蘇惠 李樹德 尹鳳瓊 楊建宇
摘要:糖尿病是臨床上影響人類健康的主要疾病之一,主要包括1型和2型糖尿病,其中胰島素抵抗誘導的2型糖尿病占主導。在糖尿病的進展過程中往往伴隨腎臟、心臟、肝臟、神經(jīng)系統(tǒng)等組織器官的損傷。因此,降低血糖防止并發(fā)癥的發(fā)生和發(fā)展是治療糖尿病的重要手段。人參皂苷Rg1作為中國傳統(tǒng)中藥材人參和三七中的主要活性成分,具有抗炎癥、抗氧化、抗凋亡、脂質(zhì)調(diào)節(jié)和降低血糖等作用,目前,已經(jīng)有文獻報道,人參皂苷Rg1對糖尿病導致的心肌病、腎病、脂肪肝等具有一定的緩解作用,本文就人參皂苷Rg1在糖尿病并發(fā)癥中的作用進行綜述,為進一步促進人參和三七及其提取物的開發(fā)和利用提供科學的理論依據(jù)。
關(guān)鍵詞:人參皂苷Rg1;糖尿病;并發(fā)癥
中圖分類號:R587文獻標志碼:A文章編號:1007-2349(2020)04-0089-05
Research Progress of Ginsenoside Rg1 in Relieving Diabetic Complications
SU Hui1,LI Shu-de1,YIN Feng-qiong2,YANG Jian-yu1
(1. School of Basic Medicine,Kunming Medical University,Kunming 650500,China;2. The Second Affiliated Hospital of Kunming Medical University,Kunming 650500,China)
【Abstract】Diabetes is one of the main clinical diseases that affect human health,mainly including diabetes type 1 and type 2,of which type 2 diabetes induced by insulin resistance is dominant. In the progress of diabetes,patients are often accompanied by damage to their kidneys,heart,liver,nervous system and other tissues and organs. Therefore,the reduction of blood sugar to prevent the occurrence and development of complications is an important means of treating diabetes. Ginsenoside Rg1,as the main active ingredient of Ginseng and Panax notoginseng in traditional Chinese herbal medicine,has the effects of anti-inflammatory,anti-oxidation,anti-apoptosis,lipid regulation and blood sugar lowering. At present there have been reports in the literature that Ginsenoside Rg1 has a certain relief effect on cardiomyopathy,nephropathy and fatty liver resulting from diabetes. This paper reviews the role of Ginsenoside Rg1 in diabetic complications and provides a scientific theory for the further development and utilization of Ginseng and Panax notoginseng.
【Key words】Ginsenoside Rg1,diabetes,complications
糖尿?。―iabetic mellitus,DM)是繼腫瘤和心血管疾病之后第三大威脅人類健康的慢性疾病,其發(fā)病率在全球范圍內(nèi)持續(xù)升高,2017年糖尿病患者已達到4.51億左右,預計到2045年其發(fā)病率將增加到6.93億[1]。在糖尿病中,主要包括1型和2型糖尿病,其中2型糖尿病占比全球人口的6.28%[2]。糖尿病晚期伴隨的心臟、腎臟、中樞神經(jīng)和外周神經(jīng)等重要臟器的損傷成為主要的并發(fā)癥[3],這些并發(fā)癥往往成為該疾病死亡的主要原因之一。對糖尿病及并發(fā)癥發(fā)生和發(fā)展的機制尚不完全清楚,針對其相關(guān)的治療有待進一步探討。
人參和三七是中國傳統(tǒng)中藥材,人參皂苷Rg1(Ginsenoside Rg1)作為其有效單體活性成分之一,具有廣泛的藥理學活性[4]。研究已經(jīng)證實,人參皂苷Rg1在抗凋亡、抗炎癥、抗氧化、抗抑郁、脂質(zhì)調(diào)節(jié)、抗衰老等[5~9]方面發(fā)揮著廣泛的作用。同時在糖尿病及其并發(fā)癥中,人參皂苷Rg1具有降血糖、減輕胰島素抵抗的特點[6]。對于其并發(fā)癥,也有部分的研究報道,本文針對人參皂苷Rg1與糖尿病并發(fā)癥的研究進展進行如下的綜述。
1人參皂苷Rg1對糖尿病心肌病的作用
糖尿病心肌?。―iabetic cardiomyopathy,DCM)以心肌代謝紊亂和心臟微血管病變?yōu)橹饕卣?,引起心肌的結(jié)構(gòu)和功能異常,最終導致心衰,DCM是糖尿病患者主要的死亡原因之一[10]。Yu等[11]通過建立鏈脲佐菌素(Streptozotocin,STZ)誘導的2型糖尿病動物的模型發(fā)現(xiàn),人參皂苷Rg1可以通過抑制內(nèi)質(zhì)網(wǎng)應激誘導的caspase12活性,降低2型糖尿病大鼠心肌細胞的凋亡,減輕心肌膠原蛋白的合成從而改善心肌功能。糖尿病心肌組織NF-κB(Nuclear factor kappa-B,NF-κB)被阻斷時,氧化應激和炎癥反應減輕,2型糖尿病小鼠心功能不全得到緩解[12];人參皂苷Rg1可以降低NF-κB的表達和炎性小體的生成,減輕心肌組織的氧化應激和細胞凋亡[13]。另外,Qin等[14]闡明人參皂苷Rg1可通過激活AMP依賴的蛋白激酶(Adenosine 5‘-monophosphate(AMP)-activated protein kinase,AMPK)能量代謝途徑的激活,促進線粒體生物的合成,抑制心肌細胞的凋亡。Yuan等[15]在I/R模型中發(fā)現(xiàn),人參皂苷Rg1通過上調(diào)低氧誘導因子-1α(Hypoxia-inducible factor-1α,HIF-1α)的表達,激活ERK信號通路,減少心肌損傷。因此,人參皂苷Rg1通過抑制糖尿病心肌細胞的氧化應激、炎癥、凋亡和促進能量代謝,可能對糖尿病心肌病產(chǎn)生一定的保護作用。
2人參皂苷Rg1對糖尿病腎病的作用
糖尿病腎?。―iabetic nephropathy,DN),是一種常見的累及微血管病變的糖尿病并發(fā)癥,是糖尿病致死的主要原因,是導致終末期腎病的主要原因,以高血糖、氧化應激、炎癥和腎功能損傷為主要特點[16]。目前的研究認為,長期的高血糖刺激可導致腎臟微血管的功能異常。抑制氧化應激和TGF-β/Smads信號轉(zhuǎn)導有望成為治療DN的有效靶點[17];在DN中,醛固酮含量增多引起氧化應激因子釋放,造成足細胞的損傷。臨床上針對發(fā)病的機制,常常通過控制血糖、脂質(zhì)、血壓和預防肥胖,采用RAS阻滯劑來減緩糖尿病的腎臟損傷[17,18]。當然,人參皂苷Rg1對DN的干預作用也有部分的研究報道,在糖尿病動物模型的研究中,人參皂苷Rg1能夠有效緩解醛固酮誘導的氧化應激的作用[19],降低活性氧(Reactive oxygen species,ROS)的代謝產(chǎn)物,來預防大鼠膜性腎病[20]。Ma等[21]通過建立糖尿病動物模型中發(fā)現(xiàn),人參皂苷Rg1降低血清肌酸、C反應蛋白和TNF-α和24小時尿蛋白等指標,抑制腎臟組織的TGF-β1的表達,改善腎臟的炎癥反應和病理變化。人參皂苷Rg1通過抑制AMPK/mTOR信號通路緩解糖尿病腎病中醛固酮增加引起的氧化應激和異常的自噬,保護腎臟功能[22]。這些研究結(jié)果反應人參皂苷Rg1對糖尿病腎病的腎臟功能具有保護作用。
3人參皂苷Rg1對糖尿病脂肪肝的作用
在肥胖人群中,往往伴有糖類和脂質(zhì)代謝的異常,可誘導胰島素抵抗導致糖尿病的發(fā)生,同時糖尿病患者的脂質(zhì)代謝異常會加重肝臟的脂類累積,形成糖尿病脂肪肝(Diabetic fatty liver,DFI)[23,24]。人參皂苷Rg1對肥胖和糖尿病導致的脂類代謝異常已有報道。Liu等[25]通過建立高脂高糖飼料誘導的小鼠肥胖動物模型發(fā)現(xiàn),人參皂苷Rg1可降低小鼠體重、總膽固醇、總甘油三酯水平,誘導AMPK活化,抑制脂肪生成,減輕脂肪的脂質(zhì)沉積,以抗肥胖的方式起到保護肝臟作用。人參皂苷Rg1通過抑制Toll樣受體信號通路減緩脂多糖/D-半乳糖誘導小鼠的急性肝損傷,發(fā)揮其肝臟保護作用[26]。在糖尿病動物模型中,人參皂苷Rg1改善大鼠天冬氨酸轉(zhuǎn)氨酶和丙氨酸轉(zhuǎn)氨酶指標,降低血脂水平,對肝臟起到保護作用[24]。人參皂苷Rg1通過減少磷酸烯醇式丙酮酸激酶和葡萄糖6磷酸酶的轉(zhuǎn)錄,降低磷酸化AKT的激活,來降低肝葡萄糖的產(chǎn)生[27],從而減少肝葡萄糖轉(zhuǎn)變?yōu)橹?,避免脂質(zhì)在肝臟的進一步積累。這種作用闡明人參皂苷Rg1對肥胖和糖尿病導致的肝臟脂質(zhì)沉積具有較好的緩解作用。
4人參皂苷Rg1糖尿病視網(wǎng)膜病變的作用
糖尿病視網(wǎng)膜病變(Diabetic Retinopathy,DR)主要表現(xiàn)為糖尿病性微血管病變,是一種具有特異性眼底病變,是1型糖尿病和2型糖尿病的較為嚴重并發(fā)癥,也是臨床上不可逆失明的主要原因之一[28]。糖尿病所導致的高血糖狀態(tài)可引起視網(wǎng)膜微血管改變,如血管內(nèi)細胞的丟失和外滲[29]。視網(wǎng)膜內(nèi)皮細胞中葡萄糖循環(huán)水平增加,生化狀態(tài)的異常亦可加重DR[30]。人參皂苷Rg1對預防DR也有相關(guān)的研究和報道,Ying等[31]發(fā)現(xiàn),在db/db糖尿病視網(wǎng)膜病變小鼠模型中,人參皂苷Rg1干預可以激活DR早期的IRS-1/Akt/GSK3β信號通路,阻斷tau蛋白誘導的視網(wǎng)膜神經(jīng)節(jié)細胞突觸的神經(jīng)變性,改善視覺功能。人參皂苷Rg1通過上調(diào)miR-26a、抑制ERK和Wnt/β-ca-tenin通路,保護DR免受炎癥損傷[32]。人參皂苷Rg1能夠抑制糖尿病視網(wǎng)膜病變大鼠的血清胱抑素C和趨化素的表達,從而對糖尿病視網(wǎng)膜病變具有一定的防治作用[33]。在增生性糖尿病視網(wǎng)膜病變中,人參皂苷Rg1具有抑制高糖以及金屬基質(zhì)蛋白酶的表達,調(diào)節(jié)RP11-982M15.8/miR-2113/zeb1信號通路,對增生性糖尿病視網(wǎng)膜病變具有緩解作用[34]。以上研究揭示了人參皂苷Rg1對DR突觸神經(jīng)病變疾病中的神經(jīng)保護干預策略的潛在治療意義和價值。
5人參皂苷Rg1對糖尿病性腦梗塞的作用
糖尿病性腦梗塞(Diabetic cerebral infarction,DCI),是最常見的腦血管疾病之一,具有高發(fā)病率、高死亡率、預后差的特點[35]。1型糖尿病腦卒中的發(fā)病率是2型糖尿病的4倍,高血糖持續(xù)刺激可能導致缺血性損傷的嚴重程度加劇,從而導致更大范圍的腦梗塞。目前,對于合并糖尿病的腦血栓患者通過靜脈溶栓技術(shù)的臨床治療欠佳,可能與患者長期血糖水平增高,造成腦血管和神經(jīng)組織的損傷相關(guān)[36]。研究表明,人參皂苷Rg1具有中樞神經(jīng)保護的作用。人參皂苷Rg1對興奮性神經(jīng)遞質(zhì)的急性過度刺激以及神經(jīng)毒素的損傷具有保護作用,可能是治療神經(jīng)退行性疾病的潛在藥物[37]。在體內(nèi)和體外的實驗研究中發(fā)現(xiàn),人參皂苷Rg1對Wnt/β-catenin信號通路標記的蛋白質(zhì)和mRNA表達水平具有調(diào)控作用,并且發(fā)揮保護神經(jīng)細胞的作用[38]。人參皂苷Rg1可通過納米材料吸附透過血腦屏障,減小大鼠糖尿病腦梗塞的面積,改善大鼠的腦功能[39]。通過體內(nèi)和體外實驗研究證實,人參皂苷Rg1通過抑制miR-144激活Nrf2/ARE信號通路,保護神經(jīng)元免受缺血/再灌注誘導的損傷[40]。人參皂苷Rg1通過抑制凋亡,激活eNOS,增加VEGF的表達,可改善糖尿病小鼠缺血的血管生成,加快血管的生成和側(cè)支循環(huán)的建立[41],可作為治療動脈疾病的新型輔助藥物。因此,人參皂苷Rg1通過減輕有害神經(jīng)遞質(zhì)的刺激,加快血管生成,對糖尿病腦梗塞的神經(jīng)細胞產(chǎn)生一定的保護作用。
當然,糖尿病的并發(fā)癥還涉及到糖尿病周圍神經(jīng)的病變,包括皮膚損傷和糖尿病足等變化。人參皂苷Rg1能夠提高內(nèi)皮細胞的血管生成,促進糖尿病足潰瘍的傷口閉合[42]。在糖尿病周圍神經(jīng)病變引起的相關(guān)疾病中具有一定的保護作用。
6總結(jié)與展望
糖尿病及并發(fā)癥已被人們廣泛的關(guān)注與熟知。面對糖尿病及并發(fā)癥對人類健康的威脅,尋求一種療效好,副作用小的藥物將成為藥物研發(fā)的主要思路。根據(jù)人參皂苷Rg1所特有的藥理作用可能對治療糖尿病及并發(fā)癥具有良好的緩解作用,結(jié)合臨床上更多的研究數(shù)據(jù),將為臨床上采用人參皂苷Rg1治療糖尿病及并發(fā)癥提供科學的理論依據(jù),開拓新的應用領域,大力發(fā)展我國綠色產(chǎn)業(yè),也將不斷促進科研和臨床對人參或三七的深度開發(fā)和利用。
參考文獻:
[1]N.H.CHO,J.E.SHAW,S.KARURANGA,et al.IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045[J].Diabetes research and clinical practice,2018,138,271-281.
[2]M.A.B.KHAN,M.J.HASHIM,J.K.KING,et al. Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends[J].Journal of epidemiology and global health,2020,10(1):107-111.
[3]P.M.HERATH,N.CHERBUIN,R.ERAMUDUGOLLA,et al.The Effect of Diabetes Medication on Cognitive Function:Evidence from the PATH Through Life Study[J].J BioMed Research International,2016,2016(4):1-7.
[4]Y.J.KIM,J.N.JEON,M.G.JANG,et al.Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer[J].J Journal of Ginseng Research,2014,38(1):66-72.
[5]X.FA,J.TAO,Y.ZHOU,et al.Investigations on the effects of ginsenoside-Rg1 on glucose uptake and metabolism in insulin resistant HepG2 cells[J].J European Journal of Pharmacology,2019,84(3):277-284.
[6]G.ZU,J.GUO,N.CHE,et al.Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/[AKI^]2-catenin pathway[J].J Sci Rep,2016,6(38480):1-12.
[7]C.FAN,Q.SONG,P.WANG,et al.Neuroprotective Effects of Ginsenoside-Rg1 Against Depression-Like Behaviors via Suppressing Glial Activation,Synaptic Deficits,and Neuronal Apoptosis in Rats[J].Front Immunol,2018,9,2889.
[8]X.YASHU,Y.CHENG,Z.SHUJUN,et al.Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation,endoplasmic reticulum stress,and inflammasome activation.[J].J Biological & pharmaceutical bulletin,2018,41(11):1638-1644.
[9]S.JIAZHENG,Z.LIHENG,Z.JING,et al.Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose.[J].J International immunopharmacology,2018,58,94-102.
[10]劉雅玲,周辰,潘曉東,et al.胰島素對2型糖尿病心肌病大鼠的心肌保護機制[J].J 實用老年醫(yī)學,2017,31(8):731-734.
[11]H.YU,J.ZHEN,Y.YANG,et al.Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model[J].J Journal of Cellular Molecular Medicine,2016,20(4):623-631.
[12]H.J.MAIER,T.G.SCHIPS,W.ASTRID,et al. Cardiomyocyte-specific IκB kinase(IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure[J].J Proc Natl Acad Sci U S A,2012,109(29):11794-11799.
[13]H.T.YU,J.ZHEN,B.PANG,et al.人參皂苷Rg1 對糖尿病大鼠心肌氧化應激及細胞凋亡的影響[J].浙江大學學報,2015,16(5):344-354.
[14]Q.QIN,N.LIN,H.HUANG,et al.Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J].Diabetes Metab Syndr Obes,2019,12,1091-1103.
[15]C.YUAN,H.WANG,Z.YUAN.Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1 α-ERK signalling pathways in a diabetic rat model[J].J Die Pharmazie-An International Journal of Pharmaceutical Sciences,2019,74(3):157-162.
[16]李莎,胡明亮.人參皂苷Rg1對糖尿病腎病大鼠腎保護作用的分子機制探討[J].J 中國中醫(yī)藥科技,2018,25(2):208-211.
[17]D.NA,X.ZHIPING,G.MINGYUE,et al.Combination of Ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-β1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy.[J].J Drug design,development and therapy,2018,(12):3517-3524.
[18]C.CHEN,C.WANG,C.HU,et al.Normoalbuminuric diabetic kidney disease[J].J Frontiers of Medicine,2017,11(3):310-318.
[19]N.MAO,Y.CHENG,X.L.SHI,et al.Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro[J].Acta Pharmacol Sin,2014,35(4):513-522.
[20]Y.LI,F(xiàn).WANG,Y.LUO.Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1-independent autophagy in mice[J].J Journal of Surgical Research,2017,(207):181-189.
[21]X.MA,X.XIE,C.ZUO.Effects of Ginsenoside Rg1 on Streptozocin-Induced Diabetic Nephropathy in Rats[J].J Journal of Biomedical Engineering,2010,27(2):342-347.
[22]L.WANG,N.MAO,R.Z.TAN,et al.Ginsenoside Rg1 reduces aldosterone-induced autophagy via the AMPK/mTOR pathway in NRK-52E cells[J].International journal of molecular medicine,2015,36(2):518-526.
[23]R.E.JUNG.Nonalcoholic Fatty Liver Disease and Diabetes:An Epidemiological Perspective.[J].J Endocrinology and metabolism(Seoul,Korea),2019,34(3):226-233.
[24]W.TIAN,L.CHEN,L.ZHANG,et al.Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats[J].Genet Mol Res,2017,16(1):gmr16019463.
[25]H.LIU,J.WANG,M.LIU,et al.Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK[J].J Nutrients,2018,10(7):830.
[26]C.NING,X.GAO,C.WANG,et al.Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice[J].Environmental toxicology,2018,33(10):1050-1060.
[27]Q.LIU,Z.FEI-GE,Z.WEN-SONG,et al.Ginsenoside Rg1 Inhibits Glucagon-Induced Hepatic Gluconeogenesis through Akt-FoxO1 Interaction[J].J Science Foundation in China,2017,7(4):4001-4012.
[28]D.E.J,S.J.K,S.A.W.Diabetic retinopathy:current understanding,mechanisms,and treatment strategies.[J].J JCI insight,2017,2(14):e93751.
[29]A.CHRONOPOULOS,K.TRUDEAU,S.ROY,et al.High Glucose-induced Altered Basement Membrane Composition and Structure Increases Trans-endothelial Permeability:Implications for Diabetic Retinopathy[J].J Current Eye Research,2011,36(8):747-753.
[30]T.F.TZENG,S.S.LIOU,Y.C.TZENG,et al.Zerumbone,a Phytochemical of Subtropical Ginger,Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats[J].Nutrients,2016,8(8):449.
[31]Y.YING,Y.L.ZHANG,C.J.MA,et al.Neuroprotective Effects of Ginsenoside Rg1 against Hyperphosphorylated Tau-Induced Diabetic Retinal Neurodegeneration via Activation of IRS-1/Akt/GSK3beta Signaling[J].Journal of agricultural and food chemistry,2019,67(30):8348-8360.
[32]Q.SHI,X.CHEN,G.SUN,et al.Ginsenoside Rg1 protects human retinal pigment epithelial ARPE-19 cells from toxicity of high glucose by up-regulation of miR-26a[J].Life sciences,2019,221,152-158.
[33]劉松.人參皂苷對糖尿病視網(wǎng)膜病變大鼠血清中胱抑素C及Chemerin的影響[J].J 中醫(yī)臨床研究,2018,10(4):6-8.
[34]L.P.XUE,X.L.FU,M.HU,et al.Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway[J].Biochemical and biophysical research communications,2018,501(4):827-832.
[35]W.ZHANG,X.ZHANG.Correlation Between the Youth Cerebral Infarction in Different TOAST Classifications and High Homocysteine[J].J Cell Biochemistry Biophysics,2015,71(1):39-42.
[36]曾培燦,肖穎秀,曾憲杰,et al.前列地爾聯(lián)合阿替普酶治療急性腦梗合并糖尿病療效觀察[J].J 西南國防醫(yī)藥,2018,28(12):1151-1153.
[37]S.Y.NAH,D.H.KIM,H.RHIM.Ginsenosides:are any of them candidates for drugs acting on the central nervous system[J].J Cns Drug Reviews,2010,13(4):381-404.
[38]T.ZHOU,G.ZU,X.ZHANG,et al.Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinsons disease[J].J Neuropharmacology,2016,101,480-489.
[39]J.SHEN,Z.ZHAO,W.SHANG,et al.Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction[J].International journal of nanomedicine,2017,12,6477-6486.
[40]S.F.CHU,Z.ZHANG,X.ZHOU,et al.Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway[J].Acta Pharmacol Sin,2019,40(1):13-25.
[41]N.YANG,P.CHEN,Z.TAO,et al.Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice[J].Acta biochimica et biophysica Sinica,2012,44(12):999-1005.
[42]H.A.CAI,L.HUANG,L.J.ZHENG,et al.Ginsenoside(Rg-1)promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis[J].Life sciences,2019,233,116525.
(收稿日期:2020-03-02)
基金項目:國家自然科學基金地區(qū)基金(81360128);云南省科技廳-昆明醫(yī)科大學項目聯(lián)合專項(2017FE468-206);云南省科技廳-昆明醫(yī)科大學項目聯(lián)合專項(2017FE467(-025))
作者簡介:蘇惠(1990-),女,在讀碩士研究生,研究方向:藥理學研究。
通信作者:楊建宇,E-mail:916461717@qq.com