趙晉陵,金 玉,,葉回春,黃文江,,董瑩瑩,范玲玲,馬慧琴,江 靜,
·農(nóng)業(yè)航空工程·
基于無(wú)人機(jī)多光譜影像的檳榔黃化病遙感監(jiān)測(cè)
趙晉陵1,金 玉1,2,葉回春2,3※,黃文江1,2,3,董瑩瑩2,范玲玲1,馬慧琴2,江 靜1,2
(1. 安徽大學(xué)農(nóng)業(yè)生態(tài)大數(shù)據(jù)分析與應(yīng)用技術(shù)國(guó)家地方聯(lián)合工程研究中心,合肥 230601; 2. 中國(guó)科學(xué)院空天信息創(chuàng)新研究院,北京 100094; 3.海南省地球觀測(cè)重點(diǎn)實(shí)驗(yàn)室,三亞 572029)
黃化病是一種嚴(yán)重危害檳榔生長(zhǎng)的病害,迫切需要及時(shí)、準(zhǔn)確地監(jiān)測(cè)其侵染的嚴(yán)重度差異和空間分布。低空無(wú)人機(jī)遙感可有效解決檳榔種植區(qū)由于多云雨天氣而造成光學(xué)衛(wèi)星影像獲取不足,提高檳榔黃化病監(jiān)測(cè)的實(shí)時(shí)性。該文利用大疆精靈Phantom 4 Pro V2.0四旋翼無(wú)人機(jī)搭載MicaSense RedEdge-M多光譜相機(jī)獲取5波段多光譜影像,基于最小冗余最大相關(guān)算法(Minimum Redundancy Maximum Relevance,mRMR)從15個(gè)潛在的植被指數(shù)中優(yōu)選比值植被指數(shù)(Ratio Vegetation Index,RVI)、改進(jìn)的簡(jiǎn)單比值指數(shù)(Modified Simple Ratio Index,MSR)和花青素反射指數(shù)(Anthocyanin Reflectance Index,ARI)作為敏感特征,分別利用后向傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network, BPNN)、隨機(jī)森林(Random Forest, RF)和支持向量機(jī)(Support Vector Machine, SVM)分類算法,構(gòu)建了檳榔黃化病嚴(yán)重度監(jiān)測(cè)模型。結(jié)果表明,BPNN模型總體精度達(dá)到91.7%,分別比RF模型和SVM模型提高6.7%和10.0%,且Kappa系數(shù)為0.875,為所有模型中最高,漏分、錯(cuò)分誤差也最小,健康,輕度和重度分別為11.1%、15.8%,13.6%、9.5%和0、0。研究結(jié)果證明了無(wú)人機(jī)多光譜遙感影像監(jiān)測(cè)檳榔黃化病的可行性,同時(shí)也可為其他熱帶作物病害監(jiān)測(cè)提供案例研究。
無(wú)人機(jī);遙感;檳榔黃化病;多光譜影像;敏感特征
檳榔(.)主要生長(zhǎng)在熱帶和亞熱帶地區(qū),是中國(guó)海南省的第一大熱帶經(jīng)濟(jì)作物[1]。然而,病害的頻繁發(fā)生和嚴(yán)重度加劇已嚴(yán)重影響了檳榔種植業(yè)的發(fā)展。作為一種嚴(yán)重危害檳榔的傳染病害,黃化病最早發(fā)現(xiàn)于印度,1981年在海南省屯昌縣藥材場(chǎng)出現(xiàn),之后頻繁發(fā)生,危害日益嚴(yán)重[2],迫切需要及時(shí)、準(zhǔn)確地監(jiān)測(cè)病害發(fā)生的嚴(yán)重度空間分布,以便于實(shí)施早期防控。前期的調(diào)查方式主要基于地面人工調(diào)查,但耗時(shí)、費(fèi)力、主觀性強(qiáng),嚴(yán)重影響了檳榔黃化病監(jiān)測(cè)的及時(shí)性和有效性,不適于大面積快速監(jiān)測(cè)與統(tǒng)防統(tǒng)治。
航天遙感技術(shù)的出現(xiàn),為作物病蟲(chóng)害大面積、快速、準(zhǔn)確監(jiān)測(cè)提供了重要的技術(shù)手段[3]。Jonas等[4]基于病害前后的QuickBird影像開(kāi)展小麥白粉病和條銹病的識(shí)別研究,識(shí)別精度達(dá)到88.6%。Zhang等[5]利用多時(shí)相中分辨率HJ-CCD影像,監(jiān)測(cè)了區(qū)域尺度的小麥白粉病發(fā)生、發(fā)展情況。da Rocha等[6]選用Landsat-8 OLI遙感影像監(jiān)測(cè)咖啡豆壞死病。由于衛(wèi)星光學(xué)影像在成像過(guò)程中經(jīng)常受到云、雨、霧等惡劣天氣的影響,尤其在熱帶地區(qū)經(jīng)常難以獲取可用的遙感影像。相比之下,無(wú)人機(jī)可在云下飛行,具有成本低、操作簡(jiǎn)單、獲取影像速度快、影像分辨率高等優(yōu)勢(shì),有效彌補(bǔ)了光學(xué)衛(wèi)星遙感和普通航空攝影易受云層遮擋的缺陷[7-9]。Su等[10]基于無(wú)人機(jī)航拍的多光譜影像,采用貝葉斯優(yōu)化的隨機(jī)森林方法建立了小麥條銹病監(jiān)測(cè)模型。蘭玉彬等[11]利用無(wú)人機(jī)采集的柑橘園高光譜影像,通過(guò)K近鄰法和支持向量機(jī)法(Support Vector Machine,SVM)構(gòu)建柑橘黃龍病判別模型。Backoulou等[12]利用色度指標(biāo)法分割無(wú)人機(jī)多光譜影像,通過(guò)分析常斑塊的面積、形狀、連通度與聚集度等指標(biāo),有效識(shí)別了小麥蚜蟲(chóng)侵害的田塊。上述研究表明,先前的作物病害遙感監(jiān)測(cè)研究多基于衛(wèi)星遙感數(shù)據(jù),研究對(duì)象也主要集中于小麥、水稻等大田作物。無(wú)人機(jī)遙感技術(shù)為作物病害識(shí)別和監(jiān)測(cè)提供了快速、高效的手段,但用于檳榔黃化病的監(jiān)測(cè)研究還鮮有報(bào)道。
在構(gòu)建作物病害遙感監(jiān)測(cè)模型時(shí),由于建模因子中存在不相關(guān)、弱相關(guān)或者冗余特征,會(huì)影響模型的分類精度和泛化能力。例如:相關(guān)分析法只對(duì)所選特征進(jìn)行相關(guān)性分析,沒(méi)有剔除無(wú)效的冗余特征,降低了分類模型的學(xué)習(xí)性能[13];T檢驗(yàn)方法只顯示了特征的類間差異,并沒(méi)有充分體現(xiàn)特征與類標(biāo)簽之間的聯(lián)系[14]。相比之下,最小冗余最大相關(guān)算法(Minimum Redundancy Maximum Relevance,mRMR)具有保證特征與類別最大相關(guān)性的同時(shí)去除冗余特征的優(yōu)勢(shì),已廣泛應(yīng)用于目標(biāo)識(shí)別[15]、遙感影像分類[16]、病蟲(chóng)害遙感監(jiān)測(cè)[17]等研究中?;谏鲜龇治?,由于海南多云雨天氣,極大限制了光學(xué)衛(wèi)星遙感影像的獲取,本研究采集無(wú)人機(jī)多光譜影像,選用mRMR篩選對(duì)檳榔黃化病敏感的特征,并利用BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network,BPNN)、隨機(jī)森林(Random Forest,RF)和SVM 3種分類算法分別構(gòu)建檳榔黃化病的遙感監(jiān)測(cè)模型,對(duì)比獲取最優(yōu)的監(jiān)測(cè)方法,以期為大面積檳榔黃化病監(jiān)測(cè)與防控提供方法參考和案例支撐。
研究區(qū)位于海南省萬(wàn)寧市北大鎮(zhèn)的一處檳榔林(18°54'41.66" N,110°17'46.01" E)(圖1),屬熱帶季風(fēng)氣候,年平均氣溫23.6 ℃,最冷月平均氣溫18.7 ℃,最熱月平均氣溫28.5 ℃,年降水量約2 200 cm,年平均日照時(shí)數(shù)1 800 h以上。地處丘陵山區(qū),土壤類型主要為紅壤土和沙壤土。萬(wàn)寧市是海南省檳榔種植面積最大的市,2018年種植面積達(dá)18 138 hm2,占海南全省種植面積的16.5%[18]。檳榔黃化病已對(duì)本市檳榔種植造成了嚴(yán)重威脅,有調(diào)查結(jié)果顯示,萬(wàn)寧市南部地區(qū)的檳榔黃化病平均發(fā)病率達(dá)39.6%[19]。本研究所選實(shí)驗(yàn)地水肥條件良好,檳榔黃化現(xiàn)象主要由黃化病導(dǎo)致。
圖1 研究區(qū)地理位置及樣本點(diǎn)空間分布
1.2.1 地面樣點(diǎn)數(shù)據(jù)采集
地面調(diào)查于2018年12月10日上午10:00-12:30進(jìn)行,共采集60個(gè)樣點(diǎn)數(shù)據(jù)。研究區(qū)域面積為13.4 km2,檳榔樹(shù)高10~15 m。首先人工現(xiàn)場(chǎng)初步判定染病程度,并利用亞米級(jí)高精度GPS接收機(jī)定位;然后采用無(wú)人機(jī)搭載高清數(shù)碼相機(jī),在距離檳榔樹(shù)冠層高約10 m處垂直向下拍攝,通過(guò)圖像處理計(jì)算葉片黃化面積占整個(gè)植株冠層面積的百分比。由于目前尚未有檳榔黃化病劃分的行業(yè)標(biāo)準(zhǔn),綜合考慮病害為害特征及遙感影像可分性,將發(fā)生嚴(yán)重度劃分為3個(gè)等級(jí):健康(<1%)、輕度(1%~10%)和重度(≥10%),樣本數(shù)分別為18、22和20。
1.2.2 無(wú)人機(jī)遙感數(shù)據(jù)獲取與預(yù)處理
無(wú)人機(jī)平臺(tái)使用大疆精靈Phantom 4 Pro V2.0四旋翼無(wú)人機(jī),整機(jī)(含電池和槳)質(zhì)量為1.375 kg,最大水平飛行速度72 km/s,最大飛行高度為6 000 m。搭載的傳感器為美國(guó)Micasense公司生產(chǎn)的MicaSense RedEdge-M多光譜相機(jī)。該相機(jī)可同時(shí)獲取5個(gè)波段數(shù)據(jù),包含可見(jiàn)光波段、近紅外波段和紅邊波段,具體參數(shù)如表1所示。在開(kāi)展病害地面調(diào)查實(shí)驗(yàn)的同時(shí)進(jìn)行無(wú)人機(jī)飛行實(shí)驗(yàn)。飛行時(shí)光照條件良好,且風(fēng)力小于3級(jí)。無(wú)人機(jī)航拍實(shí)驗(yàn)前后,均在地面放置一塊校準(zhǔn)反射面板,使相機(jī)盡可能垂直面板。該操作主要用于像元值的相對(duì)定標(biāo),獲取精準(zhǔn)的反射率數(shù)據(jù)。為獲取穩(wěn)定的影像信息,起飛前首先規(guī)劃好飛行航線,使無(wú)人機(jī)按照預(yù)先設(shè)定好的航線進(jìn)行拍攝,飛行范圍覆蓋整個(gè)研究區(qū)域。飛行航高設(shè)為60 m,巡航速度為7 m/s,影像空間分辨率為4 cm,旁向重疊率為80%,航向重疊率為70%。獲取無(wú)人機(jī)影像后,利用Pix4D Mapper軟件對(duì)影像進(jìn)行拼接,然后進(jìn)行幾何校正、輻射定標(biāo)、裁剪等預(yù)處理[20]。
表1 MicaSense RedEdge-M多光譜相機(jī)參數(shù)
1.3.1 特征選擇
檳榔感染黃化病后,外部形態(tài)會(huì)發(fā)生變化,如葉片變黃、枯萎等;其內(nèi)部生理也會(huì)發(fā)生變化,如葉綠素和水分含量下降等。無(wú)論是形態(tài)還是生理的變化,都會(huì)引起檳榔光譜信息的改變。植被指數(shù)將藍(lán)波段、綠波段、紅邊波段等對(duì)大氣、植被、土壤敏感的光譜波段進(jìn)行線性或非線性組合,綜合體現(xiàn)綠色植被的葉面積指數(shù)(Leaf Area Index,LAI)、蓋度、葉綠素含量、綠色生物量、吸收光合有效輻射(Absorbed Photosynthetically Active Radiation,APAR)等參數(shù)[21],已被廣泛應(yīng)用于作物病蟲(chóng)害的遙感監(jiān)測(cè)和診斷研究中,取得了令人滿意的分類精度[22]?;陬A(yù)處理后的無(wú)人機(jī)多光譜影像,初步選取15個(gè)常用于植被長(zhǎng)勢(shì)和病蟲(chóng)害監(jiān)測(cè)的植被指數(shù)作為監(jiān)測(cè)檳榔長(zhǎng)勢(shì)和病害脅迫的候選特征集,如表2所示。
表2 用于檳榔黃化病監(jiān)測(cè)的植被指數(shù)
注:Blue、Green、Red和NIR分別表示藍(lán)波段、綠波段、紅波段和近紅外波段反射率;R(=550、670、678、700、800和5 670 mm)表示對(duì)應(yīng)波數(shù)的反射率。
Note:Blue,Red,GreenandNIRrepresents the reflectivity of blue waveband, green waveband, red waveband and near-infrared waveband, respectively;R(=550, 670, 678, 700, 800 and 5 670 mm)is the reflectivity of corresponding wavelength.
1.3.2 特征變量?jī)?yōu)選
由于不同特征變量之間會(huì)存在一定的相關(guān)性,從而帶來(lái)較多的冗余數(shù)據(jù),增大計(jì)算量,因此對(duì)初選的15個(gè)植被指數(shù)進(jìn)行優(yōu)選,得到反映檳榔黃化病最敏感的植被指數(shù)。相比于相關(guān)分析法、T檢驗(yàn)法,mRMR算法能夠得到相關(guān)度高且冗余性小的特征數(shù)據(jù)集,同時(shí)考慮到所選特征與黃化病嚴(yán)重度之間的相關(guān)性以及特征之間的冗余性。mRMR算法利用互信息作為度量標(biāo)準(zhǔn)[38],主要思想是從特征空間中找出個(gè)最優(yōu)特征,這個(gè)特征與目標(biāo)類別之間擁有最大相關(guān)性,且特征之間冗余性最小。特征集與類的相關(guān)性由各個(gè)特征x和類之間的所有互信息值的平均值的關(guān)系為
集合中所有特征的冗余()由特征x與特征x之間的所有互信息值的平均值表示:
式中(x,)、(x,x)分別為特征和類之間、特征與特征之間的互信息。其中,互信息(,)的計(jì)算公式為
式中()、()為隨機(jī)變量、的概率密度函數(shù),()為和的聯(lián)合概率密度函數(shù)。
聯(lián)合(1)和式(2),得到基于mRMR選擇特征的目標(biāo)函數(shù)為
max(?R) (4)
基于Matlab軟件平臺(tái),選用BPNN、RF和SVM 3種算法分別構(gòu)建檳榔黃化病發(fā)生嚴(yán)重度監(jiān)測(cè)模型,并對(duì)結(jié)果進(jìn)行比較分析。
1.4.1 BPNN算法模型
BPNN是一種多層前饋神經(jīng)網(wǎng)絡(luò),具有信號(hào)向前傳播、誤差反向傳播的特點(diǎn),主要以誤差逆向傳播算法訓(xùn)練模型,是目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)[39]?;舅枷胧翘荻认陆捣?,使得到的實(shí)際輸出值與期望輸出值之間的誤差均方差最小。本文BPNN主要構(gòu)建2層神經(jīng)網(wǎng)絡(luò),即隱藏層和輸出層,具體實(shí)現(xiàn)過(guò)程如下:
1)輸入數(shù)據(jù)集。給定隨機(jī)劃分的訓(xùn)練集P_train和驗(yàn)證集T_test,以及訓(xùn)練標(biāo)簽P_class和驗(yàn)證標(biāo)簽T_class。
2)數(shù)據(jù)歸一化。使用mapminmax函數(shù)進(jìn)行數(shù)據(jù)歸一化,將數(shù)據(jù)映射到[0, 1]范圍內(nèi),避免輸入和輸出數(shù)據(jù)的顯著差異。
3)建立神經(jīng)網(wǎng)絡(luò),并設(shè)置網(wǎng)絡(luò)參數(shù)。
4)設(shè)置訓(xùn)練參數(shù),進(jìn)行網(wǎng)絡(luò)訓(xùn)練。設(shè)置迭代次數(shù)為200次,學(xué)習(xí)率設(shè)置為0.001,訓(xùn)練誤差目標(biāo)為10-4,最大失敗次數(shù)為10。使用train(net, P, T)函數(shù)進(jìn)行網(wǎng)絡(luò)訓(xùn)練。
5)網(wǎng)絡(luò)仿真,使用sim(net, 測(cè)試矩陣)函數(shù)。根據(jù)預(yù)測(cè)值和期望值求得BPNN總體識(shí)別精度。
1.4.2 RF算法模型
RF是一種基于集合學(xué)習(xí)的組合分類算法,中心思想是:利用自助法(Bootstrap)從原始訓(xùn)練樣本集中有放回地隨機(jī)抽取個(gè)樣本,進(jìn)行次采樣后,得到個(gè)訓(xùn)練集;分別基于每個(gè)新的訓(xùn)練集建立模型,得到個(gè)決策樹(shù)模型;將生成的個(gè)決策樹(shù)組成隨機(jī)森林,并以多棵樹(shù)分類器投票決定最終的預(yù)測(cè)結(jié)果[40]。在訓(xùn)練階段構(gòu)建多個(gè)決策樹(shù),其中最終的類輸出是單個(gè)決策樹(shù)類的模式。建模時(shí),設(shè)置決策樹(shù)個(gè)數(shù)ntree為500,其他參數(shù)取默認(rèn)值。
1.4.3 SVM算法模型
SVM是一種基于統(tǒng)計(jì)學(xué)習(xí)理論的新型機(jī)器學(xué)習(xí)方法,主要利用結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則實(shí)現(xiàn)[41]。通過(guò)在高維特征空間中尋找最優(yōu)分割超平面,將不同類別的樣本分開(kāi),且誤差最小,從而實(shí)現(xiàn)數(shù)據(jù)的正確分類。由于其結(jié)構(gòu)簡(jiǎn)單,具有較強(qiáng)的適應(yīng)性和較好的魯棒性,在線性、非線性、分類和回歸問(wèn)題中都有廣泛應(yīng)用。利用SVM構(gòu)建檳榔黃化病監(jiān)測(cè)模時(shí),使用mapminmax函數(shù)對(duì)訓(xùn)練集和驗(yàn)證集進(jìn)行歸一化處理,將數(shù)據(jù)縮放在區(qū)間[0, 1]范圍內(nèi);調(diào)用LIBSVM 3.23軟件中的svmtrain命令對(duì)訓(xùn)練集進(jìn)行訓(xùn)練,并使用svmpredict命令對(duì)驗(yàn)證集進(jìn)行測(cè)試。其中,SVM使用線性核函數(shù),懲罰因子、核參數(shù)等參數(shù)均使用系統(tǒng)默認(rèn)值。
利用mRMR方法進(jìn)一步對(duì)15個(gè)植被指數(shù)進(jìn)行篩選,得到特征重要性從高到低的順序?yàn)椋篟VI、MSR、ARI、GNDVI、OSAVI、WDRVI、NDVI、EVI、TVI、NDGI、MSAVI、PSRI、SAVI、RDVI和DVI。為了進(jìn)一步確定最優(yōu)特征,分別輸入15個(gè)特征變量構(gòu)建BPNN分類模型,得到圖2所示的特征變量個(gè)數(shù)與總體精度(Overall Accuracy,OA)關(guān)系曲線。由圖2可知,當(dāng)特征個(gè)數(shù)為3時(shí)分類精度達(dá)到最大值91.7%;隨著特征變量個(gè)數(shù)的增加,總體精度開(kāi)始下降且波動(dòng)幅度較小,因此確定最優(yōu)特征變量個(gè)數(shù)為3。根據(jù)特征重要性優(yōu)先原則,選擇RVI、MSR、ARI作為最優(yōu)特征組合。
圖2 特征變量個(gè)數(shù)與總體精度的關(guān)系
分析篩選的植被指數(shù)構(gòu)建機(jī)理可以發(fā)現(xiàn),RVI增強(qiáng)了植被與土壤之間的輻射差異,能夠表征不同植被覆蓋下的生物量信息并與葉綠素含量高度相關(guān)[42];MSR能夠改善由于植被生化參數(shù)變化而出現(xiàn)的飽和性問(wèn)題,且能夠克服大氣、土壤和背景等因素的影響[43];ARI可用于植物的色素成分和含量變化分析[44],可以很好地指示檳榔黃化病發(fā)生時(shí)色素成分和含量的變化。由于檳榔樹(shù)有一定的種植間距,從影像上看會(huì)有一定面積的裸露土壤,故RVI可減小土壤背景對(duì)檳榔樹(shù)光譜的影響。因此,利用RVI、MSR和ARI指數(shù)的組合能有效地提取檳榔黃化病信息。
將最優(yōu)特征子集(RVI、MSR和ARI)作為模型輸入,分別利用BPNN、RF和SVM,構(gòu)建檳榔黃化病發(fā)生嚴(yán)重度監(jiān)測(cè)模型,并利用驗(yàn)證集評(píng)價(jià)3種模型的監(jiān)測(cè)結(jié)果,如表3所示。
表3 不同模型的檳榔黃化病分類結(jié)果對(duì)比
從表3可以看出,基于BPNN、RF和SVM的檳榔黃化病監(jiān)測(cè)模型均具有較好的分類精度。其中,BPNN模型的OA最高,達(dá)到91.7%,RF模型的OA為85.0%,略低于BPNN模型,而SVM模型的OA最低,為81.7%,且BPNN模型的OA比RF和SVM模型分別高出6.7%和10.0%;從Kappa系數(shù)來(lái)看,BPNN模型的Kappa系數(shù)為0.875,高于RF的0.774和SVM的0.727;對(duì)比3種方法所建模型的漏分、錯(cuò)分情況發(fā)現(xiàn),BPNN模型將重度分為健康和輕度發(fā)的情況較少,RF模型次之,SVM模型最為嚴(yán)重,且BPNN模型對(duì)健康和輕度的漏分、錯(cuò)分在3種模型中最少,說(shuō)明BPNN模型對(duì)重度樣本識(shí)別效果最好,且該模型對(duì)健康和輕度分類混淆情況比RF、SVM模型對(duì)健康和輕度混淆情況較少。上述結(jié)果說(shuō)明,SVM模型的漏分、錯(cuò)分情況總體最為嚴(yán)重,RF模型次之,BPNN模型最低。綜合分析,BPNN模型對(duì)檳榔黃化病的識(shí)別效果優(yōu)于RF模型和SVM模型。
基于已建立的BPNN、RF和SVM檳榔黃化病遙感監(jiān)測(cè)模型,將mRMR方法篩選出的特征變量組合(RVI、MSR和ARI)作為模型輸入,分別繪制黃化病嚴(yán)重度的遙感監(jiān)測(cè)空間分布圖(圖3)。結(jié)果表明,基于3種監(jiān)測(cè)模型得到的檳榔黃化病空間分布格局基本一致,總體上研究區(qū)西南部發(fā)病較為嚴(yán)重,而北部地區(qū)發(fā)病較輕,但3種方法生成的分布圖在局部地區(qū)仍存在一定差異。分析BPNN模型的分布圖(圖3a),重度發(fā)病面積相對(duì)較少且分布較均勻,主要發(fā)生在西南部,其他區(qū)域也有零星分布;輕度發(fā)病檳榔主要分布在西南部以及中東部區(qū)域。從驗(yàn)證結(jié)果來(lái)看,BPNN模型對(duì)重度發(fā)病的檳榔識(shí)別率較高,但是出現(xiàn)小部分健康與輕度發(fā)病的檳榔分類混淆現(xiàn)象,尤其是研究區(qū)東部,由于輕度發(fā)病檳榔樣本光譜信息接近于健康檳榔,導(dǎo)致健康檳榔與輕度發(fā)病檳榔部分混淆。觀察RF模型的分布圖(圖3b),檳榔黃化病嚴(yán)重度總體分布與圖3a較為一致,但在南部區(qū)域出現(xiàn)部分輕度與重度發(fā)病的檳榔分類混淆現(xiàn)象。相比之下,SVM模型的分布圖中(圖3c),受黃化病侵害的檳榔數(shù)量明顯多于圖3a和圖3b,主要表現(xiàn)為黃化病輕發(fā)區(qū)最多,主要集中于東北角區(qū)域,這是因?yàn)樵搮^(qū)域的部分正常檳榔被錯(cuò)分為輕度發(fā)??;另外,在研究區(qū)的南部區(qū)域也有部分輕度發(fā)病的檳榔被錯(cuò)分為重度發(fā)病。綜上所述,BPNN模型對(duì)研究區(qū)檳榔黃化病的分類識(shí)別效果比其他2種模型要好,再次證明了BPNN方法的優(yōu)越性。
對(duì)比BPNN模型、RF模型和SVM模型的結(jié)果,發(fā)現(xiàn)BPNN模型的監(jiān)測(cè)效果好于RF模型和SVM模型。主要由于BPNN方法具有較強(qiáng)的非線性擬合能力和泛化能力,建立的網(wǎng)絡(luò)模型穩(wěn)定性較好,使得BPNN可較為準(zhǔn)確地實(shí)現(xiàn)小區(qū)域的檳榔黃化病嚴(yán)重度監(jiān)測(cè)。SVM雖然能通過(guò)核函數(shù)的選擇處理各種非線性問(wèn)題,但是SVM算法對(duì)核函數(shù)以及懲罰因子等參數(shù)的選擇較為復(fù)雜,使其在線性、非線性、分類以及回歸等應(yīng)用中受到一定的限制[45],且SVM多用于解決二分類問(wèn)題。RF具有較強(qiáng)的容噪能力,也不易產(chǎn)生過(guò)度擬合現(xiàn)象[46],但是該方法參數(shù)較復(fù)雜,且RF的決策容易受取值劃分較多的特征影響,導(dǎo)致模型的精度受到影響。
圖3 基于BPNN、RF和SVM的檳榔黃化病嚴(yán)重度空間分布
本文利用無(wú)人機(jī)多光譜遙感數(shù)據(jù),以mRMR算法篩選出的特征變量組合比值植被指數(shù)RVI、改進(jìn)的簡(jiǎn)單比值指數(shù)MSR和花青素反射指數(shù)ARI作為輸入,利用BPNN、RF和SVM方法分別構(gòu)建檳榔黃化病遙感監(jiān)測(cè)模型,并對(duì)比分析了3種模型的分類精度。結(jié)果表明BPNN、RF和SVM模型均具有較好的分類效果,其中,BPNN模型的OA最高,達(dá)到91.7%;RF模型的OA為85.0%,略低于BPNN識(shí)別模型;SVM模型的OA最低,為81.7%。BPNN模型的OA比RF模型和SVM模型分別高出6.7%和10.0%,且BPNN模型的Kappa系數(shù)為0.875,為所有模型中最高;總體上,BPNN模型的漏分、錯(cuò)分誤差也最小,健康,輕度和重度的誤差分別為11.1%、15.8%,13.6%、9.5%和0、0。研究結(jié)果證明了無(wú)人機(jī)多光譜影像監(jiān)測(cè)檳榔黃化病的可行性。
由于研究中采用一個(gè)高度獲取檳榔無(wú)人機(jī)多光譜影像,沒(méi)有考慮飛行高度對(duì)解析檳榔黃化病精度的影響,后續(xù)研究中可進(jìn)一步解析病害反演精度的“尺度效應(yīng)”。隨著更多亞米級(jí)高分辨率遙感衛(wèi)星發(fā)射,為作物病害監(jiān)測(cè)提供了豐富的數(shù)據(jù)源。如何結(jié)合無(wú)人機(jī)的機(jī)動(dòng)性和衛(wèi)星的宏觀性,通過(guò)“尺度轉(zhuǎn)換”和“模型擴(kuò)展”實(shí)現(xiàn)大面積監(jiān)測(cè)檳榔黃化病將是后續(xù)研究的重點(diǎn)方向。
在構(gòu)建病害遙感監(jiān)測(cè)模型時(shí),建模方法的選擇會(huì)影響病害嚴(yán)重度反演的精度和效率。相比于SVM和RF,BPNN也存在一些需要解決的問(wèn)題,例如,如何準(zhǔn)確確定隱含層節(jié)點(diǎn)的個(gè)數(shù),節(jié)點(diǎn)個(gè)數(shù)較少,導(dǎo)致網(wǎng)絡(luò)不能收斂,容錯(cuò)性差,節(jié)點(diǎn)個(gè)數(shù)較多,導(dǎo)致網(wǎng)絡(luò)學(xué)習(xí)時(shí)間過(guò)長(zhǎng)易出現(xiàn)過(guò)擬合現(xiàn)象;當(dāng)樣本量數(shù)量過(guò)多或過(guò)少時(shí),會(huì)產(chǎn)生欠擬合或過(guò)擬合現(xiàn)象。今后的研究中,需要保證不同病害嚴(yán)重度樣本的均衡性和代表性,另外也可以參考適合小樣本量分類的深度學(xué)習(xí)訓(xùn)練策略,選擇參數(shù)范數(shù)懲罰、數(shù)據(jù)增強(qiáng)、提前終止等方法,減緩和防止過(guò)擬合現(xiàn)象,保證模型的泛化能力,提升病害等級(jí)分類精度。
[1] 孫慧潔,龔敏. 海南檳榔種植、加工產(chǎn)業(yè)發(fā)展現(xiàn)狀及對(duì)策研究[J]. 熱帶農(nóng)業(yè)科學(xué),2019,39(2):91-94.
Sun Huijie, Gong Min. Current development status and countermeasures of arecanut planting and processing industry in Hainan[J]. Chinese Journal of Tropical Agriculture, 2019, 39(2): 91-94. (in Chinese with English abstract)
[2] 金開(kāi)璇,孫福生,陳慕容,等. 檳榔黃化病的病原的研究初報(bào)[J]. 林業(yè)科學(xué),1995,31(6):556-558.
Jin Kaixuan, Sun Fusheng, Chen Murong, et al. Yellows disease of betel nut palm in Hainan, China[J]. Scientia Silvae Sinicae, 1995, 31(6): 556-558. (in Chinese with English abstract)
[3] 張競(jìng)成,袁琳,王紀(jì)華,等. 作物病蟲(chóng)害遙感監(jiān)測(cè)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):1-11.
Zhang Jingcheng, Yuan Lin, Wang Jihua, et al. Research progress of crop diseases and pests monitoring based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 1-11. (in Chinese with English abstract)
[4] Jonas F, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172.
[5] Zhang J C, Pu R L, Yuan L, et al. Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4328-4339.
[6] da Rocha Miranda J, de Carvalho Alves M, Pozza E A, et al. Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 101983.
[7] 汪小欽,王苗苗,王紹強(qiáng),等. 基于可見(jiàn)光波段無(wú)人機(jī)遙感的植被信息提取[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):152-159.
Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 152-159. (in Chinese with English abstract)
[8] 王利民,劉佳,楊玲波,等. 基于無(wú)人機(jī)影像的農(nóng)情遙感監(jiān)測(cè)應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):136-145.
Wang Limin, Liu Jia, Yang Lingbo, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 136-145. (in Chinese with English abstract)
[9] 李冰,劉镕源,劉素紅,等. 基于低空無(wú)人機(jī)遙感的冬小麥覆蓋度變化監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):160-165.
Li Bing, Liu Rongyuan, Liu Suhong, et al. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 160-165. (in Chinese with English abstract)
[10] Su J Y, Liu C J, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166.
[11] 蘭玉彬,朱梓豪,鄧小玲,等. 基于無(wú)人機(jī)高光譜遙感的柑橘黃龍病植株的監(jiān)測(cè)與分類[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):92-100.
Lan Yubin, Zhu Zihao, Deng Xiaoling, et al. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 92-100. (in Chinese with English abstract)
[12] Backoulou G F, Elliott N C, Giles K, et al. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors[J]. Computers and Electronics in Agriculture, 2011, 78(2): 123-129.
[13] 王新峰,邱靜,劉冠軍. 基于特征相關(guān)性和冗余性分析的機(jī)械故障特征選擇研究[J]. 中國(guó)機(jī)械工程,2006,17(4):379-382.
Wang Xinfeng, Qiu Jing, Liu Guanjun. Research on mechanical fault feature selection based on feature relevancy and redundancy analysis[J]. China Mechanical Engineering, 2006, 17(4): 379-382. (in Chinese with English abstract)
[14] 肖憶南,謝榕,杜娟. 基于t檢驗(yàn)和彈性網(wǎng)的數(shù)據(jù)分類特征選擇方法[J]. 小型微型計(jì)算機(jī)系統(tǒng),2015,36(10):2213-2217.
Xiao Yinan, Xie Rong, Du Juan. Feature selection method for data classification based on t-test and elastic net[J]. Journal of Chinese Computer Systems, 2015, 36(10): 2213-2217. (in Chinese with English abstract)
[15] Li D Y, Wen G H. MRMR-based ensemble pruning for facial expression recognition[J]. Multimedia Tools and Applications, 2017, 77(10): 1-22.
[16] 程希萌,沈占鋒,邢廷炎,等. 基于mRMR特征優(yōu)選算法的多光譜遙感影像分類效率精度分析[J]. 地球信息科學(xué)學(xué)報(bào),2016,18(6):815-823.
Cheng Ximeng, Shen Zhanfeng, Xing Tingyan, et al. Efficiency and accuracy analysis of multispectral image classification based on mRMR feature selection method[J]. Journal of Geo-information Science, 2016, 18(6): 815-823. (in Chinese with English abstract)
[17] Huang W J, Guan Q S, Luo J H, et al. New optimized spectral indices for identifying and monitoring winter wheat diseases[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2516-2524.
[18] 海南省統(tǒng)計(jì)局. 海南統(tǒng)計(jì)年鑒2019[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2019.
[19] 楊春雨,戰(zhàn)晴晴,周亞奎,等. 萬(wàn)寧市南部地區(qū)檳榔黃化病情調(diào)查[J]. 中國(guó)藥業(yè),2018,27(1):70-71.
Yang Chunyu, Zhan Qingqing, Zhou Yakui, et al. Investigation on the condition of areca yellow leaf disease in the South of Wanning[J]. China Pharmaceuticals, 2018, 27(1): 70-71. (in Chinese with English abstract)
[20] 魏鵬飛,徐新剛,李中元,等. 基于無(wú)人機(jī)多光譜影像的夏玉米葉片氮含量遙感估測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):126-133,335.
Wei Pengfei, Xu Xingang, Li Zhongyuan, et al. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 126-133, 335. (in Chinese with English abstract)
[21] Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology, 2004, 161(2): 165-173.
[22] Huang W J, Lamb D W, Niu Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 8(4/5): 187-197.
[23] Gitelson A A, Merzlyak M N, Chivkunova O B. Optical properties and nondestructive estimation of anthocyanin content in Plant leaves[J]. Photochemistry and Photobiology, 2001, 74(1): 38-45.
[24] Jordan C F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
[25] Verstraete M M, Pinty B, Myneni R B. Potential and imitations of information extraction on the terrestrial biosphere from satellite remote sensing[J]. Remote Sensing of Environment, 1996, 58(2): 201-214.
[26] Yang C M, Cheng C H, Chen R K. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder[J]. Crop Science, 2007, 47(1): 329-335.
[27] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
[28] Chen S F, Goodman J. An empirical study of smoothing techniques for language modeling[J]. Computer Speech and Language, 1999, 13(4): 359-394.
[29] Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1): 35-44.
[30] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation[R]. NASA/GSFC Type III Final Report, Greenbelt, MD, 1973.
[31] Rondeaux G, Steven M, Baret F, Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.
[32] Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum, 1999, 106(1): 135-141.
[33] Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375-384.
[34] Pearson R L, Miller, L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[C]//Proceedings of the Eighth International Symposium on Remote Sensing of Environment, 1972: 1357-1381.
[35] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
[36] Zhao C, Huang M, Huang W, et al. Analysis of winter wheat stripe rust characteristic spectrum and establishing of inversion models[C]//IEEE International Geoscience and Remote Sensing Symposium, 2004: 4318-4320.
[37] Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology, 2004, 161(2): 165-173.
[38] Mundra P A, Rajapakse J C. SVM-RFE with MRMR filter for gene selection[J]. IEEE Transactions on Nanobioscience, 2009, 9(1): 31-37.
[39] Dai H, MacBeth C. Effects of learning parameters on learning procedure and performance of a BPNN[J]. Neural Networks, 1997, 10(8): 1505-1521.
[40] Liaw A, Wiener M. Classification and regression by randomForest[J]. R News, 2002, 2(3): 18-22.
[41] Vapnik V, Guyon I, Hastie T. Support vector machines. Machine Learning[J], 1995, 20(3): 273-297.
[42] 唐翠翠. 基于多源遙感數(shù)據(jù)的小麥病蟲(chóng)害大尺度監(jiān)測(cè)預(yù)測(cè)研究[D]. 合肥:安徽大學(xué),2016.
Tang Cuicui. Large Scale Monitoring and Forecasting of Wheat Diseases and Pests Based on Multi-source Remote Sensing Data[D]. Hefei: AnhuiUniversity, 2016. (in Chinese with English abstract)
[43] 吳朝陽(yáng),牛錚. 基于輻射傳輸模型的高光譜植被指數(shù)與葉綠素濃度及葉面積指數(shù)的線性關(guān)系改進(jìn)[J]. 植物學(xué)通報(bào),2008,25(6):714-721.
Wu Chaoyang, Niu Zheng. Improvement in linearity between hyperspectral vegetation indices and chlorophyll content, leaf area index based on radiative transfer models[J]. Chinese Bulletin of Botany, 2008, 25(6): 714-721. (in Chinese with English abstract)
[44] 伏靜,戴思蘭. 基于高光譜成像技術(shù)的菊花花色表型和色素成分分析[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2016,38(8):88-98.
Fu Jing, Dai Silan. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging[J]. Journal of Beijing Forestry University, 2016, 38(8): 88-98. (in Chinese with English abstract)
[45] 王麗愛(ài),馬昌,周旭東,等. 基于隨機(jī)森林回歸算法的小麥葉片SPAD值遙感估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):259-265.
Wang Liai, Ma Chang, Zhou Xudong, et al. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265. (in Chinese with English abstract)
[46] 靳然,李生才. 基于BP神經(jīng)網(wǎng)絡(luò)的麥蚜最大蟲(chóng)株率預(yù)測(cè)[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,35(4):361-366.
Jin Ran, Li Shengcai. Forecast of the maximum rate of wheat aphids strains based on BP neural network[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2015, 35(4): 361-366. (in Chinese with English abstract)
Remote sensing monitoring of areca yellow leaf disease based on UAV multi-spectral images
Zhao Jinling1, Jin Yu1,2, Ye Huichun2,3※, Huang Wenjiang1,2,3, Dong Yingying2, Fan Lingling1, Ma Huiqin2, Jiang Jing1,2
(1.,230601,; 2.,100094,; 3.,572029,)
Yellow leaf disease is a serious disease that endangers the growth of areca, it is urgent to monitor the infection severity and spatial distribution in time and accurately. However, the traditional monitoring methods are mainly depend on visual inspection and manual investigation, which affects the efficiency and spatial scope of monitoring. Low altitude UAV remote sensing technology can effectively solve the problems of insufficient optical satellite images acquisition caused by cloudy and rainy weather in areca planting area, and improve the real-time monitoring of areca yellow leaf disease. In this paper, in order to identify the severities and spatial distribution of areca yellow leaf disease, five band(including blue, green, red, near-infrared and red-edge wavebands) multispectral images were obtained by using the MicaSense RedEdge-M multispectral camera mounted on the DJI Phantom 4 Pro V2.0. Based on the Minimum Redundancy Maximum Relevance (mRMR), three sensitive features were selected from 15 potential vegetation indexes. Using Back Propagation Neural Network(BPNN), Random Forest(RF) and Support Vector Machine(SVM) classification algorithms respectively, a monitoring model of areca yellow leaf disease severity was constructed. A total sixty in-situ sampling points were selected and the disease index (DI) were obtained, according to the characteristics of the disease and the separability of remote sensing images, the severities of the disease were divided into three grades: health (DI<1%), slight (1%≤DI<10%) and serious (DI≥10%), and the number of samples was 18, 22 and 20 respectively. According to the priority principle of importance of feature variables, Ratio Vegetation Index (RVI), Modified Simple Ratio Index (MSR) and Anthocyanin Reflectance Index (ARI) were finally selected. Two-tier neural networks including hidden layer and output layer were used to build the BPNN model. The results showed that the overall accuracy (OA) of BPNN model was 91.7%, which was 6.7% and 10.0% higher than that of RF model and SVM model, respectively. The Kappa coefficient of the BPNN model was 0.875, which was the highest among the three models. In general, the omission errors and commission errors of BPNN model were the smallest, the errors of health, slight and serous levels were 11.1%, 15.8%, 13.6%, 9.5% and 0, 0 respectively. Consequently, it is feasible to monitor the severities of arecanut yellow leaf disease based on the UAV multispectral image. The study can provide a reference for the diseases monitoring of other tropical crops.
unmanned aerial vehicle; remote sensing; areca yellow leaf disease; multispectral image; sensitive characteristic
趙晉陵,金玉,葉回春,等. 基于無(wú)人機(jī)多光譜影像的檳榔黃化病遙感監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):54-61.doi:10.11975/j.issn.1002-6819.2020.08.007 http://www.tcsae.org
Zhao Jinling, Jin Yu, Ye Huichun, et al. Remote sensing monitoring of areca yellow leaf disease based on UAV multi-spectral images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 54-61. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.007 http://www.tcsae.org
2019-12-23
2020-02-17
海南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(ZDYF2018073);國(guó)家高層次人才特殊支持計(jì)劃(萬(wàn)人計(jì)劃);海南省萬(wàn)人計(jì)劃配套項(xiàng)目
趙晉陵,博士,副教授,研究方向?yàn)樽魑锊∠x(chóng)害遙感監(jiān)測(cè)研究。Email:zhaojl@ahu.edu.cn
葉回春,博士,副研究員,研究方向?yàn)檗r(nóng)業(yè)遙感機(jī)理及應(yīng)用研究。Email:yehc@aircas.ac.cn
10.11975/j.issn.1002-6819.2020.08.007
S435.122+.2; TP79
A
1002-6819(2020)-08-0054-08