]. Journal of Experimental Botany,2017,68:2477-2488.

      [133]Fan XR,Tang Z,Tan YW,et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(10):7118-7123.

      [134]Chen J,Zhang Y,Tan Y et al. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter[J]. Plant Biotechnology journal,2016,14(8):1705-1715.

      [135]Good A G,Johnson S J,de Pauw M,et al. Engineering nitrogen use efficiency with alanine aminotransferase[J]. Canadian Journal of Botany,2007,85(3):252-262.

      [136]Carter C,Pan S,Jan Z,et al. The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins[J]. Plant Cell,2004,16(12):3285-3303.

      [137]Hoque M S,Masle J,Udvardi M K,et al. Over-expression of the rice OsAMT1-1 gene increases ammonium uptakeand content,but impairs growth and development of plants under high ammonium nutrition[J]. Funct Plant Biol,2006,33(2):153.

      [138]Ranathunge K,El-Kereamy A,Gidda S,et al. AMT1;1 transgenic rice plants with enhanced NH+4 permeability show superior growth and higher yield under optimal and suboptimal NH+4 conditions[J]. Journal of Experimental Botany,2014,65(4):965-979.

      [139]Bao A L,Liang Z J,Zhao Z Q,et al. Overexpressing of OsAMT1-3,a high affinity ammonium transporter gene,modifies rice growth and carbon-nitrogen metabolic status[J]. International Journal of Molecular Sciences,2015,16(5):9037-9063.

      猜你喜歡
      吸收氮素儲存
      冬季養(yǎng)羊這樣儲存草料
      安防云儲存時代已來
      中國古代文論研究的現(xiàn)代視野
      精液長時間冷凍儲存與冷凍復(fù)蘇率的相關(guān)性研究
      冬眠
      楸樹無性系苗期氮素分配和氮素效率差異
      基于光譜分析的玉米氮素營養(yǎng)診斷
      氮素運籌對玉米干物質(zhì)積累、氮素吸收分配及產(chǎn)量的影響
      施氮對春玉米氮素利用及農(nóng)田氮素平衡的影響
      道孚县| 南丰县| 石城县| 祥云县| 偏关县| 介休市| 蒲江县| 正宁县| 河南省| 驻马店市| 阜宁县| 丁青县| 久治县| 舞阳县| 漯河市| 包头市| 北辰区| 林周县| 拉萨市| 茶陵县| 双流县| 枝江市| 常宁市| 津南区| 平陆县| 芜湖市| 南平市| 沂水县| 巨野县| 温宿县| 镇康县| 西和县| 罗城| 丹棱县| 余江县| 沧源| 汶川县| 汶上县| 社会| 洪雅县| 三原县|