章曉芳 朱麒錢
[摘要] Graves'病是一種常見的器官特異性自身免疫性疾病,與其他自身免疫性疾病引起器官損傷不同,它表現(xiàn)為器官的高功能狀態(tài),臨床特征為甲狀腺功能亢進(jìn)。在Graves病中,甲狀腺刺激性自身抗體模仿TSH的作用,刺激甲狀腺細(xì)胞產(chǎn)生及分泌過多的甲狀腺激素。目標(biāo)抗原TSHR的分子結(jié)構(gòu)是導(dǎo)致甲狀腺刺激性自身抗體產(chǎn)生的主要原因。編碼TSHR的基因位于人14號染色體長臂3區(qū)1帶,翻譯后完整的TSHR要經(jīng)過一系列加工修飾,如糖基化,硫酸鹽化,蛋白棕櫚化及裂解和脫落等。近十年來我們對TSHR受體分子的結(jié)構(gòu)和功能特點及其與Graves病發(fā)病相關(guān)性等方面的研究有了更大突破。本文就此領(lǐng)域做一綜述。
[關(guān)鍵詞] 促甲狀腺激素受體;自身抗原;甲狀腺;Graves'病
[中圖分類號] R581.1? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2020)05-0183-05
Advances in research on molecular structure of thyroid stimulating hormone receptor and autoimmune diseases
ZHANG Xiaofang? ?ZHU Qiqian
Department of Endocrinology and Metabolism, Shaoxing People′s Hospital in Zhejiang Province, Shaoxing 312000, China
[Abstract] Graves' disease is a common organ-specific autoimmune disease. Different from organ damage caused by other autoimmune diseases, it is characterized by a high functional state of the organ and its clinical features are hyperthyroidism. In Graves' disease, thyroid-stimulating autoantibodies mimic the effect of TSH, stimulating thyroid cells to produce and secrete excess thyroid hormone. The molecular structure of the target antigen TSHR is the main cause of thyroid stimulating autoantibodies. The gene encoding TSHR is located in the long arm 3 region 1 region of human chromosome 14, and the complete TSHR after translation is subjected to a series of processing modifications such as glycosylation, sulfation, protein palmization, cleavage and shedding. In the past ten years, we have made greater breakthroughs in the study of the structural and functional characteristics of TSHR receptor molecules and their correlation with the pathogenesis of Graves' disease. This article provides an overview of this area.
[Key words] Thyroid stimulating hormone receptor; Autoantigen; Thyroid; Graves' disease
促甲狀腺激素受體(Thyroid stimulating hormone receptor,TSHR),與其同源的促黃體激素/絨毛膜促性腺激素受體和促濾泡素受體均屬于糖蛋白受體的一類,同時也是類視紫質(zhì)的G蛋白耦聯(lián)受體(G protein-coupled receptors,GPcRs)大家族的成員(氨基酸水平上約45%的一致性)[1,2]。TSHR主要在甲狀腺濾泡細(xì)胞表達(dá),生理情況下與促甲狀腺激素(Thyroid stimulating hormone,TSH)結(jié)合后激活蛋白激酶A(Protein kinase A,PKA)和磷脂酶C(Phospholipases C,PLc)信號轉(zhuǎn)導(dǎo)系統(tǒng),調(diào)節(jié)甲狀腺的生長和分化,促進(jìn)甲狀腺激素的合成和釋放[3]。TSHR的表達(dá)還可以見于其他細(xì)胞或者組織中,包括脂肪細(xì)胞、成纖維細(xì)胞、成骨細(xì)胞和破骨細(xì)胞、骨髓細(xì)胞和心肌細(xì)胞等,且早期即表達(dá)于胚胎干細(xì)胞中。在自身免疫性甲狀腺疾病中,尤其是毒性彌漫性甲狀腺腫(Graves' disease,GD),TSHR可以作為一種自身抗原,結(jié)合甲狀腺刺激性抗體(Thyroid stimulating antibody,TSAb),產(chǎn)生類似TSH的刺激性反應(yīng),最終導(dǎo)致甲狀腺自我免疫耐受喪失,產(chǎn)生并釋放過多的甲狀腺激素,臨床上出現(xiàn)心悸、多汗、納亢等甲狀腺機(jī)能亢進(jìn)的表現(xiàn)。因此,研究促甲狀腺激素受體結(jié)構(gòu),闡明自身抗體和促甲狀腺激素受體(TSHR)分子間的相互作用,對于理解Graves病這一普遍存在的器官特異性自身免疫性疾病的發(fā)病機(jī)制及指導(dǎo)臨床診斷、治療都具有深遠(yuǎn)意義。
1 TSHR基因的結(jié)構(gòu)和表達(dá)
促甲狀腺激素受體的編碼基因位于人14號染色體長臂3區(qū)1帶,長度跨約191.1 kb[4],其包含10個外顯子,前9個和第10個的部分編碼受體分子的胞外區(qū),余下部分編碼跨膜區(qū)和胞質(zhì)內(nèi)尾端[5,6]。但Kakinuma A等[7]發(fā)現(xiàn)TSHR基因應(yīng)含12個外顯子。30個非編碼區(qū)內(nèi)有三個聚腺苷酸化位點,可轉(zhuǎn)錄三條完整的TSHR mRNA,其中最長的一條可能是最主要的轉(zhuǎn)錄,其mRNA長4.5 kb,編碼一個87 kd,含764個氨基酸的多肽鏈[7]。
2 TSHR的翻譯后修飾
TSHR和其他G蛋白耦聯(lián)受體一樣,經(jīng)歷一些不同類型的翻譯后修飾,一些修飾在內(nèi)質(zhì)網(wǎng)-高爾基體內(nèi)完成,另一些則發(fā)生在細(xì)胞表面。除了在內(nèi)質(zhì)網(wǎng)-高爾基體內(nèi)進(jìn)行外功能區(qū)的糖基化修飾外,TSHR也經(jīng)歷了蛋白水解過程,生成一個斷裂的區(qū)域,這是獨立于糖蛋白家族的其他成員而特有的。已研究發(fā)現(xiàn),TSHR在甲狀腺細(xì)胞內(nèi)的二聚體和多聚體化是另外一種重要的修飾。這些翻譯后修飾導(dǎo)致受體不均質(zhì)地分布在細(xì)胞表面。因此,TSHR的半衰期及與TSH的親和力也在改變,激活和發(fā)射信號的能力也隨之改變[8,9]。
2.1 糖基化和硫酸鹽化
TSHR龐大的細(xì)胞外區(qū)域有6個潛在的糖基化位點,結(jié)合的碳水化合物約占整個分子質(zhì)量的30%~40%。因此,在甲狀腺細(xì)胞和TSHR基因轉(zhuǎn)染的細(xì)胞中,全長的TSHR顯示為一條100~120 KDa的蛋白質(zhì)。糖基化可能在TSHR分子折疊和細(xì)胞表面表達(dá)有一定的作用,而與TSH結(jié)合無密切關(guān)系[10]。而鉸鏈區(qū)氨基酸殘基的硫酸鹽化在TSH與受體結(jié)合過程中有關(guān)鍵性作用。在鉸鏈區(qū)末梢的模體YDY中第二個酪氨酸殘基的硫酸鹽化與配體高親和力結(jié)合受體緊密相關(guān)[11]。因此,某些關(guān)鍵的氨基酸殘基的硫酸鹽化可能是維持受體正確構(gòu)象所必需的。
2.2 蛋白棕櫚化和二硫鍵的形成
除了蛋白質(zhì)?;?,棕櫚化是另一種將一些受體錨定在細(xì)胞膜脂質(zhì)雙分子結(jié)構(gòu)(脂筏)的蛋白修飾。TSH受體胞內(nèi)區(qū)的第699位半胱氨酸殘基(Cys699)是棕櫚化的。該位置的突變導(dǎo)致正常的有功能的受體運輸?shù)郊?xì)胞表面的過程延遲[12]。
TSHR蛋白質(zhì)前體在進(jìn)行分子的加工中斷裂一個含21個氨基酸的信號肽[6],形成成熟的蛋白質(zhì)分子。成熟的人TSHR分子含744個氨基酸殘基,可斷裂成α、β兩個亞基,之間(序列約從氨基酸殘基310至370)脫落一個約50個氨基酸殘基的C肽片段[13]。斷裂的TSHR分子中富亮氨酸區(qū)的C端半胱氨酸叢283~301和氨基酸殘基序列390~408之間通過二硫鍵結(jié)合后,連接了α、β亞基。隨后,這兩個亞基間的二硫鍵可被蛋白質(zhì)二硫鍵異構(gòu)酶破壞[14],β亞基進(jìn)一步向胞膜退化降解[15]。α亞基(氨基酸殘基22~260片段)脫離束縛在胞膜的受體,很可能從表面脫落[16]。這就解釋了在正常的甲狀腺細(xì)胞膜制劑中發(fā)現(xiàn)β亞基的數(shù)量大大超過α亞基(其數(shù)量比達(dá)3:1)的現(xiàn)象[17,18]。斷裂的病理生理學(xué)聯(lián)系還很不清楚。早先有研究者在TSHR基因轉(zhuǎn)染的中國倉鼠卵巢細(xì)胞(Chinese hamster ovary cell,CHO)中發(fā)現(xiàn)斷裂的形式可以更好地結(jié)合Gsa,也提示了斷裂可能和受體激動相關(guān)[19]。更有研究發(fā)現(xiàn)斷裂后脫落的α亞基可能是產(chǎn)生致病的TSAb并促其免疫親和力成熟的最初免疫原[20,21]。它包含的氨基酸殘基序列或許應(yīng)擴(kuò)展為氨基酸殘基22~289[22]。最新研究關(guān)注于α亞基的多聚體結(jié)構(gòu),其中三聚體空間構(gòu)象而非單分子,或是GD發(fā)病的最關(guān)鍵的免疫原[22,23]。而TSH適當(dāng)刺激能以時間和劑量依賴性的方式增強斷裂[24,25]。但斷裂不是配體激活受體所必需的,未斷裂的TSHR結(jié)構(gòu)仍能通過cAMP傳遞信號。TSHR胞外區(qū)和跨膜結(jié)構(gòu)的第1胞外環(huán)之間連接結(jié)構(gòu)的重新排布可能是獨立于配體的受體激活機(jī)制[26]。需注意的是α亞基脫落現(xiàn)象只在體外的甲狀腺細(xì)胞和轉(zhuǎn)染細(xì)胞中被證實[14,16,27]。因缺乏有力的體內(nèi)實驗證實TSHRs的部分脫落,有關(guān)脫落的受體可能形成啟動GD自身免疫應(yīng)答的抗原池的假說仍需進(jìn)一步證實[28]。
3 TSHR的分子結(jié)構(gòu),特點及功能聯(lián)系
在A類G蛋白耦聯(lián)受體家族中,同源的糖蛋白受體亞家族的一般拓?fù)浣Y(jié)構(gòu)是以一個龐大的胞外區(qū)為特征的,該結(jié)構(gòu)包括:①N末端尾;②半胱氨酸盒-1(C-b1),含第一組相互作用的半胱氨酸;③富亮氨酸區(qū);④鉸鏈區(qū)。鉸鏈區(qū)又可進(jìn)一步細(xì)分為半胱氨酸盒-2(C-b2)、半胱氨酸盒-3(C-b3)和兩者的鏈接區(qū)(C-bl 2/3)。此外,構(gòu)成完整的TSH分子結(jié)構(gòu)還包括其他兩部分:由7個跨膜α-螺旋、3個胞外環(huán)與3個胞內(nèi)環(huán)組成的跨膜區(qū)(Transmembrane domain,TMD)和C末端尾[5]。
3.1 胞外的N末端及半胱氨酸區(qū)
氨基酸殘基22~56片段為不保守的TSHR N-末端區(qū)(1~21個為信號肽)。該區(qū)段35個氨基酸殘基中含有整個TSHR胞外區(qū)11個半胱氨酸中的4個(Cys24、Cys29、Cys31 and Cys41),它們之間通過二硫鍵連接。該半胱氨酸叢對受體分子的正確折疊和細(xì)胞內(nèi)的運輸有重要作用[29]。其中第41位半胱氨酸殘基(Cys41)是TSHR特有的,也是最關(guān)鍵的氨基酸殘基。對氨基酸殘基38~45片段進(jìn)行詳細(xì)的突變分析發(fā)現(xiàn)Cys41維持受體與TSH及自身抗體結(jié)合所必需的正確的三維空間結(jié)構(gòu)。而且,它和胞外功能區(qū)中其他相鄰的半胱氨酸殘基通過二硫鍵相互作用,對產(chǎn)生TSH高親和力起關(guān)鍵作用[29,30]。TSHR氨基酸殘基23~43片段和層粘連蛋白γ1鏈中類似表皮生長因子的重復(fù)序列的第11個序列相似,說明這兩種分子間存在相似的空間構(gòu)象,故分子模擬可能是GD的其中一種發(fā)病機(jī)制[31]。
3.2 富亮氨酸區(qū)(Leucine-rich domain,LRD)
TSHR受體分子的胞外區(qū)負(fù)責(zé)與TSH的識別和結(jié)合。其胞外功能區(qū)含398個氨基酸殘基,松散地組織成9個模體。這些模體富含亮氨酸,表明該區(qū)域與蛋白質(zhì)和蛋白質(zhì)之間的相互作用密切相關(guān)[32]。每個模體類似一個馬蹄形結(jié)構(gòu),是由約20~25個氨基酸殘基形成的一個β折疊和一個α螺旋[33]。β折疊構(gòu)成其凹面,是TSH的主要結(jié)合部位[5]。當(dāng)受體激動后,跨膜螺旋連接的胞內(nèi)環(huán)和G蛋白相互作用,而胞外環(huán)輔助受體結(jié)構(gòu)和活性[34,35]。在糖蛋白受體中,馬蹄結(jié)構(gòu)內(nèi)部由7個氨基酸殘基組成,即X1X2LX3LX4X5。模體X2LX3L為典型的β折疊,而X1和X4、X5是鄰近環(huán)狀結(jié)構(gòu)的構(gòu)成成分[32,33,36]。位于富亮氨酸區(qū)的第五個模體的X3和X5及第七個模體的X5,這三個游離的氨基酸(對應(yīng)第157位谷氨酸殘基、第160位天冬氨酸殘基、第209位賴氨酸殘基)已被證實其在激素結(jié)合活性和專一性中的重要作用[32,37,38]。目前已研究發(fā)現(xiàn)人TSHR分子的富亮氨酸區(qū)分別與TSHR刺激性的人單克隆自身抗體M22[39]、TSHR阻斷性的人單克隆自身抗體K1-70[40]形成復(fù)合物的晶體結(jié)構(gòu)。
3.3 TSHR的鉸鏈區(qū)
鉸鏈區(qū)是鏈接富亮氨酸區(qū)和跨膜區(qū)之間的部分。TSHR的鉸鏈區(qū)是糖蛋白受體家族的鉸鏈區(qū)中最大之一,其長度約含141個氨基酸殘基(序列約從氨基酸殘基277至418),但目前尚不能給予一個明確的定位。既往認(rèn)為鉸鏈區(qū)只是結(jié)合配體的亮氨酸區(qū)和傳導(dǎo)信號的跨膜區(qū)兩者之間的鈍性橋梁。近期研究通過對TSHR 基因剪輯和重組表達(dá),發(fā)現(xiàn)鉸鏈區(qū)氨基酸片段的漸進(jìn)性缺失可使TSH刺激環(huán)磷酸腺苷的敏感性降低[41,42],提示鉸鏈區(qū)存在一定的TSH結(jié)合表位。另外,一些TSHR的中性抗體也能和鉸鏈區(qū)結(jié)合[43,44]。
3.4 TSHR跨膜結(jié)構(gòu)(TMD)和胞質(zhì)內(nèi)C尾端
同其他七跨膜螺旋G蛋白耦聯(lián)受體相似,TSH受體的β亞基有七個疏水區(qū)形成的跨膜結(jié)構(gòu)和一個胞質(zhì)內(nèi)C末端。當(dāng)受體激動后,跨膜區(qū)內(nèi)的3個胞內(nèi)環(huán)和G蛋白相互作用,而胞外環(huán)輔助受體結(jié)構(gòu)和活性。TSHR可以結(jié)合所有的G蛋白家族,生物作用主要與Gs蛋白激活腺苷酸環(huán)化酶有關(guān)。第二信使cAMP瀑布式的應(yīng)答,調(diào)節(jié)生長和功能分化如甲狀腺激素分泌,捕捉碘化物等。在甲狀腺體內(nèi),存在另一條通路即配體結(jié)合TSHR耦聯(lián)Gq/11蛋白,激活磷脂酶C,產(chǎn)生Ca2+和甘油二酯,刺激甲狀腺激素的合成和碘化作用[45]。TSHR跨膜結(jié)構(gòu)的空間構(gòu)象對于維持受體活性起關(guān)鍵作用。研究表明第六跨膜螺旋的低位區(qū)及第3胞內(nèi)環(huán)有一個突變熱區(qū),這些部位的突變可產(chǎn)生獨立于配體的刺激性反應(yīng)[46]。如位于第六跨膜螺旋的第633位氨基酸突變是常見的具活性的TSHR天然突變。分子建模提示第633位天冬氨酸殘基(Asp633)對于信號傳導(dǎo)及第六和第七跨膜螺旋間建立特殊的聯(lián)系有關(guān)鍵作用,這種聯(lián)系可使TSHR受體構(gòu)型保持無活性的狀態(tài)[47]。連接第3胞內(nèi)環(huán)和第六跨膜螺旋的第619位天冬氨酸殘基與形成一種螺旋帽的結(jié)構(gòu)密切相關(guān),提示胞內(nèi)螺旋和胞外螺旋的相互作用共同維持無活性的TSHR構(gòu)型[47]。
4 結(jié)語
Graves'病是一種常見的自身免疫紊亂性疾病。自身抗體結(jié)合TSHR后,模擬TSH作用分泌過多的甲狀腺激素,導(dǎo)致甲狀腺功能亢進(jìn)。致病抗原TSHR是一種G蛋白耦聯(lián)受體,結(jié)構(gòu)包括N末端、富亮氨酸重復(fù)區(qū)、鉸鏈區(qū)和跨膜區(qū)及胞質(zhì)內(nèi)C末端。TSHR經(jīng)翻譯后,經(jīng)歷一系列修飾加工,這些修飾與分子的運輸、胞膜定位及空間構(gòu)象形成和信號傳導(dǎo)等密切相關(guān)。TSHR與其他糖蛋白受體的區(qū)別之一是存在分子內(nèi)斷裂現(xiàn)象,脫落的α亞基可能是最初的免疫原,并可增強免疫應(yīng)答。近年來研究并逐漸闡明TSHR分子結(jié)構(gòu)的特點,特別是各結(jié)構(gòu)組分的相互作用方式可進(jìn)一步理解自身抗體結(jié)合和激活受體的作用機(jī)制,從而為Graves甲亢的治療提供新的線索。
[參考文獻(xiàn)]
[1] Caltabiano G,Campillo M,De Leener A,et al. The specificity of binding of glycoprotein hormones to their receptors [J]. Cell Mol Life Sci,2008,65(16):2484-2492.
[2] Vassart G,Costagliola S. G protein-coupled receptors:Mutations and endocrine diseases[J]. Nat Rev Endocrinol,2011,7(6):362-372.
[3] Zaballos MA,Garcia B,Santisteban P. Gbetagamma dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells[J]. Mol Endocrinol,2008,22(5):1183-1199.
[4] Rousseau-Merck MF,Misrahi M,Loosfelt H,et al. Assignment of the human thyroid stimulating hormone receptor(TSHR)gene to chromosome 14q31[J]. Genomics,1990,8(2):233-236.
[5] Szkudlinski MW,F(xiàn)remont V,Ronin C,et al. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships[J]. Physiol Rev,2002,82(2):473-502.
[6] Kohn LD,Shimura H,Shimura Y,et al. The thyrotropin receptor[J]. Vitam Horm,1995,50:287-384.
[7] Kakinuma A,Nagayama Y. Multiple messenger ribonucleic acid transcripts and revised gene organization of the human TSH receptor[J]. Endocr J,2002,49(2):175-180.
[8] Ando T,Latif R,Davies TF. Antibody-induced modulation of TSH receptor posttranslational processing[J]. J Endocrinol,2007,195(1):179-186.
[9] Kursawe R,Paschke R. Modulation of TSHR signaling by posttranslational modifications[J]. Trends Endocrinol Metab,2007,18(5):199-207.
[10] Nagayama Y,Nishihara E,Namba H,et al. Identification of the sites of asparagine-linked glycosylation on the human thyrotropin receptor and studies on their role in receptor function and expression[J]. J Pharmacol Exp Ther,2000,295(1):404-409.
[11] Bonomi M,Busnelli M,Persani L,et al. Structural differences in the hinge region of the glycoprotein hormone receptors:Evidence from the sulfated tyrosine residues[J]. Mol Endocrinol,2006,20(12):3351-3363.
[12] Kosugi S,Mori T. Cysteine-699,a possible palmitoylation site of the thyrotropin receptor,is not crucial for cAMP or phosphoinositide signaling but is necessary for full surface expression[J]. Biochem Biophys Res Commun,1996,221(3):636-640.
[13] Chazenbalk GD,Tanaka K,Nagayama Y,et al. Evidence that the thyrotropin receptor ectodomain contains not one,but two,cleavage sites[J]. Endocrinology,1997,138(7):2893-2899.
[14] Couet J,de Bernard S,Loosfelt H,et al. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain[J]. Biochemistry,1996,35(47):14800-14805.
[15] Tanaka K,Chazenbalk GD,McLachlan SM,et al. Subunit structure of thyrotropin receptors expressed on the cell surface[J]. J Biol Chem,1999,274(48):33979-33984.
[16] Couet J,Sar S,Jolivet A,et al. Shedding of human thyrotropin receptor ectodomain Involvement of a matrix metalloprotease[J]. J Biol Chem,1996,271(8):4545-4552.
[17] Loosfelt H,Pichon C,Jolivet A,et al. Two-subunit structure of the human thyrotropin receptor[J]. Proc Natl Acad Sci USA,1992,89(9):3765-3769.
[18] Misrahi M,Ghinea N,Sar S,et al. Processing of the precursors of the human thyroid-stimulating hormone receptor in various eukaryotic cells(human thyrocytes,transfected L cells and baculovirus-infected insect cells)[J]. Eur J Biochem,1994,222(2):711-719.
[19] Ciullo I,Latif R,Graves P,et al. Functional assessment of the thyrotropin receptor-beta subunit[J]. Endocrinology,2003,144(7):3176-3181.
[20] Chen CR,Pichurin P,Nagayama Y,et al. The thyrotropin receptor autoantigen in Graves' disease is the culprit as well as the victim[J]. J Clin Invest,2003,111(12):1897-1904.
[21] Mizutori Y,Chen CR,Latrofa F,et al. Evidence that shed TSH receptor A-subunits drive affinity maturation of autoantibodies causing Graves' disease[J]. J Clin Endocrinol Metab,2009,94(3):927-935.
[22] Chen CR,Hubbard PA,Salazar LM,et al. Crystal structure of a tSH receptor monoclonal antibody:Insight into graves' disease pathogenesis[J]. Mol Endocrinol,2015,29(1):99-107.
[23] Rapoport B,Aliesky HA,Chen CR,et al. Evidence that TSH receptor A-subunit multimers,not monomers,drive antibody affinity maturation in graves' disease[J]. J Clin Endocrinol Metab,2015,100(6):E871-875.
[24] Ando T,Latif R,Pritsker A,et al. A monoclonal thyroid-stimulating antibody[J]. J Clin Invest,2002,110(11):1667-1674.
[25] Latif R,Ando T,Davies TF. Monomerization as a prerequisite for intramolecular cleavage and shedding of the thyrotropin receptor[J]. Endocrinology,2004,145(12):5580-5588.
[26] Schaarschmidt J,Nagel MB,Huth S,et al. Rearrangement of the extracellular domain/extracellular loop 1 interface is critical for thyrotropin receptor activation[J]. J Biol Chem,2016,291(27):14095-14108.
[27] Nunez MR,Sanders J,Jeffreys J,et al. Analysis of the thyrotropin receptor-thyrotropin interaction by comparative modeling[J]. Thyroid,2004,14(12):991-1011.
[28] Vassart G,Bonomi M. A physiological role for the posttranslational cleavage of the thyrotropin receptor?[J]. Endocrinology,2004,145(1):1-3.
[29] Rapoport B,Chazenbalk GD,Jaume JC,et al. The thyrotropin(TSH)receptor:Interaction with TSH and autoantibodies[J]. Endocr Rev,1998,19(6):673-716.
[30] Wadsworth HL,Chazenbalk GD,Nagayama Y,et al. An insertion in the human thyrotropin receptor critical for high affinity hormone binding[J]. Science,1990,249(4975):1423-1425.
[31] Chen CR,Tanaka K,Chazenbalk GD,et al. A full biological response to autoantibodies in Graves' disease requires a disulfide-bond loop in the thyrotropin N-terminus homologous to a laminin EGF-like domain[J]. J Biol Chem,2001,276(18):14767-14772.
[32] Smits G,Campillo M,Govaerts C,et al. Glycoprotein hormone receptors:Determinants in leucine-rich repeats responsible for ligand specificity[J]. EMBO J,2003,22(11):2692-2703.
[33] Kajava AV,Vassart G,Wodak SJ. Modeling of the three dimensional structure of proteins with the typical leucine-rich repeats[J]. Structure,1995,3(9):867-877.
[34] Vlaeminck-Guillem V,Ho SC,Rodien P,et al. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist[J]. Mol Endocrinol,2002,16(4):736-746.
[35] Neumann S,Claus M,Paschke R. Interactions between the extracellular domain and the extracellular loops as well as the 6th transmembrane domain are necessary for TSH receptor activation[J]. Eur J Endocrinol,2005,152(4):625-634.
[36] Kobe B,Kajava AV. The leucine-rich repeat as a protein recognition motif[J]. Curr Opin Struct Biol,2001,11(6):725-732.
[37] Bhowmick N,Huang J,Puett D,et al. Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modelling[J]. Mol Endocrinol,1996,10(9):1147-1159.
[38] Sangkuhl K,Schulz A,Schultz G,et al. Structural requirements for mutational lutropin/choriogonadotropin receptor activation[J]. J Biol Chem,2002,277(49):47748-47755.
[39] Sanders J,Chirgadze DY,Sanders P,et al. Crystal structure of the TSH receptor in complex with a thyroid stimulating autoantibody[J]. Thyroid,2007,17(5):395-410.
[40] Sanders P,Young S,Sanders J,et al. Crystal structure of the TSH receptor TSHR bound to a blocking-type TSHR autoantibody[J]. J Mol Endocrinol,2011,46(2):81-99.
[41] Mizutori Y,Chen CR,McLachlan SM,et al. The thyrotropin receptor hinge region is not simply a scaffold for the leucine-rich domain but contributes to ligand binding and signal transduction[J]. Mol Endocrinol,2008,22(5):1171-1182.
[42] Mueller S,Kleinau G,Jaeschke H,et al. Extended hormone binding site of the human thyroid stimulating hormone receptor:Distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation[J]. J Biol Chem,2008,283(26):18048-18055.
[43] Morshed SA,Ando T,Latif R,et al. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades[J]. Endocrinology,2010, 151(11):5537-5549.
[44] Sun S,Summachiwakij S,Schneck O,et al. Antigenic “Hot- Spots” on the TSH Receptor Hinge Region[J]. Front Endocrinol,2019,9:765.
[45] Graves PN,Davies TF. New insights into the thyroid-stimulating hormone receptor,the major antigen of Graves' disease[J]. Endocrinol Metab Clin North Am,2000, 29(2):267-286.
[46] Wonerow P,Neumann S,Gudermann T,et al. Thyrotropin receptor mutations as a tool to understand thyrotropin receptor action[J]. J Mol Med(Berl),2001,79(12):707-721.
[47] Schulz A,Bruns K,Henklein P,et al. Requirement of specific intrahelical interactions for stabilizing the inactive conformation of glycoprotein hormone receptors[J]. J Biol Chem,2000,275(48):37860-37869.
(收稿日期:2019-07-04)