1.在等差數(shù)列{an}中,若an+an+2=4n+6(n∈N*),則該數(shù)列的通項(xiàng)公式an=________.
2.在等差數(shù)列{an}中,已知a3=10,a9=28,則a12=_______________.
3.在等比數(shù)列{an}中,a1+a2+a3=-3,a1a2a3=8,則a4=________.
4.在等比數(shù)列{an}中,a1>0,a2a4+2a3a5+a4a6=25,則a3+a5=________.
5.已知等差數(shù)列{an}中,S4=2,S8=6,則S12=________.
6.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的前n項(xiàng)和等于________.
7.設(shè)a>0,若且數(shù)列{an}是遞增數(shù)列,則實(shí)數(shù)a的取值范圍為________.
8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,S19>0,S20<0,且,則在數(shù)列{bn}的前19項(xiàng)中,最大的是第________項(xiàng).
9.記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a1=-7,S3=-15.
(1)求{an}的通項(xiàng)公式;
(2)求Sn,并求Sn的最小值.
10.設(shè){an}是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足a22+a23=a24+a25,S7=7,
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)試求所有的正整數(shù)m,使得為數(shù)列{an}中的項(xiàng).
11.數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1,Sn)在直線2x+y-2=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
12.正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:
(1)求數(shù)列{an}的通項(xiàng)公式an;
13.已知數(shù)列{an}和{bn}滿足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bnan-4.
(1)證明:{an+bn}是等比數(shù)列,{anbn}是等差數(shù)列;
(2)求{an}和{bn}的通項(xiàng)公式.
新世紀(jì)智能(數(shù)學(xué)備考)2020年3期