巨志勇,薛永杰,張文馨,翟春宇
自適應(yīng)閾值Prewitt的石榴病斑檢測(cè)算法
巨志勇,薛永杰,張文馨,翟春宇
(上海理工大學(xué)光電信息與計(jì)算機(jī)工程學(xué)院,上海 200093)
針對(duì)傳統(tǒng)識(shí)別方法對(duì)石榴外表病斑及石榴輪廓檢測(cè)精準(zhǔn)度不高、抗噪聲能力不強(qiáng)以及存在偽邊緣等問(wèn)題。該文提出一種基于自適應(yīng)閾值Prewitt算子的石榴病斑檢測(cè)算法。采用雙邊濾波減少噪聲干擾;通過(guò)高頻強(qiáng)調(diào)濾波提高圖像高頻分量,增強(qiáng)局部細(xì)節(jié);根據(jù)高斯噪聲概率分布設(shè)置算子卷積掩膜元素權(quán)重,利用對(duì)稱性將方向梯度兩兩組合,并計(jì)算其L2范數(shù)作為該像素點(diǎn)的梯度。對(duì)人工拍攝的607張石榴圖像進(jìn)行圖像增強(qiáng)和邊緣檢測(cè)試驗(yàn),加入椒鹽噪聲和高斯噪聲進(jìn)行抗噪性能測(cè)試。試驗(yàn)結(jié)果表明,該文算法對(duì)石榴病斑的識(shí)別正確率為98.24%,獲得圖像的峰值信噪比為43.72 dB,單張圖像識(shí)別耗時(shí)為0.174 s。該研究具有較好的病害樣本與非病害樣本區(qū)分能力,可為田間環(huán)境下石榴病害預(yù)防提供參考。
水果;算法;病害;邊緣檢測(cè);圖像增強(qiáng);最小誤差法;雙邊濾波
石榴作為中國(guó)重要的經(jīng)濟(jì)作物之一,產(chǎn)量巨大[1]。在其生長(zhǎng)過(guò)程中,石榴病害的發(fā)生是引起石榴總體產(chǎn)量下滑的主要原因之一。石榴的病害種類多種多樣,例如常見(jiàn)的黑斑病、干腐病和瘡痂病等,及時(shí)檢測(cè)出病害的發(fā)生并采取相應(yīng)的措施是預(yù)防石榴產(chǎn)量下滑的重要手段之一[2-4],而石榴病害檢測(cè)的精度作為該一系列操作的前提,其重要性不言而喻。
目前,主流的農(nóng)作物病斑檢測(cè)方法主要有閾值法[5]、邊緣法、人工神經(jīng)網(wǎng)絡(luò)法[6]、分水嶺法[7]等,不同檢測(cè)手段,所適用的場(chǎng)合也不盡相同。因此,如僅使用單一方法進(jìn)行檢測(cè),得到的圖像檢測(cè)效果往往達(dá)不到預(yù)期的精度,一種常用以提升圖像分割精度的有效手段為不同算法的融合使用與改進(jìn)[8-11]。如Wang等[12]提出一種結(jié)合Canny算子和分水嶺分類的方法,對(duì)白蘑菇菌傘取得了良好的檢測(cè)效果。王震等[13]對(duì)傳統(tǒng)Harr-like特征模型進(jìn)行改進(jìn),解決了復(fù)雜自然環(huán)境背景下水稻病害采集及分割的問(wèn)題,苗玉彬等[14]提出的一種基于Zernike矩邊緣檢測(cè)的分水嶺算法,應(yīng)用于輪廓特征提取,具有較高的檢測(cè)效率。大量試驗(yàn)表明新算法分割效果顯著,較現(xiàn)有的圖像分割方法更好。當(dāng)前對(duì)于石榴病害的邊緣檢測(cè)算法普遍存在受背景干擾影響大、需要人工設(shè)定閾值、適應(yīng)性低等問(wèn)題,使用固定的閾值很難達(dá)到理想的精度。具有自適應(yīng)閾值的檢測(cè)算法能夠?qū)Σ煌尘白龀鲩撝嫡{(diào)整,因此成為解決算法適應(yīng)性差的主流選用方法[15-16]。傳統(tǒng)的Prewitt檢測(cè)方法采用2個(gè)方向模板與圖像進(jìn)行鄰域卷積來(lái)完成對(duì)預(yù)處理后的圖像進(jìn)行一階求導(dǎo),通過(guò)計(jì)算像素點(diǎn)與其相鄰點(diǎn)的灰度差,達(dá)到邊緣檢測(cè)的目的,但對(duì)噪聲抑制能力不強(qiáng),同時(shí)也容易檢測(cè)出粗邊,無(wú)法精確定位邊緣位置[17]。針對(duì)傳統(tǒng)Prewitt算子存在誤判率高、易缺失弱邊緣特征、檢測(cè)出的邊緣不連續(xù)等缺點(diǎn)。國(guó)內(nèi)外學(xué)者對(duì)該算法進(jìn)行很多方面的改進(jìn)[18-22]。國(guó)外學(xué)者,Sengupta等[23]提出一種基于蟻群優(yōu)化的Prewitt算子邊緣檢測(cè)方法,得到了較好的邊緣圖像,但對(duì)于灰度變法復(fù)雜的圖像識(shí)別率不高。Dwivedi等[24]提出一種基于Freeman鏈碼的Prewitt檢測(cè)算法,該方法提高了圖像質(zhì)量,能準(zhǔn)確地檢測(cè)邊緣,但對(duì)應(yīng)不同背景需要人工設(shè)定不同閾值,適應(yīng)性較弱。國(guó)內(nèi)學(xué)者,張晗等[25]使用深度探測(cè)法從而增強(qiáng)鄰域邊緣,具有良好的邊緣處理能力和適應(yīng)性,但計(jì)算量大,運(yùn)行時(shí)間較長(zhǎng)。徐欣和劉寶鍾[26]提出了一種改進(jìn)的Prewitt邊緣檢測(cè)算法,擴(kuò)充了檢測(cè)模板方向,將圖像分為邊緣圖像和非邊緣圖像,對(duì)非邊緣圖像進(jìn)行去噪后融合,但融合后的邊緣易出現(xiàn)不連續(xù)的間隙。劉天時(shí)等[27]提出一種改進(jìn)的自適應(yīng)閾值Prewitt地質(zhì)圖像邊緣檢測(cè)算法,解決了由灰度信息變化導(dǎo)致的邊緣缺失問(wèn)題,但抗噪聲能力不強(qiáng)。
鑒于以上各種檢測(cè)方法的不足,本研究提出一種基于自適應(yīng)閾值的Prewitt邊緣檢測(cè)算法,以獲取清晰的石榴病斑邊緣及整體輪廓。采用雙邊濾波平滑噪聲,高頻強(qiáng)調(diào)濾波對(duì)圖像效果進(jìn)行增強(qiáng),利用改進(jìn)的自適應(yīng)閾值Prewitt算子對(duì)圖像進(jìn)行邊緣檢測(cè)。以石榴輪廓及病斑形態(tài)信息作為判據(jù),通過(guò)確定合理的比例系數(shù)來(lái)區(qū)分病害與非病害樣本,為石榴病害防治提供參考。
數(shù)字圖像中的絕大部分信息都由邊緣包含,利用所提取的邊緣信息就能對(duì)圖像進(jìn)行效分析。相較其它方法,Prewitt算子對(duì)于灰度變化較為緩慢的圖像具有更好的檢測(cè)效果。本研究采用Prewitt算子進(jìn)行石榴病斑輪廓檢測(cè),主要步驟為通過(guò)雙邊濾波對(duì)圖像進(jìn)行去噪;利用高頻增強(qiáng)濾波增加圖像對(duì)比度與圖像質(zhì)量,突出圖像細(xì)節(jié)。經(jīng)過(guò)圖像預(yù)處理后遍歷每個(gè)像素點(diǎn),進(jìn)行卷積操作,求出每個(gè)像素點(diǎn)所對(duì)應(yīng)的梯度值,隨后將求得梯度按照互相垂直規(guī)則分組,求其二范數(shù),并以二范數(shù)中的最大值作為該像素點(diǎn)的梯度。采用最小誤差法求得最佳閾值以進(jìn)行邊緣和背景的分割。
傳統(tǒng)Prewitt算子是一種基于梯度的一階微分邊緣檢測(cè)算子,通過(guò)在3×3掩膜內(nèi)計(jì)算像素點(diǎn)與其相鄰點(diǎn)的灰度差,從而檢測(cè)邊緣。在圖像空間利用2個(gè)方向模板與圖像進(jìn)行鄰域卷積以獲取對(duì)應(yīng)像素點(diǎn)梯度,2個(gè)方向模板分別檢測(cè)圖像水平邊緣和垂直邊緣。Prewitt算子2個(gè)方向的模板矩陣如(1)所示:
但由于只使用了2個(gè)方向模板,因此對(duì)圖像中多方向分布的信息檢測(cè)能力不強(qiáng),檢測(cè)復(fù)雜圖像時(shí)效果欠佳,并易受到各種噪聲的影響。為能更好檢測(cè)出每個(gè)方向的梯度值,本研究改進(jìn)的算法使用角度分別為0°、45°、90°、135°、180°、225°、270°和315°共8個(gè)方向模板。加大卷積掩膜中心元素的權(quán)重,從而使圖像在經(jīng)過(guò)卷積操作后,其邊緣信息比周圍像素有更高的對(duì)比度,并按照高斯噪聲概率分布的性質(zhì)設(shè)置權(quán)值,以降低噪聲對(duì)算法的影響,使圖像更加清晰。本研究采用5×5卷積掩膜,改進(jìn)后的8個(gè)方向的模板矩陣如(2)所示:
各模板與其對(duì)應(yīng)圖像像素的關(guān)系矩陣如(3)所示:
M(0°,45°,90°,135°,180°,225°,270°,315°)為對(duì)應(yīng)方向的模板,G為坐標(biāo)()的像素點(diǎn)和其周圍所有像素點(diǎn)的灰度級(jí)。采用模板與鄰域卷積運(yùn)算,求得對(duì)應(yīng)梯度,卷積計(jì)算如式(4)所示
式中分別取8個(gè)方向角度,(°);r(,)表示通過(guò)G和M卷積得到的結(jié)果;為在方向在模板處對(duì)應(yīng)的元素。
相較于傳統(tǒng)Prewitt算子求梯度最大值的方法,本研究將求得梯度按互相垂直的規(guī)則合并為8組,隨后計(jì)算各組梯度的L2范數(shù),將其中最大L2范數(shù)作為此像素點(diǎn)的梯度。記各方向的梯度為g(=0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°),合并后的8組梯度值表達(dá)式為(g,g),=1,2,…,8,其中j=(?1)×45°,k=mod((270°+(?1)×45°),360°),mod表示求模運(yùn)算,其對(duì)應(yīng)的L2范數(shù)||T||2如式(5)所示:
取||T||2,(=1,2,…,8)中的最大值為該像素點(diǎn)梯度如式(6)所示:
在實(shí)際計(jì)算中得出角度相差180°方向上的卷積結(jié)果具有對(duì)稱性。為減少計(jì)算量,后續(xù)計(jì)算只需取一半連續(xù)的方向模板與圖像進(jìn)行卷積計(jì)算即可。
高斯濾波作為一種有效去除圖像噪聲的手段被廣泛應(yīng)用于各種場(chǎng)合。傳統(tǒng)邊緣檢測(cè)算法中也采用高斯濾波消除圖像噪聲,其定義如式(7)和式(8)所示:
式中h()為高斯濾波后的中心像素值,px;為模板覆蓋的坐標(biāo);()為濾波前該位置的像素值,px;表示基于空間距離的高斯權(quán)重;k()表示結(jié)果的單位化參數(shù)。高斯濾波只從空間的角度考慮了像素間的關(guān)系,導(dǎo)致通過(guò)濾波得到的結(jié)果失去了邊緣所包含的特征。為解決此問(wèn)題,雙邊濾波在原有基礎(chǔ)上加入額外的一個(gè)權(quán)重分量來(lái)保持邊緣特征信息,其表達(dá)式如式(9)與式(10)所示:
式中h()為基于像素間相似性高斯濾波后的中心像素值,px;表示基于像素間相似性的高斯權(quán)重;k()表示結(jié)果的單位化參數(shù)。綜合以上2個(gè)部分即可得到包含像素空間距離和相似性的雙邊濾波如式(11)和式(12)所示:
式中()為雙邊濾波后的中心像素值,px;()為結(jié)果的單位化參數(shù)。雙邊濾波由2個(gè)高斯基濾波函數(shù)組成,在計(jì)算同一鄰域內(nèi)各鄰接像素值時(shí),從空間幾何角度與亮度兩方面,綜合考慮了各像素值的相鄰關(guān)系,因此具有雙重濾波作用。相較普通的高斯濾波具有更好的去噪效果,并具有適應(yīng)不同噪聲的能力。
石榴樣本圖像可分為2個(gè)部分:高頻分量和低頻分量,其中高頻分量對(duì)應(yīng)石榴樣本圖像的細(xì)節(jié)部分,而低頻分量對(duì)應(yīng)石榴樣本圖像的背景。因此,合理對(duì)石榴樣本圖像的高頻分量和低頻分量進(jìn)行加權(quán)處理,能夠提高圖像質(zhì)量,為后續(xù)圖像處理提供便利。目前提高圖像質(zhì)量的方法主要為通過(guò)高通濾波器增強(qiáng)圖像中的高頻分量,以突出圖像細(xì)節(jié)特征;衰減低頻分量,從而減少低頻分量在圖像中的比重,達(dá)到弱化背景的目的。傳統(tǒng)高通濾波器可表示為式(13)所示:
式中(,)為高通濾波器傳遞函數(shù);和為當(dāng)前分量的坐標(biāo);和分別表示石榴樣本圖像的寬度與高度,cm;0代表濾波器的截止頻率,Hz。對(duì)式(13)進(jìn)行分析得出,理想高通濾波器的頻率一定大于0,而低頻分量的頻率基本上為0,因此很大一部分低頻信息會(huì)被過(guò)濾,從而導(dǎo)致目標(biāo)圖像的對(duì)比度下降,視覺(jué)效果明顯變差。為解決傳統(tǒng)高通濾波器的此類缺陷,并更好的保留石榴樣本圖像的低頻特征,將一個(gè)>1的常數(shù)與所用濾波器進(jìn)行相乘,以提高高頻分量的權(quán)重,同時(shí)施加一個(gè)偏移量以保持低頻分量。通過(guò)該方法,在增強(qiáng)高頻信息的同時(shí),低頻部分得以更好的保留,高頻強(qiáng)調(diào)濾波如式(14)所示:
式中hfe(,)為高頻強(qiáng)調(diào)濾波器的傳遞函數(shù);表示低頻段偏移常量參數(shù);表示常量乘數(shù)。
由于受到自然環(huán)境中不同拍攝環(huán)境的影響,拍攝的石榴圖像呈現(xiàn)出的效果也參差不齊。常見(jiàn)的石榴病害如黑斑病和干腐病等,會(huì)在石榴表面呈現(xiàn)出不同的病斑形狀、顏色。通常情況下石榴圖像中病斑部位的顏色與正常健康部位的顏色相差較大,目前普遍采用根據(jù)閾值分割的方式來(lái)解決此類問(wèn)題。為提高石榴病斑的邊緣檢測(cè)精度,可由兩方面進(jìn)行改進(jìn):一是邊緣檢測(cè)時(shí)閾值的選擇,準(zhǔn)確的閾值能夠提高分割精度;二是提供給程序的數(shù)據(jù)質(zhì)量,準(zhǔn)確清晰的數(shù)據(jù)能夠減少程序計(jì)算步驟,使檢測(cè)結(jié)果更為精確。經(jīng)過(guò)多種閾值選擇方法對(duì)比試驗(yàn),本研究提出一種利用最小誤差法實(shí)現(xiàn)閾值自適應(yīng)的方法,并對(duì)經(jīng)過(guò)預(yù)處理后的圖像進(jìn)行邊緣檢測(cè)。最小誤差法根據(jù)圖像中灰度信息作為模式基礎(chǔ),將灰度視作獨(dú)立分布的隨機(jī)變量,其圖像的分割模式也服從一定的概率分布,從而獲得滿足最小誤差分類準(zhǔn)則的最佳閾值分割[28]。該算法主要思路為假設(shè)圖像中只存在前景和背景2種模式,根據(jù)前景和背景像素占圖像總像素的百分比求出前景和背景的均值和方差,再由最小分類誤差算法得到最小誤差目標(biāo)函數(shù)。本研究取使目標(biāo)函數(shù)值最小的閾值作為最佳閾值。
具體算法過(guò)程如下:
式中()為灰度圖像中各像素點(diǎn)出現(xiàn)的概率,%;為各灰度級(jí)的像素個(gè)數(shù);μ()為目標(biāo)均值;2()為目標(biāo)方差;P()為先驗(yàn)概率(=0代表背景,=1代表前景),%;為假設(shè)的背景與前景分割閾值。
2)根據(jù)最小分類誤差思想得到最小誤差目標(biāo)函數(shù)()如式(18)所示:
3)取使目標(biāo)函數(shù)最小的值為最佳閾值t,為灰度級(jí),如式(19)所示:
本算法受噪聲影響小,能夠應(yīng)對(duì)圖像中不同的噪聲,實(shí)現(xiàn)了閾值的自適應(yīng),節(jié)省了在病害檢測(cè)過(guò)程中人工設(shè)定閾值的時(shí)間,使此算法能夠更好的運(yùn)用到實(shí)際生產(chǎn)之中。
為保證獲取樣本數(shù)據(jù)的真實(shí)性,本次試驗(yàn)中圖像主要獲取途徑為數(shù)碼相機(jī)拍攝,拍攝相機(jī)使用索尼Alpha 7,配索尼FE 24~70 mmF2.8微距鏡頭。在石榴后放置純白背景板,無(wú)額外輔助光源,研究人員分別于不同角度不同光照條件下進(jìn)行采樣,共獲得石榴圖像607張,其中石榴病斑圖像283張(主要包括干腐病、黑斑病、日灼病和瘡痂?。?,健康石榴圖像324張,以作對(duì)比。通過(guò)預(yù)處理將樣本轉(zhuǎn)換為209×209的灰度圖像,分別使用Prewitt[26]、Canny[29]、Roberts[30]、Laplacian[31]等算子和本研究提出的改進(jìn)自適應(yīng)閾值Prewitt算子進(jìn)行了對(duì)比試驗(yàn)。計(jì)算機(jī)處理器為Intel(R) core(TM)i7-4720,內(nèi)存為8.00 G,頻率為2.60 GHz,系統(tǒng)版本為Windows 10增強(qiáng)版,以MATLAB2016B軟件編程實(shí)現(xiàn)石榴病斑邊緣的檢測(cè)。
由圖1所示,從樣本中選取1幀健康石榴樣本(圖1a)與2幀瘡痂病石榴樣本(圖1b)和黑腐?。▓D1c),進(jìn)行對(duì)比。圖1d~圖1f分別為對(duì)應(yīng)經(jīng)過(guò)圖像增強(qiáng)之后的石榴樣本。圖1a~圖1c石榴表皮紋路輪廓較為模糊,很難清晰分辨病斑的形態(tài)和邊緣。經(jīng)過(guò)高頻強(qiáng)調(diào)濾波后的石榴樣本圖像對(duì)比度增加,細(xì)節(jié)明顯,且病斑區(qū)域的顏色信息被增強(qiáng),圖像的整體視覺(jué)效果提升顯著,為后續(xù)病斑的邊緣檢測(cè)提高精確度。
為比較不同算法的分割效果,分別使用Canny[29]、Roberts[30]、Prewitt[26]、Laplacian[31]等算子和本研究改進(jìn)自適應(yīng)閾值的Prewitt算子檢測(cè)的圖像進(jìn)行檢測(cè),由圖2試驗(yàn)結(jié)果所示Roberts、Canny和Laplacian算子檢測(cè)到的石榴邊緣圖像邊緣連續(xù)性不強(qiáng),部分邊緣信息丟失,受噪聲影響較大,存在過(guò)分割的情況。
圖1 圖像增強(qiáng)對(duì)比
圖2 石榴圖像邊緣檢測(cè)結(jié)果
傳統(tǒng)Prewitt算子采用固定閾值,無(wú)法平滑噪聲干擾,由于閾值的不適應(yīng)產(chǎn)生許多偽邊緣,檢測(cè)效果不理想。由圖2~圖3所示,使用改進(jìn)后的自適應(yīng)閾值Prewitt算子分割,對(duì)于由健康石榴樣本(圖2a)檢測(cè)出的圖2f線條清晰,除果柄處外無(wú)病斑痕跡。對(duì)于由黑腐病石榴樣本(圖3a)檢測(cè)出的圖3f,病斑區(qū)域輪廓檢測(cè)完整,形狀特征凸顯,并很好的保留了石榴輪廓,得到的邊緣連續(xù)無(wú)間斷、無(wú)厚邊。
鑒于實(shí)際應(yīng)用環(huán)境中可能發(fā)生的天氣變化及拍攝元器件自身引起的噪聲,對(duì)圖像分別加入強(qiáng)度為0.1的Salt噪聲,強(qiáng)度為0.2的Gaussian噪聲對(duì)算法進(jìn)行抗噪聲性能測(cè)試。檢測(cè)結(jié)果如圖4~圖5所示,對(duì)于加入的Salt噪聲和Gaussian噪聲,Roberts算子和Canny算子均存在受噪聲影響造成邊緣誤判的情況。由Laplacian算子檢測(cè)出得輪廓較清晰,但也存在邊緣檢測(cè)不準(zhǔn)確和圖像噪聲大等問(wèn)題。傳統(tǒng)Prewitt算子采用給定的閾值進(jìn)行檢測(cè),對(duì)局部噪聲的抗噪能力弱,邊緣的判定易受噪聲影響,部分邊緣間斷,檢測(cè)出的邊緣較厚。本研究提出的自適應(yīng)閾值Prewitt算子抗噪聲干擾的能力顯著增強(qiáng),檢測(cè)得出的邊緣連續(xù)平滑,無(wú)厚邊,適應(yīng)性較強(qiáng),能夠完整反映出石榴病斑的真實(shí)形狀。
圖3 黑腐病石榴圖像邊緣檢測(cè)結(jié)果
圖4 抗Salt噪聲檢測(cè)結(jié)果
圖5 抗Gaussian噪聲檢測(cè)結(jié)果
在測(cè)試環(huán)節(jié),使用本研究算法對(duì)607張石榴樣本圖像進(jìn)行檢測(cè),并從正確率、均方誤差(Mean Squared Error, MSE)、峰值信噪比(Peak Signal to Noise Ratio, PSNR)和運(yùn)行時(shí)間4個(gè)方面,與不同算法進(jìn)行對(duì)比,其中正確率采用Meyer和Neto[32]研究的式(20)計(jì)算:
式中R為識(shí)別正確率,%;A為檢測(cè)病斑面積,cm2;A為實(shí)際病斑面積,cm2。
MSE是用于衡量圖像失真程度的指標(biāo)。通過(guò)逐個(gè)計(jì)算原始圖像與待評(píng)價(jià)圖像之間的像素點(diǎn)差,來(lái)確定圖像的失真值。所得值越低,代表圖像失真值越小。其定義如式(21)所示:
式中分別為圖像的長(zhǎng)和寬,cm;f為原始圖像;為待評(píng)價(jià)圖像;(,)為當(dāng)前像素坐標(biāo)。PSNR是一種基于誤差敏感的圖像質(zhì)量評(píng)價(jià)指標(biāo),其值越大,說(shuō)明圖像質(zhì)量越好。其定義如式(22)所示:
運(yùn)行時(shí)間的定義如式(23)所示:
式中為平均運(yùn)行時(shí)間,s;all為識(shí)別張待測(cè)圖像的總耗時(shí),s;表示算法運(yùn)行的次數(shù)。
如表1所示,基于自適應(yīng)閾值的Prewitt邊緣檢測(cè)算法與傳統(tǒng)固定閾值Prewitt邊緣檢測(cè)算法相比,正確率由原來(lái)的90.63%提高至98.24%,提升了7.61%。這是由于本研究算法使用的卷積掩膜,其中心權(quán)重服從高斯分布,并使用改進(jìn)的雙邊濾波和自適應(yīng)閾值,增加了對(duì)噪聲的抗性。相較于其它算法,本研究改進(jìn)算法識(shí)別正確率優(yōu)勢(shì)較為明顯。在MSE指標(biāo)處,Laplacian算子誤差最高,為8.17。造成其均方誤差高的原因主要為圖4~圖5中加入的噪聲其本質(zhì)為灰度值突變的像素,而相對(duì)于一階導(dǎo)數(shù),二階導(dǎo)數(shù)對(duì)相鄰像素灰度值變化的差異更明顯,因此對(duì)噪聲敏感度較大,并易對(duì)邊緣產(chǎn)生雙重響應(yīng)。本研究算法平均運(yùn)行時(shí)間最短,相較其它算法,平均耗時(shí)減少約0.1 s。由于互相垂直規(guī)則組合的梯度具有對(duì)稱性,在計(jì)算時(shí)只需對(duì)其中4個(gè)方向進(jìn)行卷積操作即可,從而減少計(jì)算時(shí)間。整體來(lái)講本研究提出的改進(jìn)自適應(yīng)閾值的Prewitt算子比其余傳統(tǒng)邊緣檢測(cè)算法具有更好的性能。
為進(jìn)一步驗(yàn)證本研究算法對(duì)石榴品質(zhì)區(qū)分的有效性,取樣本中34個(gè)健康石榴樣本和28個(gè)染病石榴樣本進(jìn)行測(cè)試,并觀察其比例系數(shù)分布與果實(shí)品質(zhì)之間的關(guān)系。比例系數(shù)P的定義如式(24)所示:
式中A為檢測(cè)病斑面積,cm2;A為石榴樣本面積,cm2。由圖6所示,健康石榴樣本與染病石榴樣本在比例系數(shù)上具有明顯的分界線,比例系數(shù)越高代表樣本病斑區(qū)域越大,果實(shí)品質(zhì)越低。通過(guò)試驗(yàn)結(jié)果得出染病石榴樣本的比例系數(shù)普遍高于0.35,而健康石榴樣本的比例系數(shù)均低于0.25,得出判別石榴是否染病的比例系數(shù)閾值約為0.3。因此,本研究算法能夠?qū)κ癫『颖九c非病害樣本進(jìn)行準(zhǔn)確區(qū)分。
表1 石榴病斑檢測(cè)結(jié)果
圖6 測(cè)試樣本比例系數(shù)分布
本研究針對(duì)石榴病斑檢測(cè)問(wèn)題,提出了一種基于改進(jìn)自適應(yīng)閾值Prewitt的石榴病斑檢測(cè)算法。主要結(jié)論如下:
1)改進(jìn)后的自適應(yīng)閾值Prewitt算子能夠在各種噪音干擾下對(duì)石榴圖像進(jìn)行有效檢測(cè),在本試驗(yàn)條件下獲得的邊緣優(yōu)于Canny、Roberts、Laplacian等邊緣檢測(cè)算子獲得的邊緣。對(duì)于真實(shí)環(huán)境下采集的石榴樣本圖像,平均檢測(cè)準(zhǔn)確率達(dá)到了98.24%,峰值信噪比(Peak Signal to Noise Ratio, PSNR)達(dá)到了43.72 dB。得到的圖像精準(zhǔn)度更高,圖像質(zhì)量更好。
2)本研究使用最小誤差法實(shí)現(xiàn)閾值自適應(yīng),采用每組梯度的二范數(shù)的最大值作為該像素點(diǎn)梯度,提升了運(yùn)行速度,與傳統(tǒng)Prewitt算子相比運(yùn)行速度提升了17.4%。
3)本研究算法提高了石榴病害檢測(cè)的自動(dòng)化程度,利用Prewitt算子的實(shí)用性,為石榴病害防治,石榴果實(shí)品質(zhì)檢測(cè)提供了一定理論依據(jù)及技術(shù)參考。
本研究是對(duì)單目標(biāo)進(jìn)行檢測(cè),對(duì)于多目標(biāo)的檢測(cè)可能會(huì)因?yàn)槲恢弥丿B而產(chǎn)生漏檢測(cè)的情況。針對(duì)此類情況可以通過(guò)改善檢測(cè)時(shí)的光照條件,獲取圖像深度信息等方法,需要后續(xù)進(jìn)一步優(yōu)化本研究算法。
[1] 陳利娜,敬丹,唐麗穎,等. 新中國(guó)果樹(shù)科學(xué)研究70年-石榴[J]. 果樹(shù)學(xué)報(bào),2019,36(10):1389-1398.
Chen Lina, Jing Dan, Tang Liying, et al. Fruit scientific research in China in the past 70 years: Pomegranate[J]. Journal of Fruit Science, 2019, 36(10): 1389-1398. (in Chinese with English abstract)
[2] 王含,王娟,張迎軍,等. 陜西石榴枝條干腐病的病原鑒定[J]. 植物病理學(xué)報(bào),2017,47(3):406-410.
Wang Han, Wang Juan, Zhang Yingjun, et al. Identification of the pathogen causing pomegranate branch rot in Shaanxi province[J]. Acta Phytopathologica Sinica, 2017, 47(3): 406-410. (in Chinese with English abstract)
[3] 袁紹杰,胡先奇. 石榴線蟲病害研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2014,31(1):140-142.
Yuan Shaojie, Hu Xianqi. Analysis on research status of pomegranate nematode disease[J]. Journal of Fruit Science, 2014, 31(1): 140-142. (in Chinese with English abstract)
[4] 宋曉賀,孫德茂,王明剛,等. 陜西石榴干腐病發(fā)生及病原菌鑒定[J]. 植物保護(hù)學(xué)報(bào),2011,38(1):93-94.
Song Xiaohe, Sun Demao, Wang Minggang. Occurrence of the pomegranate fruit rot and identification of its pathogen[J]. Journal of Plant Protection, 2011, 38(1): 93-94. (in Chinese with English abstract)
[5] 陳子文,李偉,張文強(qiáng),等. 基于自動(dòng)Hough變換累加閾值的蔬菜作物行提取方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):314-322.
Chen Ziwen, Li Wei, Zhang Wenqiang, et al. Vegetable crop row extraction method based on accumulation threshold of Hough transformation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 314-322. (in Chinese with English abstract)
[6] 李云伍,徐俊杰,劉得雄,等. 基于改進(jìn)空洞卷積神經(jīng)網(wǎng)絡(luò)的丘陵山區(qū)田間道路場(chǎng)景識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(7):150-159.
Li Yunwu, Xu Junjie, Liu Dexiong, et al. Field road scene recognition in hilly regions based on improved dilated convolutional networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 150-159. (in Chinese with English abstract)
[7] Tan Suiyan, Ma Xu, Ma Zhiji, et al. Segmentation and counting algorithm for touching hybrid rice grains[J]. Computers and Electronics in Agriculture, 2019, 162(30), 493-504.
[8] 蔡強(qiáng),劉亞奇,曹健,等. 一種基于自適應(yīng)標(biāo)記與區(qū)域間近鄰傳播聚類的分水嶺圖像分割算法[J]. 電子學(xué)報(bào),2017,45(8):1911-1918.
Cai Qiang, Liu Yaqi, Cao Jian, et al. A watershed image segmentation algorithm based on self-adaptive marking and interregional affinity propagation clustering[J]. Acta Electronica Sinica, 2017, 45(8): 1911-1918. (in Chinese with English abstract)
[9] 丁永軍,張晶晶,Lee W S,等. 小波變換與分水嶺算法融合的番茄冠層葉片圖像分割[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):32-37.
Ding Yongjun, Zhang Jingjing, Lee W S, et al. Segmentation of tomato leaves from canopy images by combination of wavelet transform and watershed algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 32-37. (in Chinese with English abstract)
[10] Tao Yongting, Zhou Jun. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking[J]. Computers and Electronics in Agriculture, 2017, 142(9): 388-396.
[11] 馬浚誠(chéng),溫皓杰,李鑫星,等. 基于圖像處理的溫室黃瓜霜霉病診斷系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(2):195-202.
Ma Juncheng, Wen Haojie, Li Xinxing, et al. Downy mildew diagnosis system for greenhouse cucumbers based on image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 195-202. (in Chinese with English abstract)
[12] Wang Fengyun, Zheng Jiye, Tian Xincheng, et al. An automatic sorting system for fresh white button mushrooms based on image processing[J]. Computers and Electronics in Agriculture, 2018, 151(6): 416-425.
[13] 王震,褚桂坤,張宏建,等. 基于無(wú)人機(jī)可見(jiàn)光圖像Haar-like特征的水稻病害白穂識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):73-82.
Wang Zhen, Chu Guikun, Zhang Hongjian, et al. Identification of diseased empty rice panicles based on Haar-like feature of UAV optical image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 73-82. (in Chinese with English abstract)
[14] 苗玉彬,王浙明,劉秦. 水果輪廓特征提取的Zernike矩分水嶺分割方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):158-163.
Miao Yubin, Wang Zheming, Liu Qin. Application of Zernike-moment-based watershed segmentation on fruit features extraction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 158-163. (in Chinese with English abstract)
[15] Wang Jianlun, He Jianlei, Han Yu, et al. An adaptive thresholding algorithm of field leaf image[J]. Computers and Electronics in Agriculture, 2013, 96(6): 23-39.
[16] Maciel Z, Eliezer F, Jacob S. A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images[J]. Pattern Recognition, 2017, 64(11): 92-104.
[17] 黃穎,李婉佳. Prewitt邊緣檢測(cè)與鉆石編碼結(jié)合的隱寫算法[J]. 計(jì)算機(jī)應(yīng)用研究,2018,35(4):1187-1190,1196.
Huang Ying, Li Wanjia. Steganography algorithm based on Prewitt edge detection and diamond encoding[J]. Application Research of Computers, 2018, 35(4):1187-1190, 1196. (in Chinese with English abstract)
[18] Ye Hanmin, Shen Bin, Yan Shili. Prewitt edge detection based on BM3D image denoising[C]//2018 IEEE 3rdAdvanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2018: 1593-1597.
[19] O’Grady M J, Langton D, O'Hare G M P. Edge computing: A tractable model for smart agriculture?[J]. Artificial Intelligence in Agriculture, 2019, 3(9): 42-51.
[20] Antonio R M, José I R S. Application of gradient-based edge detectors to determine vanishing points in monoscopic images: Comparative study[J]. Image and Vision Computing, 2015, 43(11): 1-15.
[21] Chaple G N, Daruwala R D, Gofane M S. Comparisons of Robert, Prewitt, Sobel operator based edge detection methods for real time uses on FPGA[C]//2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India, 2015: 1-4.
[22] 鄧小煉,杜玉琪,王長(zhǎng)耀,等. 像素自相關(guān)矩陣的閾值自適應(yīng)角點(diǎn)檢測(cè)算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(18):134-140.
Deng Xiaolian, Du Yuqi, Wang Changyao, et al. An adaptive threshold corner detection algorithm based on auto-correlation matrix of image pixel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 134-140. (in Chinese with English abstract)
[23] Sengupta S, Mittal N, Modi M. Improved skin lesion edge detection method using Ant Colony Optimization[J]. Skin Research & Technology, 2019, 25(6): 1-11.
[24] Dwivedi N, Srivastava K, Arya N. Sanskrit word recognition using Prewitt's operator and support vector classification[C]//International Conference on Emerging Trends in Computing. IEEE, Dehradun, India, 2013: 265-269.
[25] 張晗,錢育蓉,王躍飛,等. 基于圖像邊緣增強(qiáng)與弱化的邊緣檢測(cè)[J]. 計(jì)算機(jī)工程與設(shè)計(jì),2019,40(11):3106-3110.
Zhang Han, Qian Yurong, Wang Yuefei, et al. Edge detection based on image edge enhancement and weakening[J]. Computer Engineering and Design, 2019, 40(11): 3106-3110. (in Chinese with English abstract)
[26] 徐欣,劉寶鍾. 基于改進(jìn)Prewitt算子的農(nóng)業(yè)圖像去噪算法[J]. 江蘇農(nóng)業(yè)科學(xué),2016,44(1):406-408.
Xu Xin, Liu Baozhong. Agricultural image denoising algorithm based on improved Prewitt operator[J]. Jiangsu Agricultural Sciences, 2016, 44(1): 406-408. (in Chinese with English abstract)
[27] 劉天時(shí),魏雨,李湘眷. 自適應(yīng)閾值的Prewitt地質(zhì)圖像邊緣檢測(cè)算法[J]. 小型微型計(jì)算機(jī)系統(tǒng),2016,37(5):1062-1065.
Liu Tianshi, Wei Yu, Li Xiangjuan. Improved edge detection algorithm of geological image based on Prewitt operator with adaptive threshold[J]. Journal of Chinese Computer Systems, 2016, 37(5): 1062-1065. (in Chinese with English abstract)
[28] 龍建武,申鉉京,陳海鵬. 自適應(yīng)最小誤差閾值分割算法[J]. 自動(dòng)化學(xué)報(bào),2012,38(7):1134-1144.
Long Jianwu, Shen Xuanjing, Chen Haipeng. Adaptive minimum error thresholding algorithm[J]. Acta Automatica Sinica, 2012, 38(7): 1134-1144. (in Chinese with English abstract)
[29] 張超,王志浩,楊建宇,等. 基于Canny算子的農(nóng)田線狀工程地物自動(dòng)提取方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):270-275.
Zhang Chao, Wang Zhihao, Yang Jianyu, et al. Farmland linear project feature auto-extraction method based on Canny algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 270-275. (in Chinese with English abstract)
[30] 李樹(shù)強(qiáng). 基于Roberts算子的牡丹紅斑病葉病斑邊緣檢測(cè)方法比較[J]. 經(jīng)濟(jì)林研究,2014,32(1):144-149.
Li Shuqiang. Comparison of edge detection methods of red spots in infected peony base on improved Roberts algorithm[J]. Nonwood Forest Research, 2014, 32(1): 144-149. (in Chinese with English abstract)
[31] 代文征,楊勇. 基于改進(jìn)高斯:拉普拉斯算子的噪聲圖像邊緣檢測(cè)方法[J]. 計(jì)算機(jī)應(yīng)用研究,2019,36(8):2544-2547,2555.
Dai Wenzheng, Yang Yong. Noise image edge detection based on improved Gauss-Laplace operator[J]. Application Research of Computers, 2019, 36(8): 2544-2547, 2555. (in Chinese with English abstract)
[32] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2): 282-293.
Algorithm for detecting pomegranate disease spots based on Prewitt operator with adaptive threshold
Ju Zhiyong, Xue Yongjie, Zhang Wenxin, Zhai Chunyu
(School of Optical-Electrical and Computer Engineering, University of Shanghai for Sciences and Technology, Shanghai 200093, China)
Pomegranates are one of the economic fruits in China. The timely detection of pomegranate diseases and the corresponding preventive measures are important to increase crop yields and reduce economic losses. To tackle the issues that traditional edge detection operators usually resulted in low accuracy of the detection of pomegranate diseases and its contour, low anti-noise capability, and created false edges, this study presented an improved Prewitt operator with an adaptive threshold. Firstly, in the image pre-processing stage, the pending image was enhanced by high-frequency emphasize filter, and the high-frequency component, which represented to the details of the pomegranate sample in the image, was increased by the filter. On the contrary, the low-frequency component, which represented to the background of the pomegranate sample, was attenuated to facilitate the following image processing. Since the most original images contained the Gaussian noise, bilateral filtering was used to process the noise present in the image. The weighted average of the brightness values of adjacent pixels was used to represent the intensity of a pixel. The weighted average method was used based on Gaussian distribution. The weight calculation took into account both the Euclidean distance between the pixels and the radiation difference in the pixel range domain to better maintain edge feature information. Secondly, a fifth-order convolutional mask was proposed. The weights of the elements in the mask were set according to the properties of the Gaussian noise probability distribution to reduce the effect of noise on the algorithm. The weight of the central element of the convolutional mask was increased so that the edge information of the image had higher contrast. In terms of gradient calculation, eight direction templates were used to perform the convolutional operation of the image, then the gradient values of each direction were calculated. After that, the corresponding gradient values were obtained, and the gradient values of eight directions were combined into eight groups according to the rule of orthogonality. As a result, there was 90 degrees difference between each group of gradients. Then calculated the L2 norm of each set of gradients, and used the largest value of L2 norm as the gradient of the current pixel. It was shown that it was only necessary to calculate the convolutions in half the direction due to the convolutional results in opposite directions were inverse to each other. The gradients of the rest of the direction could be obtained by its symmetric property. The adaptive threshold was implemented through the minimum error method to decrease the probability of false detection and prune irrelevant details. The mean and variance of the target and background were calculated, meanwhile, the minimum error objective function was obtained according to the principle of the minimum error classification. The value that minimizes the objective function was taken as the optimal threshold. To demonstrate the effectiveness of the method in this paper, 607 test images were manually collected as samples in the natural environment from different angles and different illumination conditions. To further reduce the interference of light changes and suppress background noise, the pending images were converted into grayscale images. Therefore, the algorithm was tested using the converted grayscale images. The experimental results showed that the algorithm proposed in this study achieved a better definition at the edge of the lesion. Compared with the traditional edge detection operator, it achieved a higher recognition accuracy and lower running time. The peak signal to noise ratio of the obtained image was higher, and the obtained edge was complete and accurate. The algorithm proposed in this paper could quickly and accurately detect the area of pomegranate lesions, providing a fundamental reference for the future prevention of pomegranate diseases.
fruit; algorithms; diseases; edge detection; image enhancement; minimum error method; bilateral filtering
巨志勇,薛永杰,張文馨,等. 自適應(yīng)閾值Prewitt的石榴病斑檢測(cè)算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):135-142.doi:10.11975/j.issn.1002-6819.2020.08.017 http://www.tcsae.org
Ju Zhiyong, Xue Yongjie, Zhang Wenxin, et al. Algorithm for detecting pomegranate disease spots based on Prewitt operator with adaptive threshold[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 135-142. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.017 http://www.tcsae.org
2019-11-21
2020-03-26
國(guó)家自然科學(xué)基金資助項(xiàng)目(81101116)
巨志勇,博士,講師,主要從事圖像處理與模式識(shí)別研究。Email:juzyusst@163.com
10.11975/j.issn.1002-6819.2020.08.017
TP391.4
A
1002-6819(2020)-08-0135-08