• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于IMM-UPF的鋰電池壽命估計(jì)

      2020-04-17 08:54劉新天張恒何耀鄭昕昕曾國(guó)建
      關(guān)鍵詞:鋰電池

      劉新天 張恒 何耀 鄭昕昕 曾國(guó)建

      摘? ?要:提出了一種基于交互式多模型(Interacting Multiple Model,IMM)和無(wú)跡粒子濾波算法(Unscented Particle Filter,UPF)的鋰電池健康狀態(tài)(State of Health,SOH)估計(jì)方法,針對(duì)目前SOH估計(jì)方法需求樣本量大、不適用于全壽命周期結(jié)果跟蹤等問(wèn)題,建立了基于多項(xiàng)式模型、雙指數(shù)模型和集成模型的IMM,通過(guò)UPF解決了重采樣過(guò)程中粒子貧化的問(wèn)題,根據(jù)濾波的結(jié)果對(duì)鋰電池的SOH進(jìn)行預(yù)測(cè),實(shí)現(xiàn)了鋰電池全壽命周期內(nèi)的SOH精確估計(jì). 討論了IMM的選型依據(jù)和建模方法,給出了詳細(xì)的SOH估計(jì)算法,并通過(guò)仿真和實(shí)驗(yàn)對(duì)不同模型進(jìn)行對(duì)比. 仿真和實(shí)驗(yàn)結(jié)果表明,所提出的基于IMM-UPF的鋰電池SOH估計(jì)結(jié)果的概率密度函數(shù)標(biāo)準(zhǔn)偏差僅為19,實(shí)現(xiàn)了高估計(jì)精度.

      關(guān)鍵詞:鋰電池;健康狀態(tài);經(jīng)驗(yàn)?zāi)P?交互式多模型;無(wú)跡粒子濾波

      中圖分類(lèi)號(hào):TM912? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A

      Abstract:Aiming at the problem that the current SOH estimation method requires a large sample size and is not suitable for tracking the results of the whole life cycle,this paper proposed a lithium battery health state estimation method based on Interacting Multiple Model(IMM) and Unscented Particle Filter(UPF) algorithm. Through the establishment of IMM model based on polynomial model,double exponential model and integrated model and the use of UPF filter to solve the problem of particle dilution in resampling process,the SOH of lithium battery was predicted according to the results of filter,and the accurate estimation of SOH in the whole life cycle of lithium battery was realized. In this paper,the selection basis and modeling method of IMM were discussed,the detailed SOH estimation algorithm was given,and the different models were compared by simulation and experiment. The simulation and experiment results show that the standard deviation of probability density function of the proposed IMM-UPF based SOH estimation result of lithium battery is only 19,which achieves high estimation accuracy.

      Key words:lithium battery;state of health;empirical models;interacting multiple model;unscented particle filter

      鋰電池因其具有高能量比、高效率、循環(huán)壽命長(zhǎng)等顯著特點(diǎn),而成為未來(lái)電子市場(chǎng)的首選電源[1]. 與鉛酸電池和鎳氫電池相比,鋰電池因?yàn)榭筛邷卮鎯?chǔ)、快速充電、輸出功率大且沒(méi)有記憶效應(yīng)等優(yōu)點(diǎn)在車(chē)輛和固定式動(dòng)力系統(tǒng)中得到廣泛應(yīng)用[2].

      作為電池管理系統(tǒng)(Battery Management System,BMS)的核心環(huán)節(jié)之一[3-4],健康狀態(tài)(State of Health,SOH)因?yàn)槟軌蛱峁?zhǔn)確的數(shù)據(jù),達(dá)到延長(zhǎng)電池使用壽命的目的,因此在電池使用方面發(fā)揮著至關(guān)重要的作用. 然而,由于電池使用期間伴隨著復(fù)雜的物理和化學(xué)反應(yīng),鋰電池的性能在使用一定時(shí)間后以非線性的形式惡化[5],這就給鋰電池狀態(tài)的預(yù)測(cè)帶來(lái)了很大的不確定性[6].

      目前,鋰電池狀態(tài)估計(jì)的方法可以分為3大類(lèi):基于物理原理建模法[7-11]、基于數(shù)據(jù)建模法[12-15]和兩者相結(jié)合的方法[16]. 基于物理原理建模法通常通過(guò)建立物理模型和經(jīng)驗(yàn)?zāi)P蛠?lái)描述鋰電池的物理和失效機(jī)制,然后建立相應(yīng)的數(shù)學(xué)函數(shù). Tsang等人[17]對(duì)鋰電池等效直流電阻的測(cè)量開(kāi)發(fā)了鋰電池SOH的估算方案. Ning等人[18]根據(jù)負(fù)極內(nèi)的不可逆電化學(xué)反應(yīng)和正電極的氧化反應(yīng),建立了SOH估算模型. Singh等人[19]開(kāi)發(fā)了一種基于模糊邏輯的鋰離子電池SOH估算方法,其中電化學(xué)阻抗譜(Electrochemical Impedance Spectroscopy,EIS)測(cè)量值作為模糊邏輯模型的輸入量.

      基于物理原理建模的方法在有些時(shí)候可以準(zhǔn)確地預(yù)測(cè)容量衰減. 然而,對(duì)于復(fù)雜的動(dòng)態(tài)系統(tǒng),特別是具有不確定噪聲的系統(tǒng),通常很難建立精確的分析模型,更不用說(shuō)這些模型通常局限于特定鋰電池類(lèi)型. 另一方面,基于數(shù)據(jù)建模的方法可以捕捉數(shù)據(jù)中的內(nèi)在關(guān)系并學(xué)習(xí)數(shù)據(jù)中所呈現(xiàn)的變化趨勢(shì),而不需要材料特性、結(jié)構(gòu)、失效機(jī)制等方面的具體知識(shí),避免了開(kāi)發(fā)過(guò)于復(fù)雜的物理模型,使得它比基于物理原理建模的方法更易于實(shí)際操作.

      近年來(lái),由于對(duì)物理失效機(jī)制的依賴(lài)性較小,基于數(shù)據(jù)建模的方法得到了廣泛的研究. 例如,Guo等人[20]研究了一種新的貝葉斯方法,可以在不同的條件下對(duì)鋰電池的剩余壽命(Remaining Useful Life,RUL)進(jìn)行準(zhǔn)確預(yù)測(cè). Miao等人[21]提出了一種改進(jìn)無(wú)跡粒子濾波(Unscented Particle Filter,UPF)算法,該算法能夠準(zhǔn)確地預(yù)測(cè)鋰電池實(shí)際剩余壽命(RUL),預(yù)測(cè)誤差小于5%.? He等人[22]使用d-s證據(jù)理論和貝葉斯蒙特卡洛方法對(duì)經(jīng)驗(yàn)?zāi)P瓦M(jìn)行剩余壽命(RUL)預(yù)測(cè).

      基于數(shù)據(jù)建模的方法因具有簡(jiǎn)單易操作的特點(diǎn),應(yīng)用較為廣泛. 考查鋰電池的整個(gè)壽命周期,容量衰減趨勢(shì)可分為兩個(gè)階段:第一階段為緩慢衰減階段,SOH衰減速度緩慢且時(shí)間較長(zhǎng);隨后是快速衰減階段,SOH的值迅速下降且用時(shí)較短. 因此,常用的單一經(jīng)驗(yàn)?zāi)P涂赡茉诓煌A段取得很好的預(yù)測(cè)效果,但是無(wú)法很好地描述鋰電池的整個(gè)壽命周期的變化趨勢(shì). 同時(shí),經(jīng)驗(yàn)?zāi)P偷某跏紖?shù)確定需要大量的實(shí)驗(yàn)數(shù)據(jù),意味著在樣本數(shù)量不多的情況下,對(duì)鋰電池的剩余壽命(RUL)預(yù)測(cè)將產(chǎn)生較大誤差. 為了解決這些問(wèn)題,本文提出了一種新的融合模型交互式多模型(Interacting Multiple Model,IMM),用于對(duì)不同的衰減模型融合計(jì)算. 與經(jīng)典的IMM使用卡爾曼濾波(Kalman Filter,KF)不同,考慮鋰電池衰減呈現(xiàn)非高斯和非線性的趨勢(shì)使用卡爾曼濾波存在較大的誤差,本文擬使用無(wú)跡粒子濾波(UPF)對(duì)各模型進(jìn)行濾波,一方面解決了粒子濾波(Particle Filter,PF)在重采樣過(guò)程中粒子貧化的問(wèn)題,另一方面又比卡爾曼濾波得到了更準(zhǔn)確的預(yù)測(cè)結(jié)果[23]. 最后通過(guò)仿真結(jié)果和實(shí)驗(yàn)數(shù)據(jù)對(duì)比的方法對(duì)本文提出的IMM-UPF方法進(jìn)行了驗(yàn)證,結(jié)果表明該方法可以實(shí)現(xiàn)對(duì)剩余壽命(RUL)較準(zhǔn)確的預(yù)測(cè).

      1? ?容量衰減模型

      1.1? ?鋰電池容量測(cè)量

      本文使用的實(shí)驗(yàn)數(shù)據(jù)來(lái)源于馬里蘭大學(xué)高等生命周期工程中心(CALCE)[24].

      實(shí)驗(yàn)所用的鋰電池額定容量為1 100 mA·h. 4個(gè)電池都遵循相同的標(biāo)準(zhǔn)恒定電流/恒定電壓協(xié)議:首先以恒定1 C電流充電,直到電壓達(dá)到4.2 V,然后以4.2 V恒壓充電,直到充電電流降至0.05 A以下后,結(jié)束充電. 在室溫下(25 ℃)進(jìn)行充放電實(shí)驗(yàn),記錄每一次完全充放電過(guò)程后的放電容量. 容量衰減曲線如圖1所示,電池的失效閾值(Failure Threshold,F(xiàn)T)設(shè)為880 mA·h(即SOH=80%時(shí)對(duì)應(yīng)的電池容量).

      在本文中,有4組容量數(shù)據(jù)A1、A2、A3和A4,如圖1所示,圖中每一條線代表電池最大可用容量和循環(huán)次數(shù)之間的關(guān)系. 與A1、A2和A3電池相比,A4與其他電池存在較大的差異性,為了驗(yàn)證本文方法的準(zhǔn)確性,電池A1、A2、A3的數(shù)據(jù)將用于確定各單一模型參數(shù)的初始值,A4電池的數(shù)據(jù)將被用來(lái)對(duì)本文方法預(yù)測(cè)準(zhǔn)確性的驗(yàn)證.

      3.2? ?仿真與實(shí)驗(yàn)結(jié)果分析

      在仿真中,使用前300組數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),失效閾值為SOH=0.8,即容量Ck = 0.88 A·h,電池實(shí)際壽命為665. 即當(dāng) =0.88 A·h時(shí),對(duì)應(yīng)的A4電池循環(huán)次數(shù)為665次.

      為了驗(yàn)證本文提出算法的有效性,使用絕對(duì)誤差和剩余壽命(RUL)概率密度函數(shù)(PDF)的標(biāo)準(zhǔn)偏差來(lái)衡量仿真結(jié)果的準(zhǔn)確性和穩(wěn)定性[30].

      圖6、圖7和圖8顯示了僅使用UPF算法對(duì)A4電池的模型1、模型2和模型3的預(yù)測(cè)曲線. 模型1和模型3的預(yù)測(cè)結(jié)果分別為424和530,即預(yù)測(cè)結(jié)果的絕對(duì)誤差分別為241和135,RUL的標(biāo)準(zhǔn)偏差分別為48和42. 模型2在SOH = 0.8時(shí)的預(yù)測(cè)結(jié)果為706,絕對(duì)誤差為41,RUL的標(biāo)準(zhǔn)偏差為37.

      圖9顯示了用IMM-UPF算法得到的電池A4的壽命預(yù)測(cè)曲線. 當(dāng)SOH=0.8時(shí)算法的仿真結(jié)果為675,對(duì)應(yīng)的絕對(duì)誤差為10,RUL的標(biāo)準(zhǔn)偏差為19.

      4? ?結(jié)? ?論

      1)通過(guò)對(duì)電池?cái)?shù)據(jù)的采集和曲線擬合工具的使用,發(fā)現(xiàn)多項(xiàng)式模型、雙指數(shù)模型和集成模型可以較好地?cái)M合鋰電池容量衰減過(guò)程. 在對(duì)各模型初始參數(shù)值的確定中,發(fā)現(xiàn)在給定相同的樣本數(shù)量時(shí),多項(xiàng)式模型和集成模型預(yù)測(cè)結(jié)果誤差相對(duì)較大,且穩(wěn)定性較差,雖然雙指數(shù)模型在剩余壽命(RUL)的預(yù)測(cè)絕對(duì)誤差較小,但概率分布(PDF)的標(biāo)準(zhǔn)差較大,即預(yù)測(cè)的穩(wěn)定性也較差. 單一模型較難滿(mǎn)足鋰電池剩余壽命準(zhǔn)確估計(jì)的要求.

      2)交互式多模型的使用,使得預(yù)測(cè)結(jié)果不僅實(shí)現(xiàn)了對(duì)各模型初始參數(shù)的精確性依賴(lài)度下降,提高了實(shí)際使用時(shí)的效率和降低了成本,而且減小了預(yù)測(cè)誤差,且RUL-PDF分布更窄,即預(yù)測(cè)結(jié)果更加穩(wěn)定,是一種實(shí)際使用中可行的鋰電池壽命預(yù)測(cè)方法. 本文最后通過(guò)仿真與實(shí)驗(yàn)結(jié)果相比較的方法,比較了單模型使用UPF算法和多模型使用IMM-UPF算法對(duì)SOH 進(jìn)行估計(jì)的誤差,結(jié)果表明,IMM-UPF算法減少了預(yù)測(cè)的誤差,具有較好的精度,即穩(wěn)定性更好.

      參考文獻(xiàn)

      [1]? ? SCROSATI B,GARCHE J. Lithium batteries:Status,prospects and future[J]. Journal of Power Sources,2010,195(9):2419—2430.

      [2]? ?TAKAMI N,INAGAKI H,TATEBAYASHI Y,et al. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications[J]. Journal of Power Sources,2013,244:469—475.

      [3]? ? 劉新天,李賀,何耀,等.基于IUPF算法與可變參數(shù)電池模的SOC估計(jì)方法[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,48(1):54—62.

      LIU X T,LI H,HE Y,et al. SOC estimation method based on IUPF algorithm and variable parameter battery model [J]. Journal of Southeast University (Natural Science Edition),2018,48(1):54—62. (In Chinese)

      [4]? ? 劉新天,孫張馳,何耀,等. 基于環(huán)境變量建模的鋰電池SOC估計(jì)方法[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,47(2):306—312.

      LIU X T,SUN Z C,HE Y,et al. SOC estimation method based on lithium-ion cell model considering environmental factors[J]. Journal of Southeast University (Natural Science Edition),2017,47(2):306—312. (In Chinese)

      [5]? ? 陳燕虹,吳偉靜,劉宏偉,等. 電動(dòng)汽車(chē)鋰離子動(dòng)力電池分選方法研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(10):23—31.

      CHEN Y H,WU W J,LIU H W,et al. Study on sorting technology for lithium-ion power battery of electric vehicle [J]. Journal of Hunan University (Natural Sciences),2016,43(10):23—31. (In Chinese)

      [6]? ? ZHANG J L,LEE J. A review on prognostics and health monitoring of Li-ion battery[J]. Journal of Power Sources,2011,196(15):6007—6014.

      [7]? ? 戴海峰,魏學(xué)哲,孫澤昌.基于等效電路的內(nèi)阻自適應(yīng)鋰離子電池模型[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,38(1):98—102.

      DAI H F,WEI X Z,SUN Z C. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries[J]. Journal of Tongji University (Natural Science),2010,38(1):98—102. (In Chinese)

      [8]? ? 劉璇,王立欣,呂超,等. 鋰離子電池建模與參數(shù)識(shí)別[J]. 電源學(xué)報(bào),2018,16(1):145—150.

      LIU X,WANG L X,L? C,et al. Modeling and parameter identification for lithium-ion battery[J]. Journal of Power Supply,2018,16(1):145—150. (In Chinese)

      [9]? ? YANG F F,WANG D,XING Y J,et al. Prognostics of Li (NiMnCo) O2-based lithium-ion batteries using a novel battery degradation model[J]. Microelectronics Reliability,2017,70:70—78.

      [10]? 程澤,呂繼考,劉繼光,等. 等效滯回模型在鋰離子電池SOC估計(jì)中的應(yīng)用[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,42(4):63—70.

      CHENG Z,L? J K,LIU J G,et al. Application of equivalent hysteresis model in estimation of state of charge of lithium-ion battery[J]. Journal of Hunan University(Naturnal Sciences),2015,42(4):63—70. (In Chinese)

      [11]? 呂超,劉珊珊,沈杰,等. 鋰離子電池等效電路模型的比較研究[J]. 電源技術(shù)應(yīng)用,2014,17(9):8—11.

      L? C,LIU S S,SHEN J,et al. Comparison and research in equal circuit models of lithium-ion battery[J]. Journal of Power Technology Application,2014,17(9):8—11. (In Chinese)

      [12] SAHA B,GOEBEL K,CHRISTOPHERSEN J. Comparison of prognostic algorithms for estimating remaining useful life of batteries[J]. Transactions of the Institute of Measurement and Control,2009,31(3/4):293—308.

      [13]? PILLER S,PERRIN M,JOSSEN A. Methods for state-of-charge determination and their applications[J]. Journal of Power Sources,2001,96(1):113—120.

      [14] RAND D A J,MOSELEY P T,GARCHE J,et al. Valve-regulated lead-acid batteries [J]. Elsevier,2001,95(1):2—12.

      [15]? DAI J,DAS D,OHADI M,et al. Reliability risk mitigation of free air cooling through prognostics and health management [J]. Applied Energy,2013,111:104—112.

      [16]? DALAL M,MA J,HE D. Lithium-ion battery life prognostic health management system using particle filtering framework[J]. Journal of Risk and Reliability,2011,225(1):81—90.

      [17]? TSANG K M,CHAN W L. State of health detection for Lithium ion batteries in photovoltaic system [J]. Energy Conversion and Management,2013,65:7—12.

      [18]? NING G,HARAN B,POPOV B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources,2003,117(1/2):160—169.

      [19]? SINGH P,VINJAMURI R,WANG X Q,et al. Fuzzy logic modeling of EIS measurements on lithium-ion batteries [J]. Electrochim Acta,2006,51(8/9):1673—1679.

      [20]? GUO J,LI Z J,PECHT M. A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics[J]. Journal of Power Sources,2015,281:173—184.

      [21]? MIAO Q,XIE L,CUI H J,et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability,2013,53(6):805—810.

      [22]? HE W,WILLIARD N,OSTERMAN M,et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources,2011,196(23):10314—10321.

      [23]? 曲彥文,張二華,楊靜宇. 改進(jìn)的無(wú)跡粒子濾波算法[J]. 控制理論與應(yīng)用,2010,27(9):1152—1158.

      QU Y W,ZHANG E H,YANG J Y. Improved unscented particle filter [J]. Control Theory & Applications,2010,27(9):1152—1158. (In Chinese)

      [24]? LIU J,SAXENA A,GOEBEL K,et al. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries [C]//Annual Conference of Prognostics and Health Management Society 2010. Ottawa:Department of Mechanical and Aerospace Engineering,Carleton University,2010:1—9.

      [25]? MICEA M V,UNGUREAN L,C?RSTOIU G N,et al. Online state-of-health assessment for battery management systems [J]. IEEE Transactions on Instrumentation and Measurement,2011,60(6):1997—2006.

      [26] GOEBEL K,SAHA B,SAXENA A,et al. Prognostics in battery health management [J]. IEEE Instrumentation and Measurement Magazine,2008,11(4) :33—40.

      [27] ARULAMPALAM M S,MASKELL S,GORDON N,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174—188.

      [28]? XING Y J,MA E W M,TSUI K L,et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability,2013,53(6):811—820.

      [29]? 邸憶,顧曉輝,龍飛,等. 一種基于改進(jìn)UPF的運(yùn)動(dòng)聲陣列交互多模型目標(biāo)跟蹤方法 [J]. 控制與決策,2018,33(2):249—255.

      DI Y,GU X H,LONG F,et al. An improved UPF-based interacting multiple model target tracking method for dynamic acoustic array [J]. Control and Decision,2018,33(2):249—255. (In Chinese)

      [30]? CRIPPS E,PECHT M. A Bayesian nonlinear random effects model for identification of defective batteries from lot samples[J]. Journal of Power Sources,2017,342:342—350.

      猜你喜歡
      鋰電池
      鋰電池助推能源革新
      鋰電池,人人不離手的諾獎(jiǎng)發(fā)明
      從鋰電池、鋰離子電池談?wù)劯呖碱}中的化學(xué)電源
      香港理大研發(fā)超柔軟高效能織物鋰電池
      鋰電池著火可以用水澆
      如何更好設(shè)計(jì)鋰電池充電器恒壓控制電路
      如何更好設(shè)計(jì)鋰電池充電器恒壓控制電路
      鋰電池安全監(jiān)管亟待加強(qiáng)
      鋰電池里裝微型滅火器:再也不擔(dān)心手機(jī)電池起火等
      安乡县| 灵宝市| 葫芦岛市| 镶黄旗| 陆良县| 石狮市| 昂仁县| 永和县| 安陆市| 东乌| 乳源| 沧州市| 广安市| 天水市| 邯郸县| 永修县| 柘城县| 万源市| 江达县| 文安县| 新余市| 固始县| 昌图县| 太谷县| 太原市| 灵寿县| 墨玉县| 渭南市| 安宁市| 金川县| 南川市| 衡阳县| 黔江区| 茶陵县| 武穴市| 上栗县| 双辽市| 马龙县| 潍坊市| 安泽县| 天柱县|