• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      無(wú)網(wǎng)格法求解分段連續(xù)型延遲偏微分方程

      2020-08-31 14:50鐘霖馬淑芳萊蒙
      關(guān)鍵詞:網(wǎng)格法連續(xù)型算例

      鐘霖 馬淑芳 萊蒙

      摘 ?要: 考慮了一類(lèi)分段連續(xù)型延遲偏微分方程.首先分析了方程的解析解,給出了級(jí)數(shù)形式的解.其次采用無(wú)網(wǎng)格法求解了該類(lèi)方程的數(shù)值解.利用θ-加權(quán)有限差分法對(duì)方程的時(shí)間變量進(jìn)行離散,并利用Multiquadric(MQ)徑向基函數(shù)和配點(diǎn)法建立了全離散格式.采用傅里葉分析法給出了數(shù)值方法穩(wěn)定的條件.通過(guò)數(shù)值算例給出了方法的誤差及驗(yàn)證了方法的有效性.

      關(guān)鍵詞: 分段連續(xù)型延遲偏微分方程; 無(wú)網(wǎng)格插值法; Multiquadric(MQ)徑向基函數(shù); 穩(wěn)定性

      中圖分類(lèi)號(hào): O 241 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號(hào): 1000-5137(2020)04-0381-06

      Abstract: We consider a class of delay partial differential equation with piecewise continuous arguments in this paper.First,we analyze the analytical solution of the equation and give the solution in the series form.Second,we solve the numerical solution of the equation by meshless interpolation method.The time variable of the equation is discretized by the θ-weighted finite difference method,and the full dispersion scheme is established by the multiquadric(MQ) radial basis function and the collocation method.Fourier analysis gives stability conditions of the numerical method.We also compute the errors and check the validity of the numerical method by concrete examples.

      Key words: delay partial differential equation with piecewise continuous arguments; meshless interpolation method; multiquadric(MQ) radial basis function; stability

      0 ?引 言

      1977年,許多學(xué)者開(kāi)始了對(duì)分段連續(xù)型延遲微分方程的研究.MYSHKIS等[1-3]做了奠定性的基礎(chǔ)工作.該類(lèi)方程同時(shí)具有微分方程和差分方程的性質(zhì),與自動(dòng)控制類(lèi)問(wèn)題是密不可分的,因此受到學(xué)者的高度重視.眾所周知,延遲微分方程的解析解是不易獲得的,因此,發(fā)展該類(lèi)方程數(shù)值解的研究是十分必要的.人們?cè)谠擃?lèi)方程數(shù)值解的穩(wěn)定性、收斂性的研究上已取得顯著成果.例如,YANG等[4]利用Runge-Kutta法給出了滯后型分段連續(xù)型微分方程數(shù)值解的穩(wěn)定性分析,確定了Runge-Kutta法的穩(wěn)定域,給出了在數(shù)值穩(wěn)定區(qū)域中包含解析穩(wěn)定域的條件.XIE等[5]利用θ-法求解了多維分段連續(xù)型延遲微分方程數(shù)值解的穩(wěn)定性.LIANG等[6]應(yīng)用Runge-Kutta法討論了復(fù)線性系統(tǒng)u'(t)=Lu(t)+Mu([t])的穩(wěn)定性.

      3 ?結(jié) ?論

      本文作者分析了一類(lèi)分段連續(xù)型延遲偏微分方程,該類(lèi)方程有微分方程和差分方程的性質(zhì),其精確解不易獲得,因此發(fā)展該類(lèi)方程的解法是十分必要的.首先,給出了方程解析解的級(jí)數(shù)形式.然后,采用無(wú)網(wǎng)格法求解了該類(lèi)方程的數(shù)值解.采用傅里葉分析法給出了數(shù)值方法穩(wěn)定的條件.最后,給出數(shù)值算例驗(yàn)證了方法的有效性.

      參考文獻(xiàn):

      [1] MYSHKIS A D.On centain problems in the theory of differential equations with deviating argument [J].Russian Mathematical Survey,1977,32(2):181-213.

      [2] COOKE K L,WIENER J.Retarded differential equations with piecewise constant delays [J].Journal of Mathematical Analysis and Applications,1984,99(1):265-297.

      [3] SHAH S M,WIENER J.Advanced differential equations with piecewise constant argument deviations [J].International Journal of Mathematics and Mathematical Sciences,1983,6(4):671-703.

      [4] YANG Z W,LIU M Z,SONG M H.Stability of Runge-Kutta methods in the numerical solution of equation u'(t)=au(t)+a_0 u([t])+a_1 u([t-1]) [J].Applied Mathematics and Computation,2003,162(1):37-50.

      [5] 謝鈺程,王琦.多維分段連續(xù)型延遲微分方程的穩(wěn)定性 [J].嶺南師范學(xué)院學(xué)報(bào),2016,37(6):20-27.

      XIE J C,WANG Q.The stability of high-dimensional differential equations with piecewise continuous arguments [J].Journal of Lingnan Normal University,2016,37(6):20-27.

      [6] LIANG H,LIU M Z,YANG Z W.Stability analysis of Runge-Kutta methods for systems u′(t)=Lu(t)+Mu([t]) [J].Applied Mathematics and Computation,2014,228:463-476.

      [7] WANG Q,WEN J.Analytical and numerical stability of partial differential equations with piecewise constant arguments [J].Numerical Methods for Partial Differential Equations,2014,30(1):1-16.

      [8] LIANG H,LIU M Z,LYU W.Stability of θ-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments [J].Applied Mathematics Letters,2010,23(2):198-206.

      [9] LIANG H,SHI D,LYU W.Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument [J].Applied Mathematics and Computation,2010,217(2):854-860.

      [10] WIENER J.Generalized Solutions of Functional Differential Equations [M].Singapore:World Scientific,1993.

      [11] 劉桂榮,顧元通.無(wú)網(wǎng)格法理論及程序設(shè)計(jì)[M].王建明,周學(xué)軍,譯.濟(jì)南:山東大學(xué)出版社,2007.

      LIU G R,GU Y T.An Introduction to Meshfree Methods and Their Programming [M].WANG J M,ZHOU X J,Transl.Jinan:Shandong University Press,2007.

      [12] 杜珊,李風(fēng)軍.新變參MQ擬插值函數(shù)的性質(zhì)及其逼近性能研究 [J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2019,42(5):655-669.

      DU S,LI F J.Study on the properties and approximation capability with a new variable shape parameter [J].Acta Mathematicae Applicatae Scienca,2019,42(5):655-669.

      [13] 李榮華,劉播.微分方程數(shù)值解法 [M].4版.北京:高等教育出版社,2009.

      LI R H,LIU B.Numerical Solutions of Differential Equations [M].4th ed.Beijing:Higher Education Press,2009.

      (責(zé)任編輯:馮珍珍)

      猜你喜歡
      網(wǎng)格法連續(xù)型算例
      自變量分段連續(xù)型Volterra積分微分方程的配置法
      雷擊條件下接地系統(tǒng)的分布參數(shù)
      連續(xù)型美式分期付款看跌期權(quán)
      角接觸球軸承的優(yōu)化設(shè)計(jì)算法
      基于遺傳算法的機(jī)器人路徑規(guī)劃研究
      基于GIS的植物葉片信息測(cè)量研究
      基于振蕩能量的低頻振蕩分析與振蕩源定位(二)振蕩源定位方法與算例
      互補(bǔ)問(wèn)題算例分析
      基于晶圓優(yōu)先級(jí)的連續(xù)型Interbay搬運(yùn)系統(tǒng)性能分析
      基于CYMDIST的配電網(wǎng)運(yùn)行優(yōu)化技術(shù)及算例分析
      南澳县| 彰化县| 阿克苏市| 浪卡子县| 绵竹市| 潢川县| 定襄县| 花垣县| 宁安市| 文安县| 潮安县| 卓资县| 尼勒克县| 广东省| 桃江县| 额济纳旗| 班玛县| 如皋市| 祥云县| 乌拉特后旗| 元阳县| 邢台县| 泉州市| 灵山县| 保定市| 宜兰市| 兰西县| 新余市| 美姑县| 碌曲县| 睢宁县| 青神县| 德钦县| 班玛县| 项城市| 茶陵县| 承德市| 宜阳县| 卢湾区| 晋中市| 克拉玛依市|